
 

Abstract 
 

This paper evaluates face recognition applied to the 

real-world application of Facebook. Because papers 

usually present results in terms of accuracy on 

constrained face datasets, it is difficult to assess how they 

would work on natural data in a real-world application. 

We present a method to automatically gather and extract 

face images from Facebook, resulting in over 60,000 faces 

representing over 500 users. From these natural face 

datasets, we evaluate a variety of well-known face 

recognition algorithms (PCA, LDA, ICA, SVMs) against 

holistic performance metrics of accuracy, speed, memory 

usage, and storage size. SVMs perform best with ~65% 

accuracy, but  lower accuracy algorithms such as IPCA 

are orders of magnitude more efficient in memory 

consumption and speed, yielding a more feasible system. 

1. Introduction 

Face recognition is a popular research topic, maturing 

as researchers develop sophisticated algorithms to achieve 

more accurate results on increasingly difficult face 

datasets [1]. Since the original “eigenface” approach [2], 

other techniques such as Fisherfaces [3], Independent 

Component Analysis [4], and Support Vector Machines  

[5] have been proposed. More difficult face databases, 

such as the FERET [6] database, introduce variations in 

pose, illumination, expression, and time lapses, leading to 

recent advances such as 3D modeling techniques [7].  

With such advances in face recognition and algorithms 

claiming accuracies of greater than 90%, one wonders 

how these algorithms would fare on a real system with 

real data. Consider Facebook, a popular social networking 

website with over 80 million people [8].  Users upload a 

staggering 14 million photos per day, representing an 

opportunity to evaluate face recognition systems. This 

source of real-world faces is nearly untapped by the face 

recognition field. Labeled Faces in the Wild (LFW) [9], a 

face database created from Internet photos, is similar but 

focuses on pair matching rather than recognition. 

Often the field of face recognition pursues the highest 

possible accuracy at the cost of additional computation or 

memory usage. However, accuracy represents only one 

facet of system performance. Consider again Facebook, 

where users “tag” the identity of people in shared photos. 

This manual “tagging” is tedious, prompting us to ask if 

face recognition can successfully automate the process. To 

adequately service such a large website, an auto-tagging 

system must not only exhibit high accuracy, but high 

speed, low memory consumption, and scalability. Ruiz-

del-Solar and Navarrette in [10] provide an excellent 

review of face recognition algorithms, but only evaluate 

them for accuracy.  

Our contribution is utilizing a new source of real-world 

data to evaluate several face recognition algorithms’ 

overall performance for application to Facebook. Section 

2 describes our method for automatically constructing face 

databases. Section 3 briefly overviews a variety of well-

known algorithms that section 4 evaluates using a holistic 

metric of accuracy, speed, memory usage, and storage 

size. Section 5 reports performance characteristics and 

suitability to an application like Facebook. Section 6 

concludes and discusses future work. 
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Figure 1: Typical faces automatically extracted from Facebook. 

Top rows: raw color faces. Bottom rows: Corresponding 

preprocessed face image. Bottom right photo pair represents a 

false positive. Permission was obtained to publish these photos. 



 

2. Facebook Data Acquisition 

Each Facebook user can upload photos and place 

location tags to identify friends in the picture. Uploaded 

images are visible to the user’s friends, but more 

importantly, Facebook allows third-party applications to 

access pictures and tags through an Application 

Programmer’s Interface (API). Using this feature, we 

automatically downloaded tagged photos from seven 

different Facebook accounts and their friends. 

2.1. Face Extraction Approach 

To construct a dataset of faces for each Facebook 

account, it was necessary to detect, identify, and extract 

faces from thousands of raw tagged photos. For simplicity, 

we focused on frontal faces detected using the Viola-Jones 

face detector [11] implemented in Intel’s OpenCV library. 

Because of the large number of false positives 

encountered, eye detection [12] was employed to augment 

the face extraction. Detected faces were only accepted if 

they met certain geometric criteria that relate the presence 

and location of both eyes  ( )  ( ) to the face  : 
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The cost function   calculates the score for each 

combination of face   and left/right eyes  ( )  ( ). The 

function   measures Euclidean distances. Both faces and 

eyes are modeled as circles;       refer to the center of the 

circle representing the face. Through experimental 

observation using available Facebook images, appropriate 

values of                    were chosen, 

which correspond to the eyes residing in the center of the 

upper quadrants of the face. The system only accepts the 

face if the cost is below a threshold, usually a value 

between 2000-5000 depending on the desired strictness.  

Once accepted, a face is identified if a unique tag of a 

friend is located within the circle representing the face. 

The face is subsequently rotated by aligning the eyes 

horizontally. The system extracts the face and normalizes 

it with the procedure developed by [13], namely by a 

grayscale conversion, elliptical mask crop, histogram 

equalization, and pixel value normalization. The final 

image is resized to 56x64 pixels. The entire processing of 

a face from a tagged image takes 1-3 seconds on average, 

which could easily be run client-side as the image is 

uploaded to Facebook. 

2.2. Real-World Non-idealities  

By evaluating the permutations of face and eye pairs, 

the above method automatically constructs the datasets. 

Unlike artificial datasets that introduce realism with 

scarves, hats, etc., our datasets exhibit a realism almost 

approaching surrealism. Face poses are largely frontal but 

contain up to ±30° variations in all directions. Indoor and 

outdoor conditions result in volatile illumination, further 

complicated by the usage of many different cameras. 

Additionally, differences over time such as the growth of 

beards (i.e. Person D in Figure 1), stylization of hair, and 

digital alterations add to the complexity of the dataset. To 

gauge the difficulty of the datasets, we manually analyzed 

the small BCB dataset. Out of 914 pictures, we found 17 

images that were out of alignment, partially occluded, 

digitally altered, or improperly tagged. 

2.3. Resulting Facebook Datasets 

We gathered pictures and tags from seven different 

Facebook accounts and applied the techniques described 

to automatically construct seven different face datasets. 

The statistics for each are described in Table 1 and 

compared to the AT&T Database of Faces [14]. See 

Figure 1 for sample faces from various datasets. 

 
Table 1: Statistics for seven Facebook datasets, including the 

number of friends each user has, the number of people in the 

database (friends who had 10 or more extracted face images), the 

number of photos uploaded amongst all friends, and the number 

of faces detected, identified, and extracted for the dataset. 

Dataset Friends People Total Pictures Total Faces 

ATT N/A 40 N/A 400 

ACR 81 10 1,974 282 

BCB 51 22 4,880 839 

JBK 123 65 20,109 4,009 

EGO 355 148 34,117 7,950 

RGA 407 215 44,403 12,394 

LLP 396 264 85,450 17,602 

SSB 335 222 60,553 18,599 

3. Face Recognition Approaches 

To achieve our goal of applying face recognition to the 

real-world problem of Facebook, we evaluate well-known, 

classical algorithms: PCA, ICA, LDA, and SVMs.  

3.1. Principal Component Analysis (PCA) 

One of the oldest, most reputed face recognition 

algorithms is Eigenfaces  [2], which is based on Principle 

Component Analysis (PCA). PCA reduces the 

dimensionality of each face image by exploiting 

similarities between all face images. Thus, PCA seeks to 

extract a set of images (eigenfaces) that combine linearly 



 

to describe all face images. Given   face images arranged 

as column vectors            , the average face 
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    is subtracted from each image    

    . Joining the face images into a single matrix 

            , PCA finds a set of orthonormal 

vectors that best represents the data. These vectors are the 

eigenvectors    of the covariance matrix      . In 

Eigenspace terminology, each face image is projected by 

the top    significant eigenvectors    to obtain weights 

     
  (   ) that best linearly weight the eigenfaces 

into a representation of the original image. Knowing the 

weights of the training images and a new test face image, 

a nearest neighbor approach determines the identity of the 

face. Eigenfaces has the advantage of being simple and 

fast at the cost of low accuracy when pose, expression, 

and illumination vary significantly. 

3.1.1 Incremental PCA (IPCA) 

As the Facebook scenario is an incremental training 

process where users continuously add new tagged photos, 

we chose to also explore Covariance-Free Incremental 

Principle Component Analysis (CCIPCA) [15]. By 

processing one image at a time, CCIPCA incrementally 

estimates the eigenvectors of the covariance matrix that 

would normally be calculated from all images. IPCA 

requires far less memory and is often faster with a slight 

degradation in accuracy. 

3.1.2 Individual IPCA 

As IPCA incrementally updates the eigenfaces, the 

weights for previously trained images become invalid 

because the eigenspace in which they reside has been 

changed. Consequently, the previously trained face images 

must be kept and reprojected into the updated eigenspace. 

Liu et al. in [16] describes a fully incremental method that 

does not require trained face images for updates. Instead 

of creating a single eigenspace to represent all faces, a 

smaller set of 5-10 eigenfaces is created for each 

individual person. Recognition is not done by nearest 

neighbor, but by projecting the unknown face into each 

user’s eigenspace and finding the one that best represents 

the face (determined by the minimum residual error). 

Training times are very fast and fully incremental, but 

accuracy is poorer and recognition is slower. 

3.2. Independent Component Analysis (ICA) 

Similar to PCA, Independent Component Analysis 

(ICA) seeks a set of vectors that reduces the 

dimensionality of input images [4]. However, ICA does 

not require the orthonormalization of vectors, which 

allows higher-order dependencies in image pixels to be 

exploited. As the mean (first-order statistic) is removed 

from the images in PCA, ICA removes the first and 

second-order statistics by “sphering” the data. Each image 

(with the mean subtracted) is stored as a row vector in  , 

which is multiplied by the whitening matrix    

    ( )    . ICA finds statistically independent images, 

represented by the rows in matrix  , that are mixed 

together with matrix   such that     . In comparison 

to PCA, the rows of   are analogous to eigenfaces and the 

columns of     are the weights of each image. ICA can 

account for more variations in the input images, but 

suffers from slower performance. 

3.3. Linear Discriminant Analysis (LDA) 

One of the failings in PCA and ICA is that the distances 

between weights from faces of the same person are greater 

than face weights from different people. To correct this, a 

method called Fisherfaces [3], based on Linear 

Discriminant Analysis (LDA), attempts to find vectors 

that not only describe the data, but also best discriminate 

between classes of data. Given   classes (people) with the 

mean of class   denoted by    and the  th image in class   

denoted by   
 
, a “within-class” scatter matrix    and a 

“between-class” scatter matrix    is calculated. 
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LDA creates a set of projection vectors by using these 

scatter matrices to maximize the between-class measure 

while simultaneously minimizing the within-class 

measure. Literature shows that LDA is often superior to 

PCA for well distributed classes in small datasets [3]. 

Since LDA requires significantly more computation than 

PCA for large datasets, we investigated the use of 

incremental LDA (ILDA) [17], which is also efficient in 

batch mode.  

3.4. Support Vector Machines (SVMs) 

Recently, Support Vector Machines (SVMs) have 

received much attention for their applicability in solving 

pattern recognition problems. SVMs were first proposed 

as a binary classifier. SVMs compute the support vectors 

through determining a hyperplane that maximizes the 

margin, or distance, between the hyperplane and the 

closest points. As described in [18], the problem begins 

with a set of    points                . Each point 

is labeled as one of two classes    {    }. The best, or 

optimal separating hyperplane (OHS), is defined as 

 ( )  ∑            
   , where the sign of  ( ) 

determines the class of the data. For the non-separable 

case and solving for the coefficients    and   refer to [5]. 

 We chose one-vs-one recognition strategy as initial 

tests yielded better performance compared to one-vs-all. 

The one-vs-one technique uses binary tree classification to 

expand to a multi-class scenario, where at each level two 



 

classes are compared and the top class is selected with: 
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where the sign of d is the class. Linear, second-order 

polynomial, and radial basis function (RBF) kernels were 

explored for application with the Facebook data. A smaller 

dataset, BCB, was used to choose the best kernel and 

determine the parameters that maximized accuracy using 

the RBF and second-order kernels. The second-order 

kernel obtained very poor accuracy, while the RBF and 

linear kernels achieved comparable results. A linear kernel 

is assumed for the rest of this paper. 

4. Results 

When possible, we chose preexisting algorithm 

implementations that have been tested and accepted by the 

community. For LDA, we used [17]’s code; for IPCA, we 

used code accompanying [15].  LIBSVM [19] is a popular 

SVM library. For ICA, we interfaced to the Architecture I 

code from [4]. Also, we hybridize SVM with other 

architectures as in [5]. All work was done in MATLAB®, 

except LIBSVM, which is a C library. 

4.1. Experimental Setup 

To ensure a useful interpretation of results, we maintain 

a consistent setup between experiments. We chose seven 

different Facebook datasets to represent a wide spread of 

typical Facebook users, from heavy users with hundreds of 

friends to casual users with only a few dozen friends. As 

described earlier, the extraction and preprocessing of faces 

were identically and automatically performed to construct 

each dataset. Additionally, we included the unmodified 

AT&T dataset [14] as a quick, baseline benchmark, since 

detailed analysis of selected algorithms has been done on 

other standard datasets such as FERET [6]. Each dataset 

was randomly divided into 60% training and 40% testing 

for validation. Tests showed different selections of 

random training/testing sets changed the results by less 

than a percent on average. To ensure sufficient training 

images exist, people with <10 images were discarded.  

Each algorithm is evaluated with several criteria: 

accuracy, memory usage during the training and testing 

phases, time spent to train and test, and the size of the 

model (i.e. eigenfaces for PCA or support vectors for 

SVMs). While implementations differ in optimizations 

and efficiency, the results provide a realistic estimate. All 

experiments were performed on an Intel® Core 2 Duo 2.6 

GHz computer with 3 GB of RAM. Running times do not 

include loading images as a real implementation may store 

them in a database, on a disk, or over a network. Running 

times are normalized by the size of the dataset and thus 

listed in milliseconds (ms) per image. Overall memory 

(RAM) consumption is sampled at approximately 10 Hz 

and averaged over the algorithm phase (train or test). 

Unless the algorithm processes faces incrementally, 

memory consumed by the batch training images is 

included in the training phase. 

 

 
Figure 2: Varying the number of eigenvectors for a small (BCB) 

and large (RGA) dataset to determine a satisfactory threshold.  

 

To choose the number of eigenvectors to use for 

subspace algorithms, we varied eigenvectors for a small 

and large dataset, BCB and RGA respectively. Since 

accuracy levels out around 75-150 in both cases, 

PCA/ICA use 100 basis vectors. To reduce the effect of 

illumination in PCA/ICA, the first 10 eigenfaces are 

discarded based on findings in [1] and several Facebook 

test runs. Individual IPCA methods discard the first 

eigenface for better accuracy as well. 

4.2. Results 

For each algorithm, we present a tabular form of the 

system characteristics for each dataset. Tables 2-7 are 

arranged by evaluation criteria so an interested user can 

scan and directly compare datasets and approaches. 

4.2.1 Analysis and Evaluation 

As expected, the results show that the system 

performance varies significantly and accuracy on real data 

is lower than reported on most face datasets. In a typical 

face recognition paper focused on accuracy, we would 

conclude that a SVM approach is best. However, for 

Facebook users with many friends, SVMs require half a 

gigabyte of memory, over half an hour to train or classify, 

and a half a gigabyte for storage. Without a very large 

cluster, deploying SVMs to service any significant part of 

the Facebook population is simply not feasible.  

By sacrificing accuracy, other approaches are much 

more feasible. PCA, the traditional “eigenface” algorithm, 

fares well on the ATT & ACR dataset but begins 

performing very poorly on the larger Facebook datasets. 

As the first 10 eigenfaces encode illumination changes, 

discarding them significantly improved the accuracy, as 

shown in the Table 2 for datasets BCB through SSB. 

While training time and storage are more reasonable than 

SVMs, the memory requirements for training are high 



 

(>500MB). Using the incremental version of PCA [15] in 

batch mode reduces the training memory requirements by 

over half while still achieving comparable accuracy. IPCA 

is not fully incremental in that the mean face of the 

training images must be available a-priori; incrementally 

calculating the mean causes a large drop in accuracy. 

As indicated by the asterisk (*), Individual IPCA is 

unique because it is the only algorithm that is completely 

incremental. An eigenspace is built for each person, with 

the mean face calculated incrementally as each image is 

processed. A new face can be trained on by creating or 

updating the eigenspace using IPCA. Furthermore, 

training is extremely fast. However, the accuracy is 10-

20% less than SVMs and recognition is slower because of 

the projections into multiple eigenspaces. 

ICA improves the accuracy of straight PCA by 

significantly increasing the computation times and 

memory requirements. However, when discarding the top 

10 eigenfaces for each algorithm, PCA performs better, 

perhaps because the top PCA eigenfaces encode 

illumination variations. ICA’s learning logistic function 

[4] executes a fixed number of iterations, leading to a 

bottleneck and the counter-intuitive result that larger 

datasets exhibit a lower training time per image. 

LDA [13] was a top performer on the small datasets, 

but scaled so poorly we did not run it on the three largest 

datasets. Since LDA is infeasible on a large system, we 

instead list the batch-mode ILDA [17] results. ILDA’s 

accuracy is slightly greater than PCA and the run times are 

more favorable than ICA. Additionally the model size is 

Table 2: Accuracy across approaches and datasets (percent) 

 

ATT ACR BCB JBK EGO RGA LLP SSB 

PCA 93.1 69.7 57.2 56.5 52.8 50.0 47.1 56.2 

IPCA 94.4 65.1 56.0 56.2 51.6 49.9 46.9 55.6 

Ind. IPCA* 93.1 69.7 59.3 50.9 48.3 43.4 38.9 44.1 

ICA 91.3 72.5 56.9 51.4 50.1 45.5 43.0 48.9 

ILDA 96.3 70.6 66.7 59.4 55.6 52.4 49.3 57.6 

PCA/SVM 97.5 72.5 71.3 64.0 61.7 58.1 55.5 62.4 

ILDA/SVM 96.3 72.5 63.6 62.3 64.3 60.3 57.4 64.5 

SVM 96.9 70.6 70.9 66.6 64.3 60.2 58.2 66.0 
 

 Table 5: Training memory across approaches and datasets (MB) 

 

ATT ACR BCB JBK EGO RGA LLP SSB 

PCA 7.7 5.0 25.5 241 457 602 772 804 

IPCA 8.3 6.0 16.0 68.4 133 206 291 308 

Ind. IPCA* 0.4 0.5 1.4 1.1 2.8 19.2 24.8 24.9 

ICA 21.6 16.0 39.6 281 593 902 1158 1206 

ILDA 8.7 5.2 27.2 274 564 687 832 859 

PCA/SVM 8.0 5.1 25.3 239 450 580 720 746 

ILDA/SVM 7.8 5.0 27.4 273 558 668 787 813 

SVM 8.6 5.6 21.8 129 261 409 581 614 
 

 

Table 3: Training time across approaches and datasets (ms/img) 

 

ATT ACR BCB JBK EGO RGA LLP SSB 

PCA 1.3 1.1 3.6 53.1 54.4 35.7 26.6 25.3 

IPCA 23.7 16.7 22.4 24.4 22.5 24.4 17.5 24.4 

Ind. IPCA* 1.7 3.8 3.5 3.3 3.5 3.5 3.6 3.7 

ICA 504 735 261 132 439 231 160 146 

ILDA 2.8 1.4 4.5 66.7 75.8 51.8 37.9 35.7 

PCA/SVM 1.6 1.2 3.9 53.7 55.8 39.0 30.3 29.0 

ILDA/SVM 1.9 1.3 4.6 67.0 77.3 51.6 40.3 37.4 

SVM 5.9 4.8 8.4 29.2 53.1 77.2 109 108 
 

  

Table 6: Test memory across approaches and datasets (MB) 

 

ATT ACR BCB JBK EGO RGA LLP SSB 

PCA 2.7 2.6 2.8 4.4 7.2 10.8 15.0 15.8 

IPCA 2.2 2.3 2.5 4.0 6.4 10.1 13.9 14.7 

Ind. IPCA* 5.7 1.9 3.7 9.5 21.5 31.8 38.3 32.3 

ICA 2.8 2.7 2.9 5.0 10.4 19.8 30.0 31.9 

ILDA 1.0 0.2 0.5 1.7 3.4 5.3 7.1 7.5 

PCA/SVM 3.1 2.8 3.9 12.3 35.5 69.8 106 86.5 

ILDA/SVM 1.2 0.3 0.7 8.0 32.9 65.4 99.4 79.5 

SVM 11.4 7.0 24.1 118 250 405 580 575 
 

 

Table 4: Testing time across approaches and datasets (ms/img) 

 

ATT ACR BCB JBK EGO RGA LLP SSB 

PCA 0.1 0.1 0.1 0.2 0.6 1.1 1.5 1.6 

IPCA 0.3 0.1 0.1 0.2 0.5 1.1 1.5 1.6 

Ind. IPCA* 3.2 0.6 2.0 4.6 12.3 14.2 17 17.3 

ICA 0.2 0.1 0.1 0.2 0.6 1.0 1.4 1.5 

ILDA 0.0 0.0 0.1 0.2 0.6 1.1 1.5 1.5 

PCA/SVM 0.2 0.1 0.1 1.4 4.3 8.2 12.5 11.4 

ILDA/SVM 0.0 0.0 0.1 0.8 4.3 8.0 12.9 12.1 

SVM 3.3 1.9 6.3 32.1 64.5 105 146 156 
 

  

Table 7: Model size across approaches and datasets (MB) 

 

ATT ACR BCB JBK EGO RGA LLP SSB 

PCA 2.7 2.6 2.8 4.2 6.0 8.0 10.3 10.7 

IPCA 2.4 2.3 2.5 3.8 5.4 7.2 9.3 9.7 

Ind. IPCA* 5.7 1.9 3.7 9.4 21.4 31.1 38.2 32.1 

ICA 2.8 2.7 3.0 4.4 6.2 8.2 10.5 10.9 

ILDA 1.0 0.2 0.5 1.6 2.5 2.5 2.5 2.5 

PCA/SVM 3.1 2.8 3.5 8.6 18.5 32.4 48.1 43.6 

ILDA/SVM 1.2 0.3 0.7 4.7 15.6 28.0 41.9 36.5 

SVM 10.8 7.1 22.7 113 231 367 525 535 
 

   

 



 

smaller because of the decreased eigenspace 

dimensionality of LDA.  

Perhaps the best compromise is the combination of 

PCA or ILDA and SVMs. Instead of the expensive 

computation of training SVMs on the full images and 

generating very large model files, we can use the 

eigenspace representation of the faces to greatly reduce 

the complexity while only sacrificing 2-4% accuracy. 

However even in this scenario, it takes roughly five 

minutes and a gigabyte of memory for a normal user.  

5. Conclusion and Future Work 

In conclusion, we have utilized a new, real-world 

source of images to test a variety of algorithms for holistic 

performance with respect to the potential application of 

Facebook. The results from PCA, LDA, ICA, and SVMs 

show that no single or hybrid method tried is ideally suited 

to a widespread application for use by millions of 

Facebook users. SVM and ILDA methods yield fair ~65% 

accuracy at the cost of high computation and memory 

requirements. Further, they must be completely retrained 

with each new image. Likewise, the Individual IPCA 

approach is ideally suited to a real-world implementation, 

but yields a low accuracy intolerable to most users. 

However if the scope was scaled back from full autonomy, 

Individual IPCA could aid in tagging by automatically 

detecting faces and suggesting most likely identities. 

Future work includes the exploration of iterative SVMs 

and its parameter space to yield more optimal results in 

memory consumption. In addition, more recent 

approaches such as 3D face reconstruction may correct 

pose problems inherent to the algorithms presented. 

The detection and extraction of faces is tightly 

constrained by Viola-Jones and other parameters, which 

further reduces the accuracy of recognizing faces because 

they are rejected by the face extraction stage. In addition, 

we inadvertently accept non-faces like the last photo of 

Person E in Figure 1, as well as miss-tagged users. Further 

work should add face detection methods of increased 

accuracy and a filtering step to remove outliers. 

More resources are available on the authors’ websites. 
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