

Abstract

This paper evaluates face recognition applied to the

real-world application of Facebook. Because papers

usually present results in terms of accuracy on

constrained face datasets, it is difficult to assess how they

would work on natural data in a real-world application.

We present a method to automatically gather and extract

face images from Facebook, resulting in over 60,000 faces

representing over 500 users. From these natural face

datasets, we evaluate a variety of well-known face

recognition algorithms (PCA, LDA, ICA, SVMs) against

holistic performance metrics of accuracy, speed, memory

usage, and storage size. SVMs perform best with ~65%

accuracy, but lower accuracy algorithms such as IPCA

are orders of magnitude more efficient in memory

consumption and speed, yielding a more feasible system.

1. Introduction

Face recognition is a popular research topic, maturing

as researchers develop sophisticated algorithms to achieve

more accurate results on increasingly difficult face

datasets [1]. Since the original “eigenface” approach [2],

other techniques such as Fisherfaces [3], Independent

Component Analysis [4], and Support Vector Machines

[5] have been proposed. More difficult face databases,

such as the FERET [6] database, introduce variations in

pose, illumination, expression, and time lapses, leading to

recent advances such as 3D modeling techniques [7].

With such advances in face recognition and algorithms

claiming accuracies of greater than 90%, one wonders

how these algorithms would fare on a real system with

real data. Consider Facebook, a popular social networking

website with over 80 million people [8]. Users upload a

staggering 14 million photos per day, representing an

opportunity to evaluate face recognition systems. This

source of real-world faces is nearly untapped by the face

recognition field. Labeled Faces in the Wild (LFW) [9], a

face database created from Internet photos, is similar but

focuses on pair matching rather than recognition.

Often the field of face recognition pursues the highest

possible accuracy at the cost of additional computation or

memory usage. However, accuracy represents only one

facet of system performance. Consider again Facebook,

where users “tag” the identity of people in shared photos.

This manual “tagging” is tedious, prompting us to ask if

face recognition can successfully automate the process. To

adequately service such a large website, an auto-tagging

system must not only exhibit high accuracy, but high

speed, low memory consumption, and scalability. Ruiz-

del-Solar and Navarrette in [10] provide an excellent

review of face recognition algorithms, but only evaluate

them for accuracy.

Our contribution is utilizing a new source of real-world

data to evaluate several face recognition algorithms’

overall performance for application to Facebook. Section

2 describes our method for automatically constructing face

databases. Section 3 briefly overviews a variety of well-

known algorithms that section 4 evaluates using a holistic

metric of accuracy, speed, memory usage, and storage

size. Section 5 reports performance characteristics and

suitability to an application like Facebook. Section 6

concludes and discusses future work.

Evaluation of Face Recognition Techniques for Application to Facebook

Brian C. Becker

Carnegie Mellon University

5000 Forbes Ave

Pittsburgh, PA 15213
briancbecker@cmu.edu

http://www.briancbecker.com

Enrique G. Ortiz

University of Central Florida

4000 Central Florida Blvd.

Orlando, FL 32816
eortiz@cs.ucf.edu

http://www.enriquegortiz.com

Person A Person B Person C Person D

Person E

Figure 1: Typical faces automatically extracted from Facebook.

Top rows: raw color faces. Bottom rows: Corresponding

preprocessed face image. Bottom right photo pair represents a

false positive. Permission was obtained to publish these photos.

2. Facebook Data Acquisition

Each Facebook user can upload photos and place

location tags to identify friends in the picture. Uploaded

images are visible to the user’s friends, but more

importantly, Facebook allows third-party applications to

access pictures and tags through an Application

Programmer’s Interface (API). Using this feature, we

automatically downloaded tagged photos from seven

different Facebook accounts and their friends.

2.1. Face Extraction Approach

To construct a dataset of faces for each Facebook

account, it was necessary to detect, identify, and extract

faces from thousands of raw tagged photos. For simplicity,

we focused on frontal faces detected using the Viola-Jones

face detector [11] implemented in Intel’s OpenCV library.

Because of the large number of false positives

encountered, eye detection [12] was employed to augment

the face extraction. Detected faces were only accepted if

they met certain geometric criteria that relate the presence

and location of both eyes () () to the face :

 (() ()) () () (1)

 () (

 ()
)

 (

| () |

)

(
| () |

)

(2)

 (

 ()

 ()
)

 (
 (() ())

)

 (3)

The cost function calculates the score for each

combination of face and left/right eyes () (). The

function measures Euclidean distances. Both faces and

eyes are modeled as circles; refer to the center of the

circle representing the face. Through experimental

observation using available Facebook images, appropriate

values of were chosen,

which correspond to the eyes residing in the center of the

upper quadrants of the face. The system only accepts the

face if the cost is below a threshold, usually a value

between 2000-5000 depending on the desired strictness.

Once accepted, a face is identified if a unique tag of a

friend is located within the circle representing the face.

The face is subsequently rotated by aligning the eyes

horizontally. The system extracts the face and normalizes

it with the procedure developed by [13], namely by a

grayscale conversion, elliptical mask crop, histogram

equalization, and pixel value normalization. The final

image is resized to 56x64 pixels. The entire processing of

a face from a tagged image takes 1-3 seconds on average,

which could easily be run client-side as the image is

uploaded to Facebook.

2.2. Real-World Non-idealities

By evaluating the permutations of face and eye pairs,

the above method automatically constructs the datasets.

Unlike artificial datasets that introduce realism with

scarves, hats, etc., our datasets exhibit a realism almost

approaching surrealism. Face poses are largely frontal but

contain up to ±30° variations in all directions. Indoor and

outdoor conditions result in volatile illumination, further

complicated by the usage of many different cameras.

Additionally, differences over time such as the growth of

beards (i.e. Person D in Figure 1), stylization of hair, and

digital alterations add to the complexity of the dataset. To

gauge the difficulty of the datasets, we manually analyzed

the small BCB dataset. Out of 914 pictures, we found 17

images that were out of alignment, partially occluded,

digitally altered, or improperly tagged.

2.3. Resulting Facebook Datasets

We gathered pictures and tags from seven different

Facebook accounts and applied the techniques described

to automatically construct seven different face datasets.

The statistics for each are described in Table 1 and

compared to the AT&T Database of Faces [14]. See

Figure 1 for sample faces from various datasets.

Table 1: Statistics for seven Facebook datasets, including the

number of friends each user has, the number of people in the

database (friends who had 10 or more extracted face images), the

number of photos uploaded amongst all friends, and the number

of faces detected, identified, and extracted for the dataset.

Dataset Friends People Total Pictures Total Faces

ATT N/A 40 N/A 400

ACR 81 10 1,974 282

BCB 51 22 4,880 839

JBK 123 65 20,109 4,009

EGO 355 148 34,117 7,950

RGA 407 215 44,403 12,394

LLP 396 264 85,450 17,602

SSB 335 222 60,553 18,599

3. Face Recognition Approaches

To achieve our goal of applying face recognition to the

real-world problem of Facebook, we evaluate well-known,

classical algorithms: PCA, ICA, LDA, and SVMs.

3.1. Principal Component Analysis (PCA)

One of the oldest, most reputed face recognition

algorithms is Eigenfaces [2], which is based on Principle

Component Analysis (PCA). PCA reduces the

dimensionality of each face image by exploiting

similarities between all face images. Thus, PCA seeks to

extract a set of images (eigenfaces) that combine linearly

to describe all face images. Given face images arranged

as column vectors , the average face

∑

 is subtracted from each image

 . Joining the face images into a single matrix

 , PCA finds a set of orthonormal

vectors that best represents the data. These vectors are the

eigenvectors of the covariance matrix . In

Eigenspace terminology, each face image is projected by

the top significant eigenvectors to obtain weights

 () that best linearly weight the eigenfaces

into a representation of the original image. Knowing the

weights of the training images and a new test face image,

a nearest neighbor approach determines the identity of the

face. Eigenfaces has the advantage of being simple and

fast at the cost of low accuracy when pose, expression,

and illumination vary significantly.

3.1.1 Incremental PCA (IPCA)

As the Facebook scenario is an incremental training

process where users continuously add new tagged photos,

we chose to also explore Covariance-Free Incremental

Principle Component Analysis (CCIPCA) [15]. By

processing one image at a time, CCIPCA incrementally

estimates the eigenvectors of the covariance matrix that

would normally be calculated from all images. IPCA

requires far less memory and is often faster with a slight

degradation in accuracy.

3.1.2 Individual IPCA

As IPCA incrementally updates the eigenfaces, the

weights for previously trained images become invalid

because the eigenspace in which they reside has been

changed. Consequently, the previously trained face images

must be kept and reprojected into the updated eigenspace.

Liu et al. in [16] describes a fully incremental method that

does not require trained face images for updates. Instead

of creating a single eigenspace to represent all faces, a

smaller set of 5-10 eigenfaces is created for each

individual person. Recognition is not done by nearest

neighbor, but by projecting the unknown face into each

user’s eigenspace and finding the one that best represents

the face (determined by the minimum residual error).

Training times are very fast and fully incremental, but

accuracy is poorer and recognition is slower.

3.2. Independent Component Analysis (ICA)

Similar to PCA, Independent Component Analysis

(ICA) seeks a set of vectors that reduces the

dimensionality of input images [4]. However, ICA does

not require the orthonormalization of vectors, which

allows higher-order dependencies in image pixels to be

exploited. As the mean (first-order statistic) is removed

from the images in PCA, ICA removes the first and

second-order statistics by “sphering” the data. Each image

(with the mean subtracted) is stored as a row vector in ,

which is multiplied by the whitening matrix

 () . ICA finds statistically independent images,

represented by the rows in matrix , that are mixed

together with matrix such that . In comparison

to PCA, the rows of are analogous to eigenfaces and the

columns of are the weights of each image. ICA can

account for more variations in the input images, but

suffers from slower performance.

3.3. Linear Discriminant Analysis (LDA)

One of the failings in PCA and ICA is that the distances

between weights from faces of the same person are greater

than face weights from different people. To correct this, a

method called Fisherfaces [3], based on Linear

Discriminant Analysis (LDA), attempts to find vectors

that not only describe the data, but also best discriminate

between classes of data. Given classes (people) with the

mean of class denoted by and the th image in class

denoted by

, a “within-class” scatter matrix and a

“between-class” scatter matrix is calculated.

 ∑ ()()

 (4)

 ∑ ∑ (

)(

)

 (5)

LDA creates a set of projection vectors by using these

scatter matrices to maximize the between-class measure

while simultaneously minimizing the within-class

measure. Literature shows that LDA is often superior to

PCA for well distributed classes in small datasets [3].

Since LDA requires significantly more computation than

PCA for large datasets, we investigated the use of

incremental LDA (ILDA) [17], which is also efficient in

batch mode.

3.4. Support Vector Machines (SVMs)

Recently, Support Vector Machines (SVMs) have

received much attention for their applicability in solving

pattern recognition problems. SVMs were first proposed

as a binary classifier. SVMs compute the support vectors

through determining a hyperplane that maximizes the

margin, or distance, between the hyperplane and the

closest points. As described in [18], the problem begins

with a set of points . Each point

is labeled as one of two classes { }. The best, or

optimal separating hyperplane (OHS), is defined as

 () ∑
 , where the sign of ()

determines the class of the data. For the non-separable

case and solving for the coefficients and refer to [5].

 We chose one-vs-one recognition strategy as initial

tests yielded better performance compared to one-vs-all.

The one-vs-one technique uses binary tree classification to

expand to a multi-class scenario, where at each level two

classes are compared and the top class is selected with:

 ()

∑

‖ ‖

(6)

where the sign of d is the class. Linear, second-order

polynomial, and radial basis function (RBF) kernels were

explored for application with the Facebook data. A smaller

dataset, BCB, was used to choose the best kernel and

determine the parameters that maximized accuracy using

the RBF and second-order kernels. The second-order

kernel obtained very poor accuracy, while the RBF and

linear kernels achieved comparable results. A linear kernel

is assumed for the rest of this paper.

4. Results

When possible, we chose preexisting algorithm

implementations that have been tested and accepted by the

community. For LDA, we used [17]’s code; for IPCA, we

used code accompanying [15]. LIBSVM [19] is a popular

SVM library. For ICA, we interfaced to the Architecture I

code from [4]. Also, we hybridize SVM with other

architectures as in [5]. All work was done in MATLAB®,

except LIBSVM, which is a C library.

4.1. Experimental Setup

To ensure a useful interpretation of results, we maintain

a consistent setup between experiments. We chose seven

different Facebook datasets to represent a wide spread of

typical Facebook users, from heavy users with hundreds of

friends to casual users with only a few dozen friends. As

described earlier, the extraction and preprocessing of faces

were identically and automatically performed to construct

each dataset. Additionally, we included the unmodified

AT&T dataset [14] as a quick, baseline benchmark, since

detailed analysis of selected algorithms has been done on

other standard datasets such as FERET [6]. Each dataset

was randomly divided into 60% training and 40% testing

for validation. Tests showed different selections of

random training/testing sets changed the results by less

than a percent on average. To ensure sufficient training

images exist, people with <10 images were discarded.

Each algorithm is evaluated with several criteria:

accuracy, memory usage during the training and testing

phases, time spent to train and test, and the size of the

model (i.e. eigenfaces for PCA or support vectors for

SVMs). While implementations differ in optimizations

and efficiency, the results provide a realistic estimate. All

experiments were performed on an Intel® Core 2 Duo 2.6

GHz computer with 3 GB of RAM. Running times do not

include loading images as a real implementation may store

them in a database, on a disk, or over a network. Running

times are normalized by the size of the dataset and thus

listed in milliseconds (ms) per image. Overall memory

(RAM) consumption is sampled at approximately 10 Hz

and averaged over the algorithm phase (train or test).

Unless the algorithm processes faces incrementally,

memory consumed by the batch training images is

included in the training phase.

Figure 2: Varying the number of eigenvectors for a small (BCB)

and large (RGA) dataset to determine a satisfactory threshold.

To choose the number of eigenvectors to use for

subspace algorithms, we varied eigenvectors for a small

and large dataset, BCB and RGA respectively. Since

accuracy levels out around 75-150 in both cases,

PCA/ICA use 100 basis vectors. To reduce the effect of

illumination in PCA/ICA, the first 10 eigenfaces are

discarded based on findings in [1] and several Facebook

test runs. Individual IPCA methods discard the first

eigenface for better accuracy as well.

4.2. Results

For each algorithm, we present a tabular form of the

system characteristics for each dataset. Tables 2-7 are

arranged by evaluation criteria so an interested user can

scan and directly compare datasets and approaches.

4.2.1 Analysis and Evaluation

As expected, the results show that the system

performance varies significantly and accuracy on real data

is lower than reported on most face datasets. In a typical

face recognition paper focused on accuracy, we would

conclude that a SVM approach is best. However, for

Facebook users with many friends, SVMs require half a

gigabyte of memory, over half an hour to train or classify,

and a half a gigabyte for storage. Without a very large

cluster, deploying SVMs to service any significant part of

the Facebook population is simply not feasible.

By sacrificing accuracy, other approaches are much

more feasible. PCA, the traditional “eigenface” algorithm,

fares well on the ATT & ACR dataset but begins

performing very poorly on the larger Facebook datasets.

As the first 10 eigenfaces encode illumination changes,

discarding them significantly improved the accuracy, as

shown in the Table 2 for datasets BCB through SSB.

While training time and storage are more reasonable than

SVMs, the memory requirements for training are high

(>500MB). Using the incremental version of PCA [15] in

batch mode reduces the training memory requirements by

over half while still achieving comparable accuracy. IPCA

is not fully incremental in that the mean face of the

training images must be available a-priori; incrementally

calculating the mean causes a large drop in accuracy.

As indicated by the asterisk (*), Individual IPCA is

unique because it is the only algorithm that is completely

incremental. An eigenspace is built for each person, with

the mean face calculated incrementally as each image is

processed. A new face can be trained on by creating or

updating the eigenspace using IPCA. Furthermore,

training is extremely fast. However, the accuracy is 10-

20% less than SVMs and recognition is slower because of

the projections into multiple eigenspaces.

ICA improves the accuracy of straight PCA by

significantly increasing the computation times and

memory requirements. However, when discarding the top

10 eigenfaces for each algorithm, PCA performs better,

perhaps because the top PCA eigenfaces encode

illumination variations. ICA’s learning logistic function

[4] executes a fixed number of iterations, leading to a

bottleneck and the counter-intuitive result that larger

datasets exhibit a lower training time per image.

LDA [13] was a top performer on the small datasets,

but scaled so poorly we did not run it on the three largest

datasets. Since LDA is infeasible on a large system, we

instead list the batch-mode ILDA [17] results. ILDA’s

accuracy is slightly greater than PCA and the run times are

more favorable than ICA. Additionally the model size is

Table 2: Accuracy across approaches and datasets (percent)

ATT ACR BCB JBK EGO RGA LLP SSB

PCA 93.1 69.7 57.2 56.5 52.8 50.0 47.1 56.2

IPCA 94.4 65.1 56.0 56.2 51.6 49.9 46.9 55.6

Ind. IPCA* 93.1 69.7 59.3 50.9 48.3 43.4 38.9 44.1

ICA 91.3 72.5 56.9 51.4 50.1 45.5 43.0 48.9

ILDA 96.3 70.6 66.7 59.4 55.6 52.4 49.3 57.6

PCA/SVM 97.5 72.5 71.3 64.0 61.7 58.1 55.5 62.4

ILDA/SVM 96.3 72.5 63.6 62.3 64.3 60.3 57.4 64.5

SVM 96.9 70.6 70.9 66.6 64.3 60.2 58.2 66.0

 Table 5: Training memory across approaches and datasets (MB)

ATT ACR BCB JBK EGO RGA LLP SSB

PCA 7.7 5.0 25.5 241 457 602 772 804

IPCA 8.3 6.0 16.0 68.4 133 206 291 308

Ind. IPCA* 0.4 0.5 1.4 1.1 2.8 19.2 24.8 24.9

ICA 21.6 16.0 39.6 281 593 902 1158 1206

ILDA 8.7 5.2 27.2 274 564 687 832 859

PCA/SVM 8.0 5.1 25.3 239 450 580 720 746

ILDA/SVM 7.8 5.0 27.4 273 558 668 787 813

SVM 8.6 5.6 21.8 129 261 409 581 614

Table 3: Training time across approaches and datasets (ms/img)

ATT ACR BCB JBK EGO RGA LLP SSB

PCA 1.3 1.1 3.6 53.1 54.4 35.7 26.6 25.3

IPCA 23.7 16.7 22.4 24.4 22.5 24.4 17.5 24.4

Ind. IPCA* 1.7 3.8 3.5 3.3 3.5 3.5 3.6 3.7

ICA 504 735 261 132 439 231 160 146

ILDA 2.8 1.4 4.5 66.7 75.8 51.8 37.9 35.7

PCA/SVM 1.6 1.2 3.9 53.7 55.8 39.0 30.3 29.0

ILDA/SVM 1.9 1.3 4.6 67.0 77.3 51.6 40.3 37.4

SVM 5.9 4.8 8.4 29.2 53.1 77.2 109 108

Table 6: Test memory across approaches and datasets (MB)

ATT ACR BCB JBK EGO RGA LLP SSB

PCA 2.7 2.6 2.8 4.4 7.2 10.8 15.0 15.8

IPCA 2.2 2.3 2.5 4.0 6.4 10.1 13.9 14.7

Ind. IPCA* 5.7 1.9 3.7 9.5 21.5 31.8 38.3 32.3

ICA 2.8 2.7 2.9 5.0 10.4 19.8 30.0 31.9

ILDA 1.0 0.2 0.5 1.7 3.4 5.3 7.1 7.5

PCA/SVM 3.1 2.8 3.9 12.3 35.5 69.8 106 86.5

ILDA/SVM 1.2 0.3 0.7 8.0 32.9 65.4 99.4 79.5

SVM 11.4 7.0 24.1 118 250 405 580 575

Table 4: Testing time across approaches and datasets (ms/img)

ATT ACR BCB JBK EGO RGA LLP SSB

PCA 0.1 0.1 0.1 0.2 0.6 1.1 1.5 1.6

IPCA 0.3 0.1 0.1 0.2 0.5 1.1 1.5 1.6

Ind. IPCA* 3.2 0.6 2.0 4.6 12.3 14.2 17 17.3

ICA 0.2 0.1 0.1 0.2 0.6 1.0 1.4 1.5

ILDA 0.0 0.0 0.1 0.2 0.6 1.1 1.5 1.5

PCA/SVM 0.2 0.1 0.1 1.4 4.3 8.2 12.5 11.4

ILDA/SVM 0.0 0.0 0.1 0.8 4.3 8.0 12.9 12.1

SVM 3.3 1.9 6.3 32.1 64.5 105 146 156

Table 7: Model size across approaches and datasets (MB)

ATT ACR BCB JBK EGO RGA LLP SSB

PCA 2.7 2.6 2.8 4.2 6.0 8.0 10.3 10.7

IPCA 2.4 2.3 2.5 3.8 5.4 7.2 9.3 9.7

Ind. IPCA* 5.7 1.9 3.7 9.4 21.4 31.1 38.2 32.1

ICA 2.8 2.7 3.0 4.4 6.2 8.2 10.5 10.9

ILDA 1.0 0.2 0.5 1.6 2.5 2.5 2.5 2.5

PCA/SVM 3.1 2.8 3.5 8.6 18.5 32.4 48.1 43.6

ILDA/SVM 1.2 0.3 0.7 4.7 15.6 28.0 41.9 36.5

SVM 10.8 7.1 22.7 113 231 367 525 535

smaller because of the decreased eigenspace

dimensionality of LDA.

Perhaps the best compromise is the combination of

PCA or ILDA and SVMs. Instead of the expensive

computation of training SVMs on the full images and

generating very large model files, we can use the

eigenspace representation of the faces to greatly reduce

the complexity while only sacrificing 2-4% accuracy.

However even in this scenario, it takes roughly five

minutes and a gigabyte of memory for a normal user.

5. Conclusion and Future Work

In conclusion, we have utilized a new, real-world

source of images to test a variety of algorithms for holistic

performance with respect to the potential application of

Facebook. The results from PCA, LDA, ICA, and SVMs

show that no single or hybrid method tried is ideally suited

to a widespread application for use by millions of

Facebook users. SVM and ILDA methods yield fair ~65%

accuracy at the cost of high computation and memory

requirements. Further, they must be completely retrained

with each new image. Likewise, the Individual IPCA

approach is ideally suited to a real-world implementation,

but yields a low accuracy intolerable to most users.

However if the scope was scaled back from full autonomy,

Individual IPCA could aid in tagging by automatically

detecting faces and suggesting most likely identities.

Future work includes the exploration of iterative SVMs

and its parameter space to yield more optimal results in

memory consumption. In addition, more recent

approaches such as 3D face reconstruction may correct

pose problems inherent to the algorithms presented.

The detection and extraction of faces is tightly

constrained by Viola-Jones and other parameters, which

further reduces the accuracy of recognizing faces because

they are rejected by the face extraction stage. In addition,

we inadvertently accept non-faces like the last photo of

Person E in Figure 1, as well as miss-tagged users. Further

work should add face detection methods of increased

accuracy and a filtering step to remove outliers.

More resources are available on the authors’ websites.

Acknowledgements

This material is based upon work supported under a

National Science Foundation Graduate Research

Fellowship. Special thanks to our Facebook volunteers.

References

[1] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld,

"Face Recognition: A Literature Survey," ACM Computing

Surveys, vol. 35, pp. 399-458, 2003.

[2] M. A. Turk and A. P. Pentland, "Face Recognition Using

Eigenfaces," in IEEE CVPR, 1991, pp. 586-591.

[3] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,

"Eigenfaces vs. Fisherfaces: Recognition Using Class

Specific Linear Projection," in IEEE TPAMI. vol. 19, 1997,

pp. 711-720.

[4] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, "Face

Recognition by Independent Component Analysis," IEEE

Transactions on Neural Networks, vol. 13, pp. 1450-1464,

2002.

[5] G. Guo, S. Z. Li, and K. Chan, "Face Recognition By

Support Vector Machines," Image and Vision Computing,

vol. 19, pp. 631-638, 2001.

[6] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, "The

FERET Evaluation Methodology for Face-Recognition

Algorithms," IEEE TPAMI, vol. 22, pp. 1090-1104, 2000.

[7] Y. Hu, D. Jiang, S. Yan, and L. Zhang, "Automatic 3D

Reconstruction for Face Recognition," in IEEE FG, 2004,

pp. 843-848.

[8] Facebook, "Facebook | Statistics," 2008.

http://www.facebook.com/press/info.php?statistics.

[9] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller,

"Labeled Faces in the Wild: A Database for Studying Face

Recognition in Unconstrained Environments," University of

Massachusetts, Amherst 2007.

[10] J. Ruiz-del-Solar and P. Navarrete, "Eigenspace-Based Face

Recognition: A Comparative Study of Different

Approaches," IEEE Trans. on Sys., Man. & Cyb. C., vol. 35,

p. 315, 2005.

[11] P. Viola and M. Jones, "Rapid Object Detection Using a

Boosted Cascade of Simple Features," in IEEE CVPR,

2001, pp. 511–518.

[12] M. Castrillón-Santana, O. Déniz-Suárez, L. Antón-Canalís,

and J. Lorenzo-Navarro, "Face and Facial Feature Detection

Evaluation," in VISAPP, 2008.

[13] D. S. Bolme, J. R. Beveridge, M. Teixeira, and B. A.

Draper, "The CSU Face Identification Evaluation System:

Its Purpose, Features, and Structure," in ICVS Graz, Austria,

2003.

[14] A. T. L. Cambridge, "The Database of Faces,"

http://www.cl.cam.ac.uk/research/dtg/attarchive/faced

atabase.html.
[15] J. Weng, Y. Zhang, and W. S. Hwang, "Candid Covariance-

Free Incremental Principal Component Analysis," IEEE

TPAMI, vol. 25, pp. 1034-1040, 2003.

[16] X. Liu, T. Chen, and S. M. Thornton, "Eigenspace Updating

for Non-Stationary Process and Its Application to Face

Recognition," Pattern Recognition, vol. 36, pp. 1945-1959,

2003.

[17] T. K. Kim, S. F. Wong, B. Stenger, J. Kittler, and R.

Cipolla, "Incremental Linear Discriminant Analysis Using

Sufficient Spanning Set Approximations," in IEEE CVPR,

2007, pp. 1-8.

[18] B. Heisele, P. Ho, and T. Poggio, "Face Recognition with

Support Vector Machines: Global versus Component-Based

Approach," in ICCV. vol. 2 Vancouver, Canada, 2001, pp.

688–694.

[19] C.-C. Chang and C.-J. Lin, "LIBSVM: A Library for

Support Vector Machines," 2001. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

