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Abstract. We explore the performance of a number of popular feature detectors and descriptors in matching 3D

object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting

epipolar constraints, for providing ground truth correspondence automatically. These correspondences are based

purely on geometric information, and do not rely on the choice of a specific feature appearance descriptor. We

test detector-descriptor combinations on a database of 100 objects viewed from 144 calibrated viewpoints under

three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features

is most robust to viewpoint change. Harris-affine combined with SIFT and Hessian-affine combined with shape

context descriptors were best respectively for lighting change and change in camera focal length. We also find that

no detector-descriptor combination performs well with viewpoint changes of more than 25–30◦.
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1. Introduction

Detecting and matching specific features across dif-

ferent images has been shown to be useful for a di-

verse set of visual tasks including stereoscopic vision

(Tuytelaars and Van Gool, 2000; Matas et al., 2002),

vision-based simultaneous localization and mapping

(SLAM) for autonomous vehicles (Se et al., 2002;

Lowe, 2004), mosaicking images (Brown and Lowe,

2003) and recognizing objects (Schmid and Mohr,

1997; Lowe, 2004). This operation typically involves

three distinct steps. First a ‘feature detector’ identi-

fies a set of image locations presenting rich visual in-

formation and whose spatial location is well defined.

The spatial extent or ‘scale’ of the feature may also be

identified in this first step, as well as the local shape

near the detected location (Mikolajczyk and Schmid,

2002; Matas et al., 2002; Tuytelaars and Van Gool,

2000, 2004). The second step is ‘description’: a vec-

tor characterizing local visual appearance is computed

from the image near the nominal location of the fea-

ture. ‘Matching’ is the third step: a given feature is

associated with one or more features in other images.

Important aspects of matching are metrics and crite-

ria to decide whether two features should be associ-

ated, and data structures and algorithms for matching

efficiently.

The ideal system will be able to detect a large number

of meaningful features in the typical image, and will

match them reliably across different views of the same

scene/object. Critical issues in detection, description

and matching are robustness with respect to viewpoint

and lighting changes, the number of features detected

in a typical image, the frequency of false alarms

and mismatches, and the computational cost of each

step. Different applications weigh these requirements

differently. For example, viewpoint changes more

significantly in object recognition, SLAM and wide-

baseline stereo than in image mosaicking, while the

frequency of false matches may be more critical in ob-

ject recognition, where thousands of potentially match-

ing images are considered, rather than in wide-baseline
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Figure 1. (Top row) Large (≈50◦) viewpoint change for a flat scene. Many interest points can be matched after the transformation. The

appearance change is modeled by an affine transformation. Panel b shows four 40 × 40 patches before and after viewpoint change—images

courtesy of K. Mikolajczyk (Bottom row) Similar 50◦ viewpoint change for a 3D scene. Many visually salient features are associated with

locations where the 3D surface is irregular or near boundaries. The local geometric structure of the image around these features varies rapidly

with viewing direction changes, which makes matching features more challenging because of occlusion and changes in appearance. In particular,

the appearance of the patches shown in panel e varies significantly with the change in viewpoint. This change is difficult to model.

stereo and mosaicing where only few images are

present.

A number of feature detectors (Matas et al., 2002;

Harris and Stephens, 1988; Beaudet, 1978; Kadir et al.,

2004; Mikolajczyk and Schmid, 2002; Crowley and

Parker, 1984), feature descriptors (Lowe, 2004; Free-

man and Adelson, 1991; Belongie et al., 2002; Ke

and Sukthankar, 2004) and feature matchers (Schmid

and Mohr, 1997; Lowe, 2004; Carneiro and Jepson,

2004; Moreels and Perona, 2005) have been pro-

posed in the literature. They can be variously com-

bined and concatenated to produce different systems.

Which combination should be used in a given ap-

plication? A couple of studies explore this question.

Schmid and Mohr (1997) characterized and compared

the performance of several features detectors. Recently,

Mikolajczyk and Schmid (to appeaar) () focused pri-

marily on the descriptor stage. For a chosen detec-

tor, the performance of a number of descriptors was

assessed. These evaluations of interest point opera-

tors and feature descriptors, have relied on the use

of images of flat scenes, or in some cases synthetic

images. The reason is that in these special cases the

transformation between pairs of images can be com-

puted easily, which is convenient to establish ground

truth.

However, the relative performance of various detec-

tors can change when switching from planar scenes

to 3D images (see Figs. 1, 17 and Fraundorfer and

Bischof (2004)). Features detected in an image are

generated in part by surface markings, and in part

by the geometric shape of the object. The former

are often associated with smooth surfaces, they are

usually located far from object boundaries and have
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been shown to have a high stability across viewpoints

(Schmid and Mohr, 1997; Mikolajczyk and Schmid

(to appeaar), ). Their deformation may be modeled

by an affine transformation, hence the development

of affine-invariant detectors (Lindeberg and Garding,

1997; Mikolajczyk and Schmid, 2002; Schaffalitzky

and Zisserman, 2001; Tuytelaars and Van Gool, 2000,

2004). The latter are associated with high surface cur-

vature and are located near edges, corners and folds

of the object. Due to self-occlusion and complexity of

local shape, these features have a much lower stabil-

ity with respect to viewpoint change. It is difficult to

model their deformation without a full 3D model of the

shape.

The present study generalizes the analyses in

Schmid and Mohr (1997), Ke and Sukthankar (2004),

Mikolajczyk and Schmid (to appeaar) () to 3D scenes.1

We evaluate the performance of feature detectors and

descriptors for images of 3D objects viewed under

different viewpoint, lighting and scale conditions. To

this effect, we collected a database of 100 objects

viewed from 144 different calibrated viewpoints un-

der 3 lighting conditions. We also developed a prac-

tical and accurate method for establishing automat-

ically ground truth in images of 3D scenes. Unlike

(Fraundorfer and Bischof, 2004) ground truth is es-

tablished using geometric constraints only, so that

the feature/descriptor evaluation is not biased by

the choice of a specific descriptor and appearance-

based matches. Besides, our method is fully auto-

mated, so that the evaluation can be performed on a

large-scale database, rather than on a handful of im-

ages as in Mikolajczyk and Schmid (to appeaar) (),

Fraundorfer and Bischof (2004).

Another novel aspect is the use of a metric for ac-

cepting/rejecting feature matches due to Lowe (2004),

it is based on the ratio of the distance of a given feature

from its best match vs the distance to the second best

match. This metric has been shown to perform better

than the traditional distance-to-best-match.

Section 2 presents the previous work on evaluation

of features detectors and descriptors. In Section 3 we

describe the geometrical considerations which allow

us to construct automatically a ground truth for our

experiments. Section 4 presents our laboratory setup

and the database of images we collected. Section 5

describes the decision process used in order to assess

performances of detectors and descriptors. Section 6

presents the experiments. Section 7 contains our con-

clusions.

2. Previous Work

The first extensive study of features stability depending

on the feature detector being used, was performed by

Schmid et al. (2000). The database consisted of images

of drawings and paintings photographed from a number

of viewpoints. The authors extracted and matched in-

terest points across pairs of views. The different views

were generated by rotating and moving the camera as

well as by varying the illumination. Since all scenes

were planar, the transformation between two images

taken from different viewpoints was a homography.

Ground truth, i.e. the homography between pairs of

views, was computed from a grid of artificial points

projected onto the paintings. The authors measured the

performance by the repeatability rate, i.e. the percent-

age of locations selected as features in two images.

Mikolajczyk et al. (2004) performed a similar study

of affine-invariant features detectors. This time, most

images of the database consisted of natural scenes.

However, the scenes were either planar (e.g. graffiti

on a wall), or viewed from a large distance, such that

the scene appeared flat. Therefore the authors could

model the ground truth transformation between a pair

of views with a homography as was previously done

in Schmid et al. (2000). This ground truth homogra-

phy was computed using manually selected correspon-

dences, followed by an automatic computation of the

residual homography.

Note that the performance criterion used in both of

these studies is well defined only when a small number

of features is detected in each image. If the number of

interest points is arbitrary, one could indeed consider a

trivial interest point operator that selects every point in

the image to be a new feature. The performance of this

detector would be excellent in terms of stability of the

features location. In particular for planar images such

as considered by Mikolajczyk et al. (2004) and Schmid

et al. (2000), this detector would reach 100% stability.

This perfect stability still holds if the detector selects a

dense grid of points in the image. This argument illus-

trates the necessity of including the descriptor stage in

performance evaluation.

Fraundorfer and Bischof (2004) compared local de-

tectors on real-world scenes. Ground truth was estab-

lished in triplets of views. Correspondences were first

identified between grids of points sampled densely in

two close views: matches were obtained by nearest

neighbor search in appearance space. The coordinates

of pairs of matching points in the first two images,
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were transferred on the third image via the trifocal ten-

sor. The test scenes used for detector evaluation were

piecewise flat (building, office space).

Mikolajczyk and Schmid (to appeaar) provided a

complementary study where the focus was not any-

more on the detector stage but on the descriptor, i.e.

a vector characterizing the local appearance at each

detected location. Two interest points were consid-

ered a good match if their appearance descriptors was

closer than a threshold t in appearance space. Matches

that were accepted were compared to ground truth to

determine if they were true matches or false alarms.

Ground truth was computed as in their previous study

(Mikolajczyk et al., 2004). By varying the accep-

tance threshold t , the authors generated recall-precision

curves to compare the descriptors. If the value of t is

small, the user is very strict in accepting a match based

on appearance, which leads to a high precision but a

poor recall. If t is high, all candidate correspondences

are accepted regardless of their appearance. Correct

matches are accepted (high recall), as well as lots of

false positives, leading to lower precision.

Ke and Sukthankar (2004) used a similar setup to test

their PCA-SIFT descriptor against SIFT. Test features

were indexed into a database, the resulting matches

were accepted based on a threshold t on quality of the

appearance match. Ground truth was provided by la-

beled images, or by using synthetic data. The threshold

t was varied to obtain recall-precision curves.

A recent study by Mikolajczyk et al. (2005) com-

pared detectors and descriptors when they are inte-

grated in the framework of the full recognition sys-

tem from Leibe et al. (2005). They assessed the per-

formance from the performance of the overall system.

The integration within a complete recognition method

has the advantage of computing directly the bottom line

performance in recognition. However, the scores might

depend heavily on the architecture of the recognition

system and may not be generalized to other applications

such as large baseline stereo, SLAM and mosaicking.

3. Ground Truth

In order to evaluate a particular detector-descriptor

combination we need to calculate the probability that

a feature extracted in a given image, can be matched to

the corresponding feature in an image of the same ob-

ject/scene viewed from a different viewpoint. For this

to succeed, the feature’s physical location must be vis-

ible in both images, the feature detector must detect it

in both cases with minimal positional variation, and the

descriptor of the features must be sufficiently close. To

compute this probability we must have a ground truth

telling us if any tentative match between two features

is correct or not. Conversely, whenever a feature is de-

tected in one image, we must be able to tell whether in

the corresponding location in another image a feature

was detected and matched.

We establish ground truth by using epipolar con-

straints between triplets of calibrated views of the ob-

jects. The motivation comes from stereoscopic im-

agery: if the position of a point is identified in two

calibrated images of a same scene, the position in 3D

space of the physical point may be computed, and its

location may be predicted in any additional calibrated

image of the same scene.

We distinguish between a reference view (A in

Figs. 2 and 3), a test view C , and an auxiliary view B.

Given one reference feature f A in the reference image,

any feature in C that matches the reference feature must

satisfy the constraint of belonging to the corresponding

reference epipolar line l AC . This excludes most poten-

tial matches but not all of them (in our experiments, typ-

ically 5–10 features remain out of 500–1000 features in

image C). We make the test more stringent by impos-

ing a second constraint. In the auxiliary image B, an

epipolar line l AB is associated to the reference feature

f A. Again, f A has typically 5–10 potential matches

along l AB , each of which in turn generates an ‘auxil-

iary’ epipolar line l BC
1...10 in C . The intersection of the

primary (l AC ) and auxiliary (l BC
1...10) epipolar lines in C

identify a number of small matching regions, in which

only zero or one features are typically detected. As we

will make clear later, when a matching feature is found,

this indicates with overwhelming probability that it is

the correct match.

Figure 2. Diagram explaining the geometry of our three-cameras

arrangement and of the triple epipolar constraint.
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Figure 3. Example of matching process for one feature.

Note that the geometry of our acquisition system

(Figs. 2 and 3) does not allow the degenerate case

where the reference point is on the trifocal plane. In

this case, the triangle (reference camera/auxiliary cam-

era/test camera) would be a degenerate triangle and the

epipolar transfer would fail (Hartley and Zisserman,

2000). An alternative would be to use the trifocal ten-

sor to perform the point transfer (Shashua and Werman,

1995; Hartley and Zisserman, 2000) (transfer using

the trifocal tensor avoids the degeneracy of epipolar

transfer).

The benefit of using the double epipolar constraint

in the test image is that any correspondence—or lack

thereof—may be validated with extremely low error

margins. The cost is that only a fraction (50–70%) of the

reference features have a correspondence in the auxil-

iary image, thus limiting the number of features triplets

that can be formed.

4. Experimental Setup

4.1. Photographic Setup and Database

Our acquisition system consists of 2 cameras taking

images of objects on a motorized turntable (see Fig. 4).

We used inexpensive off-the-shelf Canon Powershot

G1 cameras with a 3 MPixels resolution. The highest

focal length available on the cameras −14.6 mm-was

used in order to minimize distortion (0.5% pincushion

distortion with the 14.6 mm focal length). A change in

viewpoint is performed by the rotation of the turntable.

The lower camera takes the reference view and the top

camera the auxiliary view, then the turntable is rotated

and the same lower camera takes the test view. Each

acquisition was repeated with 3 different lighting con-

ditions obtained with a combination of photographic

spotlights and diffusers. The images were converted to

gray-scale using Matlab’s command rgb2gray (keeps

luminance, eliminates hue and saturation).

The baseline of our stereo rig, or distance between

the reference camera and the auxiliary camera, is a

trade-off parameter between repeatability and accu-

racy. On one hand, we would like to set these cameras

very close to each other, in order to have a high feature

stability (also called repeatability rate) between the ref-

erence view and the auxiliary view. On the other hand,

if the baseline is small the epipolar lines intersect in the

test view C with a very shallow angle, which lowers

the accuracy in the computation of the intersection. We

chose an angle of 10◦ between reference camera and

auxiliary camera; with this choice, the intersection an-

gle between both epipolar lines varied between 65◦ and

6◦ when the rotation of the test view varied between 5◦

and 60◦.

The database consisted of 100 different objects.

Figures 5–7 show some examples from this database.

The objects were chosen to include both heavily
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Figure 4. Photograph of our laboratory setup. Each object was

placed on a computer-controlled turntable which can be rotated with

1/50 degree resolution and 10−5 degree accuracy. Two computer-

controlled cameras imaged the object. The cameras were located

10◦ apart with respect to the object. The resolution of each camera

is 3 Mpixels. In addition to a neon tube on the ceiling, two photo-

graphic spotlights with diffusers are alternatively used to create 3

lighting conditions.

textured objects (pineapple, globe) and objects with a

more homogenous surface (bananas, horse). The only

constraint on the objects’ identity concerned their size.

They had to be small enough to fit on the turntable

(40 cm diameter), but needed to be large enough so

that their image would generate a significant number of

features. Aside from these constraints, the objects were

selected randomly. Most objects were 3-dimensional,

with folds and self-occlusions, which are a major cause

of features instability in real-world scenes. A few

piecewise-flat objects (e.g. box of cereals, bottle of mo-

tor oil) were also present. The database is available at

http://www.vision.caltech.edu.

4.2. Calibration

The calibration images were acquired using a checker-

board pattern. The corners of the checkerboard were

first identified by the Harris interest point operator, then

both cameras were automatically calibrated using the

calibration routines in Intel’s Open CV library, includ-

ing the estimation of the radial distortion (Bouguet,

1999), which was used to map features locations to

their exact perspective projection.

The uncertainty on the position of the epipolar lines

was estimated by Monte Carlo perturbations of the cali-

bration patterns. Hartley and Zisserman (2000) showed

that the envelope of the epipolar lines obtained when

the fundamental matrix varies around its mean value,

is a hyperbola. Rather than computing this curve ana-

lytically, we computed it by Monte Carlo simulation.

The calibration patterns were perturbed by a random

amount between 0 and 3 pixels (uniform distribution).

This perturbation was performed by shifting the po-

sition of the corners in the checkerboard pattern after

detection. This quantity was chosen so that it would

produce a reprojection error on the grid’s corners that

was comparable to the one observed during calibra-

tion. The perturbation was followed by the calibration

optimization.

For each point f A of the reference image, the Monte-

Carlo process leads to a bundle of epipolar lines in the

test image, whose envelope is the hyperbola of inter-

est. From our Monte Carlo simulation we found that

the width between the two branches of the hyperbola

varied between 3 and 5 pixels. The area inside the hy-

perbola defines the region allowed for detection of a

match to f A (a similar condition holds between refer-

ence and auxiliary images, and between auxiliary and

test images).

4.3. Detectors and Descriptors

4.3.1. Detectors. A large number of the traditional

feature detectors follow the same general scheme. In a

first step a saliency map is computed, which is a local

function of the image. The saliency is a measure of

the local contrast or local information content in the

image. Patches with a high contrast (typically corners

or highly textured areas) are expected to be detected

and localized reliably between different images of the

scene, therefore the local maxima of the saliency map

are selected as features. This process is repeated after

subsampling iteratively the image, to provide a multi-

scale detector. In order to provide some invariance to

noise, only local maxima that exceed a given threshold

are selected.

– The Forstner detector (Forstner, 1986) relies on first

order derivatives of the image intensities. It is based
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Figure 5. Our calibrated database consists of photographs of 100 objects which were imaged in three lighting conditions: diffuse lighting, light

from left and light from right. Two people chose objects from the set they met in their daily life. The objects had to fit on the turntable and within

the camera’s field of view. The range of shape statistics was explored, ranging from wireframe-type objects (Tricycle) to irregular 3D objects

(Car2, Desk). Textured objects (Pineapple, Globe) were included as well as homogenous ones (Hicama, Pepper). A few piecewise flat objects

were imaged as well (Carton, Oil can). Each object was photographed by two cameras located above each over, 10◦ apart. 42 objects from the

database are displayed.

on the second order moment matrix (also called

squared gradient matrix)

µ =
[

L2
x L x · L y

L x · L y L2
y

]

where L x =
∂ I

∂x
and L y =

∂ I

∂y
(1)

and selects as features the local maxima of the func-

tion det(µ)/tr (µ). The second order moment ma-

trix is a local measure of the variation of the gradient
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Figure 6. Each object was rotated with 5◦ increments and photographed at each orientation with both cameras and three lighting conditions

for a total of 72 × 2 × 3 = 432 photographs per object. Eight such photographs (taken every 45◦)are shown for one of our objects.

Figure 7. Three lighting conditions were generated by turning on a spotlight (with diffuser) located on the left hand side of the object, then a

spotlight located on the right hand side, then both. This figure shows 8 photographs for each lighting condition.

image. It is usually integrated over a small window

in order to obtain robustness to noise and to make

it a matrix of rank 2 (our implementations used a

small 5 × 5 window)

Several other features detectors use the second

order moment matrix as well. The popular Harris

detector (Harris and Stephens, 1988) selects as fea-

tures the extrema of the saliency map defined by

det(µ) − 0.04 · tr2(µ). The Lucas-Tomasi-Kanade

feature detector (Lucas and Kanade, 1981; Shi and

Tomasi, 1994) averages µ over a small window

around each pixel, and selects as features the points

that maximize the smallest eigenvalue of the re-

sulting matrix. The motivation for these 3 detec-

tors, is to select points where the image inten-

sity has a high variability both in the x and the y

directions.

– The Hessian detector (Beaudet, 1978) is a second or-

der filter. The saliency measure is here the negative

determinant of the matrix of second order deriva-

tives.

– When the interest point detection is performed at

different scale, one can

– The difference-of-Gaussians detector (Crowley and

Parker, 1984; Lindeberg, 1994) selects scale-space

extrema of the image filtered by a difference of

Gaussians. Note that the difference-of-Gaussians

filter can be considered as an approximation of

a Laplacian filter, i.e., a second-order derivative-

based filter.

– The Kadir-Brady detector (Kadir et al., 2004) se-

lects locations where the local entropy has a maxi-

mum over scale and where the intensity probability

density function varies fastest.

– MSER features (Matas et al., 2002) are based on a

watershed flooding (Vincent and Soille, 1991) pro-

cess performed on the image intensities. The authors

look at the rate of expansion of the segmented re-

gions, as the flooding process is performed. Features

are selected at locations of slowest expansion of the

catchment basins. This carries the idea of stabil-

ity to perturbations, since the regions are virtually
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unchanged over a range of values of the ‘flooding

level’.

Characteristic scale. Interest point detectors are

typically used at multiple scales obtained by down-

sampling the initial image. The scale associated to

the feature is the scale at which it was detected. A

refinement for scale selection consists of computing

the response of the image to a function. The local

extremum over scale of the response at the detected

location is then selected as the characteristic scale

(Lindeberg, 1998). Functions used to filter the im-

age include the square gradient, the Laplacian, the

Difference-of-Gaussians. In Lowe (2004), Lowe uses

the same difference-of-Gaussians function as is used

to detect the interest point locations, i.e. the detector

is used to perform a search over scale-space.

Affine invariance. Processes that warp the image lo-

cally around the points of interest have been developed

and used by Ballester and Gonzalez (1998), Lindeberg

and Garding (1997), Mikolajczyk and Schmid (2002),

Schaffalitzky and Zisserman (2001) in order to obtain a

patch invariant to affine transformations prior to com-

putation of the descriptor. The second order moment

matrix is used as an estimation of the parameters of

the local shape around the detected point, i.e. a mea-

sure of the local anisotropy of the image. The goal is

to deform the shape of the detected region so that it

is invariant to affine transformations. The affine rec-

tification process is an iterative warping method that

reduces the image’s local second-order moment ma-

trix at the detected feature location, to have identical

eigenvalues.

Tuytelaars and Van Gool (2000, 2004) adopt an

intensity-based approach. The candidate interest points

are local extrema of the intensity. The affine-invariant

region around such a point is bounded by the points

that are local extrema of a contrast measure along

rays emanating from the interest point. In Tuytelaars

and Van Gool (2004) they propose another method

based on geometry, where the affine-invariant region

is extracted by following the edges next to the interest

point.

Regarding speed, the detectors based on Gaussian

filters and their derivatives (Harris, Hessian,

Difference-of-Gaussians) are fastest, they can easily

be implemented very efficiently using the recursive

filters introduced in van Vliet et al. (1998). The MSER

detector (Matas et al., 2002) has a comparable running

time. The detection process typically takes 1s or less

for a 3 GHz machine on a 1024×768 image. If one

uses the affine rectification process, computation is

more expensive, a similar detection takes of the order

of 10 seconds. The most expensive detector is the

Kadir-Brady detector, which takes of the order of 1

minute on a 800 × 600 image.

4.3.2. Descriptors. The role of the descriptor is to

characterize the local image appearance around the

location identified by the feature detector. Invariance

to noise is usually obtained by low-pass filtering.

Partial invariance to lighting conditions is obtained

by considering image derivatives instead of the raw

greylevels.

– SIFT features (Lowe, 2004) are computed from

gradient information. Invariance to orientation is

obtained by evaluating a main orientation for

each feature and rotating the local image ac-

cording to this orientation prior to the com-

putation of the descriptor. Local appearance is

then described by histograms of gradients, which

provides a degree of robustness to translation

errors.

– PCA-SIFT (Ke and Sukthankar, 2004) computes a

primary orientation similarly to SIFT. Local patches

are then projected onto a lower-dimensional space

by using PCA analysis.

– Steerable filters (Freeman and Adelson, 1991) steer

derivatives in a particular direction given the com-

ponents of the local jet. E.g, steering derivatives in

the direction of the gradient makes them invariant

to rotation. Scale invariance is achieved by using

various filter sizes.

– Differential invariants (Schmid and Mohr, 1997)

combine local derivatives of the intensity image (up

to 3rd order derivative) into quantities which are

invariant with respect to rotation.

– The shape context descriptor (Belongie et al., 2002)

is comparable to SIFT, but based on edges. Edges

are extracted with the Canny filter, their location

and orientation are then quantized into histograms

using log-polar coordinates.

The implementations used for the experiments in

Section 6 were our own for the derivative-based detec-

tors, Lowe’s for the difference-of-Gaussians (includes

scale selection in scale-space), and the respective au-

thors’ for MSER and the Kadir detector. Mikolajzyk’s

version of the affine rectification process was used.
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Lowe’s code was used for SIFT, Ke’s for PCA-SIFT,

and Mikolajczyk’s for steerable filters, differential in-

variants and shape context.

5. Performance Evaluation

5.1. Matching Criteria

The performance of the different combinations of de-

tectors and descriptors was evaluated on a feature

matching problem. Each feature f C from a test image

C was appearance-matched against a large database

of features. The nearest neighbor in this database was

selected and tentatively matched to the feature. The

database contained both features from a reference im-

age A of the same object (102 −103 features depending

on the detector and on the image), as well as a signif-

icantly larger number (105) of features from unrelated

images. Using this large database replicates the match-

ing process in object/class recognition applications,

Figure 8. (Panel a) Diagram showing the process used to classify feature triplets. (Panel b) Conceptual shape of the ROC trading off false

alarm rate with detection rate. The threshold Tapp on distance ratios (Section 5.2) is bounded by [0, 1] cannot take values larger than 1 and the

ROC is bounded by the curve p1 + p2 = 1.

where incorrect pairs can arise from matching features

to wrong images.

The diagram in Fig. 8(a) shows the decision strat-

egy. Starting from feature f C from the test image

C , a candidate match to f C is proposed by selecting

the most similar amongst the whole database of fea-

tures. The search is performed in appearance space.

The feature returned by the search is accepted or re-

jected (T est#1) based on the distance metric ratio that

will be described in Section 5.2. The candidate match

is accepted only if the ratio lies below a user-defined

threshold Tapp.

If the candidate match is accepted based on this ap-

pearance test, the next stages aim at validating this

match. T est#2 checks the identity of the image from

which the proposed match is coming. If it comes from

the image of an unrelated object, the proposed match

cannot correspond to the same physical point. The

match is rejected as a false alarm.

T est#3 validates the proposed match based on ge-

ometry. The test starts from the proposed match f A
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Figure 9. A few examples of the 535 irrelevant images that were used to load the feature database. They were obtained from Google by typing

‘things’. 105 features detected in these images were selected at random and included in our database.

in the reference image, it uses the epipolar constraints

described in Section 3 and tries to build a triplet (initial

feature—auxiliary feature—proposed match) that ver-

ifies all epipolar conditions (one constraint in the aux-

iliary image and two constraints in the test image). As

mentioned in Section 3, typically only zero or one fea-

tures from the test image verify all epipolar constraints

generated by a given feature from the reference image.

If this feature from the test image is precisely our test

feature f C , the proposed match is declared validated

and is accepted. In the alternative this is a false alarm.

In case no feature was found along the epipolar line

in the auxiliary image B, the initial point f C is dis-

carded and doesn’t contribute to any statistics, since

our inability to establish a triple match is not caused

by a poor performance of the detector on the target

image C .

Note that this method doesn’t guarantee the ab-

sence of false alarms. False alarms can arise if an in-

correct auxiliary feature is used during the geometric

validation—as we will see, they are very few. However,

our method offers the important advantage of being

purely geometric. Any system involving appearance

vectors as an additional constraint would be dependent

on the underlying descriptor and bias our evaluation.

In order to evaluate the fraction of incorrect corre-

spondences established and accepted by our geomet-

ric system, 2 experts examined visually the triplets

accepted by the system and classified them into cor-

rect and incorrect matches. 3000 matches were selected

randomly from the accepted triplets and were visually

classified, results are reported in Fig. 10. The users

also classified matches obtained by a simpler method

that would use only two images of the object (refer-

ence and test view) and a single epipolar constraint: in

this case the geometric validation consists of checking
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Figure 10. Operator-assisted validation of our automated ground

truth. A sample of 3000 pairs and triplets was randomly selected

from the set of automatically computed tentative feature matches.

Two experts classified each pair and triplet by hand as to whether

it was correct or not. The fraction of wrong triplets is displayed as

a function of the maximum distance allowed to the epipolar line

(curve ‘triplets’). Our experiments were conducted using adaptive

thresholds of 3–5 pixels (gray-shaded zone, see Section 4.2), which

as the plot shows yields 2% of incorrect triplets. A method based

on a single epipolar line constraint (‘pairs’) would have entailed a

rate of wrong correspondences three times higher. In particular, the

rate of wrong correspondences is very high for features that could be

matched in two images but not in all 3 images (‘pairs − triplets’).

whether or not the test feature lies on the epipolar line

generated by the proposed match in the test view. The

fraction of incorrect matches is displayed as a function

of the threshold on the maximum distance in pixels

allowed between features and epipolar lines. We also

display the error rate for features that were successfully

matched according to the 2-views method, but failed

according to the 3-views method. The method using 3

views yields a significantly better performance: when

the threshold on acceptable distances to epipolar lines

varies between 3 and 5 pixels (see Section 4.2), the er-

ror rate of the 3-views method is 2%, while the error

rate of the 2-views method is three times higher at 6%.
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5.2. Distance Measure in Appearance Space

In order to decide on acceptance or rejection of a

candidate match (T est#1 in Fig. 8), we need a met-

ric on appearance space. Instead of using directly the

Euclidean or Mahalanobis distance in appearance as

in Mikolajczyk and Schmid (to appeaar) (), Ke and

Sukthankar (2004), we use the distance ratio introduced

by Lowe (2004).

The proposed measure compares the distances in ap-

pearance of the query point to its best and second best

matches. In Fig. 8 the query feature and its best and

second best matches are denoted by f C , f A and f A1

respectively. The criterion used is the ratio of these two

distances, i.e.
d( f C , f A)

d( f C , f A1)
. This ratio characterizes how

distinctive a given feature is, and avoids ambiguous
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Figure 11. Panel a: Sample pdf of the distance ratio between best and second best match for correct correspondences (green) and false alarms

(red). These curves are analogous to the ones in Fig. 11 of Lowe (2004). The SIFT descriptor is used here to have results comparable to Lowe

(2004). Lowe’s correct-match density is peaked around 0.4 while ours is flat—this may be due to the fact that we use 3D objects, while Lowe

uses flat images with added noise. Panel b: Distributions obtained using the distance to best match. Panel c: Comparative ROC curves obtained

from the distance ratio distributions in a and the raw distance distributions in b. The threshold varied to generate the ROCs is the threshold Tapp

on quality of the appearance match (see Fig. 8). The distance ratio clearly performs better.

matches. A low value means that the best match per-

forms significantly better than its best contender, and

is thus likely to be a reliable match. A high value of the

distance ratio is obtained when the features points are

clustered in a tight group in appearance space. Those

features are not distinctive enough relatively to each

other. In order to avoid a false alarm it is safer to reject

the match.

The distance ratio is a convenient measure for our

study, since the range of values it can take is always

[0, 1] no matter what the choice of descriptor is.

Figure 11(a) shows the resulting distribution of

distance ratios conditioning on correct or incorrect

matches. The distance ratios statistics were collected

during the experiments in Section 6. Correct matches

and false alarms were identified using the process
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Figure 12. Panel a: ROCs obtained when varying the threshold Tdet on minimum saliency that a region has to satisfy in order to be declared a

feature. The legend shows the average number of features detected per image. The chosen operating point is displayed by a vertical line. ROCs

are displayed for the hessian-affine/SIFT combination. Panel b is another representation of the data from panel a taken at the operating point.

Here the horizontal axis is the average number of features per image, which was displayed in the legend in panel a. Results are displayed for the

two combinations that performed best in Section 6.1, while panel a shows results only for one combination.

described in Section 5.1. Figure 11(b) shows the dis-

tributions of ‘raw distance to nearest neighbor’ condi-

tioning on correct or incorrect matches. Since distances

depend on the chosen descriptor, the descriptor chosen

here was SIFT.

Figure 11(c) motivates further the use of the distance

ratio by comparing it to raw distance on a classifica-

tion task. We computed ROC curves on the classifica-

tion problem ‘correct vs. incorrect match’, based on

the conditional distributions from Figs. 11(a) and (b).

The parameter being varied to generate the ROC is the

threshold Tapp which decides if a match is correct or

incorrect. Figure 11(c) displays the results. Depending

on the combination detector/descriptor, the operating

point chosen for the comparisons in Section 6 leads

to value of Tapp between 0.56 and 0.70. In the ROC

curves from Fig. 11(c), these values are highlighted by

a shaded area. In this operating region, the distance

ratios clearly outperform raw distances.

5.3. Detection and False Alarm Rates

As seen in the previous Section and Fig. 8, the system

can have 3 outcomes. In the first case, the match is

rejected based on appearance (probability p0). In the

second case, the match is accepted based on distance in

appearance space, but the geometry constraints are not

verified and ground truth rules the match as incorrect:

this is a false alarm (probability p1). In the third alterna-

tive, the match verifies both appearance and geomet-

ric conditions, this is a correct detection (probability

p2). These probabilities verify p0 + p1 + p2 = 1. The

false alarm rate is further normalized by the number of

database features (105). This additional normalization

was an arbitrary choice, motivated by the dependency

of the false alarm rate on the size of the database: the

larger the database, the higher the risk of obtaining an

incorrect match during the appearance-based indexing

described in Section 5.1. Detection rate and false alarm

rate can be written as

f alse alarm rate

=
# f alse alarms

#attempted matches · #database
(2)

detection rate =
#detections

#attempted matches
(3)

By varying the threshold Tapp on the quality of the ap-

pearance match, we obtain a ROC curve (Fig. 8(b)).

Note that the detection rate does not necessarily reach

1 when Tapp is lowered to zero since some features will

fail Test#2 and Test#3 on object identity and on geom-

etry.

5.4. Number of Detected Features

For the detectors based on extrema of a saliency

map, the threshold Tdet that determines the minimum

saliency necessary for a region to be considered as

a feature, is an important parameter. If many fea-

tures are accepted, the distinctiveness of each of them

might be reduced, as the appearance descriptor of one
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Figure 13. Performance for viewpoint change—each panel a–d shows the ROC curves for a given descriptor when varying the detector. Panels

e–h show the corresponding stability rates as a function of the rotation angle. The 0◦ value is computed by matching features extracted from

different images taken from the same location. The operating point chosen for the stability curves on the right hand side is highlighted by a

vertical line in the ROCs.
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Figure 14. Summary of performance for viewpoint change—Panels a–b show the combination of each descriptor with the detector that

performed best for that descriptor. Panel c displays the stability results on a semi-log scale. Panel d is similar to panel b, but the database used

for the search tree contained only the features extracted from the correct image (easier task which mimicks wide-baseline stereo).
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Figure 15. Results with several levels of invariance applied to the Harris and Hessian detectors. The shape context descriptor was used.

feature will be similar to the appearance of a feature lo-

cated only a few pixels away. This causes false alarms

during appearance-based indexing of features in the

database. Conversely, if Tdet is set to a high value and

only few highly salient regions are accepted as features,

missed detections will occur when a region has been

detected in one image but didn’t make it to the thresh-

old level in the second image. In order to use each



278 Moreels and Perona

detector/descriptor combination at its optimal perfor-

mance level, we performed the matching process de-

scribed in Section 5.1 with a range of values of Tdet.

These values were chosen such that the number of fea-

tures would vary from ≈270 features (one feature ev-

ery 2200 pixels on the objects), up to ≈3000 features

(one feature every 200 pixels on the object), with in-

crements by a factor of
√

2 in the number of features.

Similarly to Section 6, we choose the operating point

at the false alarm rate 10−6. As expected, the detec-

tion rate for this operating point first increases, then

decreases when the number of features is increased.

Figure 12(a) shows the ROC curves obtained for the

combination hessian-affine/SIFT. The operating point

is indicated by a vertical line. Figure 12(b) shows at

this operating point, the detection rate as a function

of the number of features detected per image, for the

two combinations that performed best in Section 6:

hessian-affine/SIFT and hessian-affine/shape context.

In the experiments from Section 6, the value of Tdet

corresponding to the highest detection rate was chosen

for the various detectors/descriptors.

6. Results and Discussion

6.1. Viewpoint Change

Figure 13 shows the detection results when the viewing

angle was varied and lighting/scale was held constant.

Panels a-h display results when varying the feature de-

tector for a given image descriptor. Panels a-d display

the ROC curves obtained by varying the threshold Tapp

in the first step of the matching process (threshold on

distinctiveness of the features’ appearance). The num-

ber of features tested is displayed in the legend. Panels

e-h show the detection rate as a function of the viewing

angle for a fixed false alarm rate of 10−6 was chosen

(one false alarm every 10 attempts—this is displayed

by a gray line in the ROC curves from Figs. 13–16).

This false alarm rate corresponds to different distance

ratio thresholds for each detector/descriptor combina-

tion. Those thresholds varied between 0.56 and 0.70

(a bit lower than the 0.8 value chosen by Lowe (2004)).

Figure 14(a) and (b) summarize for each descriptor, the

detector that performed best.

The Hessian-affine and difference-of-Gaussians de-

tectors performed consistently best with all descrip-

tors. While the absolute performance of the various

detectors varies when they are coupled with different

descriptors, their rankings vary very little. The com-

bination of Hessian-affine with SIFT and shape con-

text obtained the best overall score, with SIFT slightly

ahead. In our graphs the false alarm rate was normalized

by the size of the database (105) so that the maximum

false alarm rate was 10−5. The PCA-SIFT descriptor

is only combined with difference-of-gaussians, as was

done in Ke and Sukthankar (2004). PCA-SIFT didn’t

seem to outperform SIFT as would be expected from

Ke and Sukthankar (2004).

Note that the Difference-of-Gaussians detector per-

formed consistently almost as well as Hessian-affine.

The Difference-of-Gaussians is simpler and faster, this

motivates its use in fast recognition systems such as

Lowe (2004).

In the stability curves, the fraction of stable features

doesn’t reach 1 when θ = 0◦. This is due to several

factors: first, triplets can be identified only when the

match to the auxiliary image succeeds (see Section 3).

The 10◦ viewpoint change between reference and aux-

iliary image prevents a number of features from being

identified in both images.

Another reason lies in the tree search. The use of a

tree that contains both the correct image and a large

number of unrelated images replicates the matching

process used in recognition applications. However,

since some features have low distinctiveness, the cor-

rect image doesn’t collect all the matches. In order to

evaluate the detection drop due to the search tree, the

experiment was run again with a search tree that con-

tained only the features from the correct image. Figure

14(d) shows the stability results, the performance is

10–15% higher.

A third reason is the noise present in the camera. On

repeated images taken from the same viewpoint, this

noise causes 5–10% of the features to be unstable.

Another observation concerns the dramatic drop in

number of matched features with viewpoint change.

For a viewpoint change of 30◦ the detection rate was

below 5%.

Figure 15 investigates the effect of different levels of

invariance applied to the Harris and Hessian detectors.

The Harris-Laplace detector was used in Mikolajczyk

and Schmid (2002). In this case the interest points are

found at several scales with the Harris detector, then the

characteristic scale is selected as the local maximum

over scale of the Laplacian function. The same pro-

cess is applied to the Hessian detector. As mentioned

in Section 4.3.1, the affine-invariant rectification warps

the local area around an interest point so that its sec-

ond order moment matrix becomes isotropic. Figure

15 shows that the performance improves when using
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Figure 16. Results for viewpoint change, using the Mahalanobis distance instead of the Euclidean distance on appearance vectors.

the laplacian scale selection and when using the affine

rectification. The shape context descriptor was chosen

for this experiment as this is the descriptor that leads

to the largest performance increase when adding affine

invariance, as seen in Fig. 13.

Figure 16 shows the results (‘summary’ panel only)

when the Euclidean distance on appearance descrip-

tors is replaced by the Mahalanobis distance. The co-

variance matrix used to normalize the Mahalanobis

distance was generated from distances between de-

scriptors generated by a large number (300,000) of

background features. Although the Mahalanobis dis-

tance is more general than the Euclidean distance,

most relative performances were not modified. This

might be related to our use of the distance ratio (cf.

Section 5.2) instead of raw distances. Hessian-affine

performed again best, while shape context and SIFT

were the best descriptors. In this case, shape context

outperformed SIFT.

6.2. Normalization

As mentioned above, the matching performance be-

tween images A and C is affected by the inability to

find a match in the auxiliary image B. One could want

to normalize out this loss in order to get ‘pure’ stability

results between A and C .

Let’s denote by p(θ ) and p(θ1, θ2) the probabili-

ties that given a reference feature, a match will re-

spectively exist in one view of the same scene taken

from a viewpoint θ degrees apart (for pairs), and in

two views taken from viewpoints θ1 and θ2 apart from

the reference image (triplets). If we assume indepen-

dence between the matching processes from A to B

and from A to C , we can decompose p(θAB, θAC )

into p(θAB, θAC ) = p(θAB)p f A (θAC ) and normalize

by p(θAB) = p(10◦) to obtain absolute performance

figures between A and C .

Unfortunately, it seems that the matching processes

from A to B and from A to C cannot be considered to be

independent. First, Fig. 10 shows a different behavior

between features that were successfully matched be-

tween A, B and C , and the features that were matched

between A and C , but for which the match A – B failed.

In the latter case, the fraction of incorrect matches is

much higher. Another hint comes from the stability

results from Fig. 14(d). Note that all combinations de-

tectors/descriptors show a comparable performance of

6–10% when the rotation is 40◦. If we were to normal-

ize by p(10◦), the combination that performs worst at

0◦ (i.e. difference-of-Gaussians/PCA-SIFT) would by

far perform best at 40◦. It seems very unlikely that a

combination that performs poorly in easy conditions,

would outperform all others when matching becomes

more difficult. Therefore we believe that matches be-

tween A and B and between A and C are not inde-

pendent. In order to avoid any inconsistency, we did

not normalize the stability results. Our system is only

collecting the most stable features, those that were not

only stable between A and C , but were successfully

matched into triplets.

6.3. Flat vs. 3D Scenes

As mentioned in Section 1, one important motivation

for the present study is the difference in terms of stabil-

ity between texture-generated features extracted from

images of flat scenes, and geometry-generated features
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Figure 17. Flat vs. 3D objects—Panel a shows the stability curves obtained for SIFT for the two piecewise flat objects in panel b. Similarly, panel

c shows the SIFT stability curves for the two 3D objects in panel d. ‘Flat’ features are significantly more robust to viewpoint change. Panels e–f

show the fractions of stable features for the same piecewise 2D objects versus the same 3D objects, for all combinations of detectors/descriptors

in this study. Scatter plots are displayed for rotations of 10◦ and 40◦. A few combinations whose relative performance changes significantly are

highlighted.

from 3D scenes. In order to illustrate this stability dif-

ference, we performed the same study as in Section 6.1,

on one hand with 2 images of piecewise flat objects

(box of cookies, can of motor oil), on the other hand on

two objects with a more irregular surface (toy car and

dog). Results are displayed in Fig. 17. As expected, the

stability is significantly higher for features extracted

from the flat scenes. Note that the stability curves are

not as symmetrical with respect to the 0◦ value as the

curves in Figs. 13 and 14. This is due to the fact that
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Figure 18. Fraction of stable features for each object of the database, under a fixed viewpoint change of 10◦. For each object, the figure shows

the highest fraction of stable features across all investigated combinations of detectors/descriptors. The objects were user-separated into: 1.

piecewise flat 2. smooth 3. complex 4. very complex. Names of objects and thumbnails representing them are displayed only for the 42 objects

showed in Fig. 5 (objects displayed by thumbnails were randomly selected). The performance on the other objects is displayed by a cross only.

here the results are only averaged over a small number

of objects.

One interesting result was that the relative perfor-

mance of the various combinations detector/descriptor

was modified between flat and 3D objects. Panels e-

f display stability results respectively for rotations of

10◦ and 40◦. The fractions of stable features from flat

scenes is displayed on the x axis, for 3D scenes it is

on the y axis. All combinations lie below the diagonal

x = y since stability is lower for 3D scenes. Some

changes in relative performances are highlighted. For

example, for flat scenes MSER/SIFT and MSER/shape

context performed best, while their performance was

only average for 3D scenes. Conversely, difference-of-

Gaussians/SIFT, difference-of-Gaussians/shape con-

text, and hessian-affine/shape context, which were the

best combinations for 3D scenes, were outperformed

on 2D objects.

The dependency of the features stability on the ob-

ject identity is investigated in Fig. 18. A viewpoint

change of 10◦ was chosen. For each object, the high-

est fraction of stable features across all investigated

detector/descriptor combinations was recorded. Two

users separated the objects into 4 classes: ‘piecewise
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Figure 19. (Left panel) ROCs for variations in lighting conditions. Results are averaged over 3 lighting conditions. (Right panel) ROCs for

variations in scale.

flat’, ‘smooth’, ‘complex’ and ‘very complex’.

Figure 18 displays the fraction of stable features for

each object. We observe that the average stability

for piecewise flat objects is higher than for the other

classes, which confirms the results from Fig. 17. The

most stable objects in all classes are those which bear

printed text. Characters have well contrasted bound-

aries which are suitable for generating features, besides

text is usually printed on a flat or smooth surface which

ensures a high feature stability. Objects with smooth

surfaces do not perform so well, as most features gen-

erated by these objects are close to the boundary and

will be sensitive to self-occlusion. Objects with a spec-

ular surface (globe, lamp, motorcycle) also perform

poorly, as the reflection will not follow the change of

viewpoint or object movement.

6.4. Lighting and Scale Change

Figure 19 (left) shows the results obtained when chang-

ing lighting conditions and keeping the viewpoint un-

changed. This task is easier: since the position of the

features shouldn’t change, we don’t need to introduce

the auxiliary image B. As a result, the detection rates

reported in the ROC curves are significantly higher than

in the study of viewpoint changes. Only the ‘summary’

panels with the best detector for each descriptor are dis-

played. This time, the combination which achieved best

performance was Harris-affine combined with SIFT.

Figure 19(right) displays the results for a change of

scale. The scale change was performed by switching the

camera’s focal length from 14.6 mm to 7.0 mm. Again,

the figure displays only the ‘summary’ panel. Hessian-

affine combined with shape context and Harris-affine

combined with SIFT obtained the best results.

7. Discussion and Conclusions

We compared the most popular feature detectors and

descriptors on a benchmark designed to assess their

performance in recognition of 3D objects. In a nut-

shell: we find that the best overall choice is using

an affine-rectified detector (Mikolajczyk and Schmid,

2002) followed by a SIFT (Lowe, 2004) or shape-

context descriptor (Belongie et al., 2002). These de-

tectors and descriptor were the best when tested for

robustness to change in viewpoint, change in lighting

and change in scale. Amongst detectors, runner-ups are

the Hessian-affine detector (Mikolajczyk and Schmid,

2002), which performed well for viewpoint change and

scale change, and the Harris-affine detector (Mikola-

jczyk and Schmid, 2002), which performed well for

lighting change and scale change. However, the perfor-

mance of the Difference-of-Gaussians detector is close

to the affine-rectified detectors, its implementation is

simpler and its computation time shorter, therefore we

believe it is a good compromise between performance

and speed.

Our benchmark differs from previous work from

Mikolajczyk and Schmid in that we use a large and het-

erogeneous collection of 100 3D objects, rather than a

set of flat scenes. We also use Lowe’s ratio criterion,

rather than absolute distance, in order to establish cor-

respondence in appearance space. This is a more realis-

tic approximation of object recognition. A major differ-

ence with their findings is a significantly lower stability
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of 3D features. Only a small fraction of all features

(less than 3%) can be matched for viewpoint changes

beyond 30◦. The situation is a bit better when the goal

is stereo-vision or mosaicking (Fig. 14(c)), where fea-

tures are matched across a small number of images.

Our results on descriptors favor SIFT and shape con-

text descriptors, and are in agreement with Mikolajczyk

and Schmid (to appeaar) (). However, regarding detec-

tors, not all affine-invariant methods are equivalent as

suggested in Mikolajczyk et al. (2004), e.g. MSER per-

forms poorly on 3D objects while it is very stable on

flat surfaces.

We find significant differences in performance

with respect to a previous study on 3D scenes

(Fraundorfer and Bischof, 2004). One possible rea-

son for these differences is the particular statistics of

their scenes, which appear to contain a high proportion

of highly textured quasi-flat surfaces (boxes, desktops,

building facades, see Fig. 6 in Fraundorfer and Bischof

(2004)). This hypothesis is supported by the fact that

our measurements on piecewise flat objects (Fig. 17)

are more consistent with their findings. Another dif-

ference with their study is that we establish ground

truth correspondence purely geometrically, while they

use appearance matching as well, which may bias the

evaluation.

An additional contribution of this paper is a new

method for establishing geometrical features matches

in different views of 3D objects. Using epipolar con-

straints, we are able to extract with high reliability (2%

wrong matches) ground truth matches from 3D images.

This allowed us to step up detector-descriptor evalu-

ations from 2D scenes to 3D objects. Comparing to

other 3D benchmarks, the ability to rely on an auto-

matic method, rather than painfully acquired manual

ground truth, allowed us to work with a large num-

ber of heterogeneous 3D objects. Our setup is inex-

pensive and easy to reproduce for collecting statistics

on correct matches between 3D images. In particular,

those statistics will be helpful for tuning recognition

algorithms such as Lowe (2004), Carneiro and Jep-

son (2004), Moreels and Perona (2004, 2005b). Our

database of 100 objects viewed from 72 positions with

three lighting conditions will be available on our web

site.
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