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This study explores the potential of photogrammetric datasets and remote sensing methods for the assessment of a meteorological
catastrophe that occurred in Ordu, Turkey in August 2018. During the event, flash floods and several landslides caused losses of
lives, evacuation of people from their homes, collapses of infrastructure and large constructions, destruction of agricultural
fields, and many other economic losses. The meteorological conditions before and during the flood were analyzed here and
compared with long-term records. The flood extent and the landslide susceptibility were investigated by using multisensor and
multitemporal data. Sentinel-1 SAR (Synthetic Aperture Radar), Sentinel-2 optical data, and aerial photogrammetric datasets
were employed for the investigations using machine learning techniques. The changes were assessed both at a local and regional
level and evaluated together with available damage reports. The analysis of the rainfall data recorded during the two weeks
before the floods and landslides in heavily affected regions shows that the rainfall continued for consecutive hours with an
amount of up to 68 mm/hour. The regional level classification results obtained from Sentinel-1 and Sentinel-2 data by using the
random forest (RF) method exhibit 97% accuracy for the flood class. The landslide susceptibility prediction performance from
aerial photogrammetric datasets was 92% represented by the Area Under Curve (AUC) value provided by the RF method. The
results presented here show that considering the occurrence frequency and immense damages after such events, the use of novel
remote sensing technologies and spatial analysis methods is unavoidable for disaster mitigation efforts and for the monitoring of
environmental effects. Although the increasing number of earth observation satellites complemented with airborne imaging
sensors is capable of ensuring data collection requirement with diverse spectral, spatial, and temporal resolutions, further studies
are required to automate the data processing, efficient information extraction, and data fusion and also to increase the accuracy
of the results.

1. Introduction

Natural hazards such as floods, earthquakes, and landslides
occur at various frequencies on the Earth. Over the last
twenty years, 7,348 natural hazard-related disasters were
recorded worldwide by EM-DAT (Emergency Events Data-
base), one of the foremost international databases of such
events. In total, disasters claimed approximately 1.23 million
lives, an average of 60,000 per annum, and affected a total of
over 4 billion people (many on more than one occasion); and

these numbers represent a sharp increase in the number of
recorded disaster events when compared with the previous
twenty years [1]. With increasing anthropogenic activities
and climate change, the number and effects of landslide and
flooding events are also rising. Breugem et al. [2] discussed
the influences of global warming on heavy precipitation
events and stated that they have been intensified and can be
a fingerprint of the impacts of climate change. Such extreme
events are expected to occur more frequently due to global
warming [3] and pose risk for severe floods [4]. The return
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period of natural hazards in Turkey is quite high due to the
geological and geomorphological conditions (e.g., high seis-
micity, young and steep topography, being climatological
transition area, and weak lithological elements). Due to the
rapid urbanization and industrialization, which expand
urban areas and increase transportation structures, multidis-
ciplinary research projects should be carried out in order to
reduce the losses of properties and lives sourced from
natural disasters.

The extreme precipitation events have short durations. In
order to predict the precipitation extreme accurately and to
respond to changes in the risk of floods adequately, their
monitoring and modeling with high spatial and temporal
resolution are needed [2, 5]. Investigations on the conditions
of occurrence, period, magnitude, and severity of a natural
hazard and identification of possible consequences are
crucial to prevent future hazards from turning into natural
disasters. Conventionally, such studies have been performed
by fieldwork of geologists and geomorphologists (e.g., [6]),
while they should be performed without interruption to
reduce the investment costs, to increase the service life, to
ensure sustainable environmental protection, and to increase
the living quality. Examples to the investigations on various
landslides triggered by rainfall exist in the literature (e.g.,
[7-9]). However, the data collection in large areas and moun-
tainous regions is time-consuming, difficult, and even impos-
sible. In addition, proper site selection for settlements and
transportation structures is an exhaustive process and can
be nonviable with conventional methods. Therefore, the use
of geospatial technologies, and in particular remote sensing
and photogrammetric techniques to obtain fast and accurate
results, is needed.

Flood events are often caused by heavy rainfall, snow
melting, dam failure, and lake or river overflows [10-12].
The factors such as lack of proper infrastructure development,
rapid urbanization, and insufficient consideration of environ-
mental and climate conditions cause the flood hazard to be
more destructive [13-16]. Since the consequences of floods
depend highly on the location, the extent, and the depth of
the flood, it is very important to know the surface properties
and to evaluate all parameters in the event of flood.

Landslide is also one of the most common and destruc-
tive natural hazards. As an example, a total of 23,041 land-
slides were enlisted in Turkey between 1950 and 2018 [17].
It is necessary to generate landslide inventories and to iden-
tify landslide-prone areas, in order to support regional land
use and infrastructure planning and to increase the aware-
ness for natural hazards and risks. Therefore, the preparation
of accurate and up-to-date landslide susceptibility and
hazard maps is of great importance for landslide hazard
mitigation efforts. Among commonly observed triggering
factors for landslides, extreme precipitation and earthquakes
can be listed (see, e.g., [18-21]), which also cause debris slides
and flows (e.g., [22]).

Although the different geodata collection platforms (i.e.,
spaceborne, airborne, and terrestrial) provide great flexibility
in data acquisition times and viewing geometries, and the
sensor types are diverse (e.g., SAR (Synthetic Aperture
Radar), optical, Light Detection and Ranging (LiDAR),
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Global Navigation Satellite System (GNSS), and smart-
phones), new algorithmic approaches can exploit their
potential by ensuring efficient data integration. Thus, the
efficiency and the reliability of the results can be increased
for many applications including environmental monitoring
and disaster management. Earth observation (EO) data from
space is very useful in various stages of disaster mitigation
efforts by providing information without direct contact with
the hazard-prone region. Satellite optical and radar sensors
are primary data providers for the flood assessment and
monitoring. The EO datasets obtained from optical and
SAR sensors are often employed for flood extent mapping
in the literature. When these two types of sensors are com-
pared, identification of flood extent from optical images is
easier due to the different radiometric responses of water
surfaces [23]. Various techniques such as single-band thresh-
olding, spectral water indices [24], segmentation and classifi-
cation [25, 26], and fusion [27] have been applied for flood
extraction from optical data in the literature. Since optical
imaging is affected by the cloud cover, which limits their
usability for flood mapping, they are used for postflood anal-
ysis mostly [28]. With the increased temporal and spatial
availability of SAR data, this technology has become a valu-
able information source for flood mapping. SAR systems
penetrate the clouds and do not need sunlight for operation;
and thus, they can provide important advantages in obtain-
ing accurate flood information. Different methods have been
used for flood mapping using SAR data in the literature, such
as visual interpretation [29], histogram thresholding [30, 31],
supervised classification [32, 33], automatic segmentation
[34], region growing [35], change detection [36], and inter-
ferometric SAR coherence [37]. Lal et al. [38] included also
rainfall data together with SAR and optical satellite data for
evaluating extreme flood hazard events in Kerala, India. On
the other hand, as a high-resolution geodata source, aerial
photogrammetric techniques can provide the required timely
3D datasets for regional landslide susceptibility and hazard
assessments with centimetre or decimeter level accuracy.
Unlike optical satellite images, aerial stereo images can be
taken subsequent to a hazard with better flexibility for the
time of acquisition and are affected less by clouds. However,
EO satellites can provide data regularly with a large swath,
such as Sentinel-1 and Sentinel-2 missions of the European
Space Agency (ESA [39]).

Landslides and floods have been frequently encountered
in the Black Sea Region of Turkey [7, 9, 40-43], which cause
serious loss of lives and properties. In August 2018, a cata-
strophic meteorological event in Ordu Province located in
the Black Sea Region occurred, which resulted in flash floods
and triggered landslides. Consequently, the flash flood and
the landslides caused several deaths and injuries. Many infra-
structure elements, such as bridges, roads, and houses, were
collapsed or damaged by the flood and/or the landslides.
The landslides triggered by the meteorological event caused
serious damages on hazelnut gardens, buildings, and
enforced evacuations of villages. The aims of the present
study are to investigate different aspects of this catastrophic
meteorological event by employing photogrammetric tech-
niques, to demonstrate the usability of multisensor remote
sensing data for the pre- and postdisaster assessments, and
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to produce landslide susceptibility and flood extent maps of
the selected substudy areas. The geological and geomorpho-
logical characteristics of the area were investigated with the
help of photogrammetric datasets to assess the landslide-
prone regions in a subpart of the study site. The potential of
the Sentinel-1 and Sentinel-2 datasets, which were obtained
under wet and dry weather conditions, was investigated to
map and to analyze the flood event. In addition, aerial photo-
grammetric flight datasets were processed in 3D to prepare
the landslide inventory and to produce landslide susceptibility
map in a part of the study area. With the approach developed
here, data of the past could be related and interpreted, and
practical and reliable data collection and processing methods
were proposed for the future that allows monitoring of the
changes. Additionally, the results obtained from the present
study can be used for land-use planning and suitable site selec-
tion works for infrastructures; and hence, this will contribute
to natural disaster mitigation efforts.

2. Study Area

The study area is located in Ordu Province and covers parts of
Terme and Carsamba districts of Samsun Province as well.
Both provinces are located in the northern part of Turkey,
in Black Sea Region. Figure 1 shows the location of the study
area, the subareas used for the evaluation of the results, and
the locations and altitudes of meteorological stations. Ordu
Province has a long coastal part (ca. 100 km) with mostly sand
beaches. A wet climate dominates in the region with rainfall
throughout the year. There are 36 major and minor streams
in Ordu, and the most commonly observed natural hazards
in the area between 1950-2011 were mass movements (i.e.,
landslide and rockfall) (88%) and floods (9%) [44].

The stratigraphic sequence begins with the Late
Cretaceous-aged dacite, rhyolite, rhyodacite, and undifferen-
tiated andezite, pyroclastics, and continues with Late
Cretaceous-Eocene aged clastics and carbonates in the study
area (Figure 2). Paleocene-Eocene aged granitoids intrudes
into Late Cretaceous-Eocene aged units in the region. Volca-
nic rocks developed due to the volcanism active during the
Middle Eocene and Late Eocene periods and are also
observed in the study area. Volcanic rocks in humid climatic
environments are highly sensitive to weathering. In the
region, a thick regolith zone on the volcanic rocks exists,
and this zone is prone to landsliding. The weak sedimentary
rocks in the region are also susceptible to landsliding. The
Eocene aged clastics and carbonates are observed together
with the Middle-Late Eocene aged volcanics and sedimentary
rocks [45].

According to the damage report published by the Turkish
State Meteorological Service, stream beds overflowed due to
heavy rainfall in the Ordu province on August 02, 2018, and
flooded in low-rise buildings. Due to heavy rainfall, transpor-
tation was disrupted in some areas and partial collapses
occurred on highways. Cevizdere District of Unye overflowed
and destroyed two bridges and interrupted the transportation
between Ordu and Samsun cities for some time (Figures 3(a)
and 3(b)). The flooding caused damages in the basements of
hundreds of buildings (Figures 3(c) and 3(d)).

Ordu area is one of the most important hazelnut pro-
ducers in the world. Hazelnut harvests in the towns of Ikizce,
Caybasi, Unye, Fatsa, and Carsamba were flooded, and heavy
damages occurred in hazelnut gardens and other agricultural
lands (Figures 3(e) and 3(f)). The three days of almost non-
stop precipitation in Ikizce district was classified as “violent
rain” according to the Glossary of Meteorology [47]. Land-
slides occurred in the region as a result of excessive and
prolonged rainfall. One person died due to the landslide. It
also caused damages on the roads and in the villages as well
(Figures 3(g) and 3(h)).

3. Materials and Methods

A methodological workflow is proposed here to assess the
landslide susceptibility and the flood extent based on the
availability and the characteristics of the existing geospatial
datasets. The overall methodological workflow of the study
given in Figure 4 consists of three main sections: flood extent
mapping by using SAR and optical remote sensing data,
landslide inventory and susceptibility map production using
high-resolution aerial photogrammetric datasets, and the sta-
tistical analysis of short and long-term meteorological data.
In the first part, meteorological data provided by the Turkish
State Meteorological Service for a total of 12 stations in Sam-
sun and Ordu Provinces were analyzed. In the second part,
Sentinel-1 SAR data and Sentinel-2 optical data were used
for the generation of flood extent maps. In the last part, aerial
photogrammetric images were used to produce landslide
susceptibility maps. Details on each part are given in the
following subsections.

3.1. Analysis of Meteorological Data. Precipitation data of 12
stations were analyzed to comprehend the meteorological
conditions of the two weeks of extreme rainfall period, in
which floods occurred. The locations and the altitudes of
the stations are shown in Figure 1. The altitudes of the mete-
orological stations range between 5m and 790 m. Among
those, Ordu and Unye Meteorological Stations are the oldest
and have records since 1959 except for a few years of gaps (no
measurement available). The yearly precipitations of both
stations are presented in Figure 5 including long-term aver-
ages. The average annual precipitation value of Ordu is
10452mm while that of Unye is 11753 mm. From
Figure 5, it can be seen that although the yearly precipitation
value of Ordu is close to the long-term average for 2018,
Unye has one of the highest values (1527.6 mm) in its history
for this year.

The monthly total precipitation values in 2018 are given
in Figure 6 together with long-term monthly averages calcu-
lated based on 61 and 60 years measurements between 1959
and 2019 for Ordu and Unye, respectively. Again, although
Ordu values exhibit high similarity to the long-term averages,
Unye monthly precipitation values are significantly higher
especially for July (2.5 times), August (1.9 times), and Sep-
tember (2.8 times). It is evident that the heavy rainfall
affected the western parts of the area considered in the study.

Two flood events were recorded in the region on August
2nd and 8th, with the latter one being much more
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destructive. Daily precipitation values between 1 and 15
August 2018 are provided in Figure 7 cumulatively. Extreme
precipitation on the days of 8th and 9th of August is clearly
visible in the Figure especially for Caybasi-Ikizce area, Perse-
mbe, Terme, Fatsa, Unye, and Salipazari districts. Very high
hourly rainfall for the same districts was observed for consec-
utive hours (Figure 8). When the rainfall data is closely
inspected, the higher rainfall values were recorded at the
western parts of the study area. In addition, the intense rain-
fall occurred at higher altitudes. Rainfall at high altitudes
caused floods at low altitudes and damaged the settlements
and infrastructure here. In addition, prolonged rainfall satu-
rated the slope material and triggered the landslides. Espe-
cially, the landslides were triggered by August 8, 2018,
rainfall because some of the August 2, 2018, rainfall
infiltrated and saturated the regolith and the weak zones on
the slopes; and the August 8, 2018, rainfall triggered the
saturated slope material. In addition, the maximum rainfall
intensity of the August 2, 2018, rainfall was about
50 mm/hour while that of the August 8, 2018, rainfall was
about 70 mm (Figure 8). With the prolonged heavy rainfall
on August 8 and 9, 2018, floods and landslides were triggered
at the same time, which increased the destructive effects of
the floods at the lower altitudes.

3.2. Flood Extent Mapping by Employing Optical and Radar
Remote Sensing Data. Since the visual interpretation of opti-
cal data is an easier task when compared with SAR data, a
feature level data fusion approach was employed here for
flood extent mapping. Since both datasets were geometrically
aligned (coregistered), the training areas (polygons) collected
from Sentinel-2 images were utilized also for Sentinel-1 data.
Sentinel-1B SAR and Sentinel-2A/2B data obtained from
ESA Copernicus Open Access Hub [49] were used in this
study for flood extent mapping using the Sentinel Applica-
tion Platform (SNAP) Tool of ESA [50]. Sentinel-1 is a con-
stellation composed of two satellites, i.e., Sentinel-1A and
Sentinel-1B, operating at the same orbit with a joint revisit
time of 6 days (12 days each) [51]. The SAR sensors acquire
data from C-band with X5.7cm wavelength and have a
swath-width of 250 km and spatial resolution of 5m x 20 m
in the IW mode. The Sentinel-2 constellation contains
Sentinel-2A and Sentinel-2B satellites, which are twins and
has a joint revisit time of five days [52]. The MultiSpectral
Instruments (MSI) aboard Sentinel-2 satellites takes images
with pushbroom principle with a swath-width of 290 km.
Each MSI has 13 spectral bands covering visible, red-edge,
near-infrared (NIR), and short-wave infrared (SWIR) wave-
lengths with spatial resolutions ranging between 10 m and
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60m. The absolute geolocation specification for Sentinel-2
provided by ESA is 20m. However, PandzZic et al. [53]
reported even higher accuracy, which was better than 10 m,
in their tests over Serbia and Austria.

The datasets used in the study intercept the during- and
postdisaster conditions. Two Sentinel-1B datasets, DS1 and
DS2, taken on August 10, 2018, were the closest available to
the flood date and were obtained in interferometric wide
(IW) swath mode with dual polarization (VV and VH).
The Sentinel-2B MSI image (DS3) was acquired on August
9th during the flood and was partially cloudy. The Sentinel-

2A MSI imagery (DS4) was taken on October 3, 2018, (after
the flood) and is almost cloud-free. Level 2 products of
Sentinel-2, which are terrain-corrected, were processed here.
Both SAR and optical data were preprocessed before feature
extraction for calibration, radiometric enhancement (e.g.,
speckle filtering and cloud masking), and the removal of
geometric distortions and alignment differences (i.e., terrain
correction, coregistration, and resampling). The Sentinel-2
data were resampled to 10m in SNAP software using the
bilinear interpolation method. Further details on the prepro-
cessing steps applied here can be found in Tavus et al. [54].
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The study area is complex due to rugged topography and
mixed land cover with inland water bodies (i.e., streams and
rivers), urban settlements, open terrain, and agricultural and
dense forest areas. Flood mapping using SAR data over hilly
and mountainous areas has shortcomings due to the radar
imaging principle, which cause geometric distortions such
as layover, foreshortening, and shadows (no data areas). In
addition, underwater vegetation and urban areas exhibit very
complex signal returns due to multiple-bounce scattering.
On the other hand, water surfaces can be easily detected

due to low SAR backscattering. For these reasons, Polarimet-
ric SAR (PolSAR) information was extracted and utilized
together with SAR intensity information and with optical
data for detecting flooded areas [54]. Single Look Complex
(SLC) data of Sentinel-1 were used at the polarimetric
decomposition stage. At this stage, the covariance matrix
(C2) with a dimension of 2 x 2 method was extracted for
polarimetric decomposition in SNAP. The matrix elements
were postprocessed for despeckling with Improved Lee
Sigma et al., 2009 [55]. The Lee sigma filter has been applied
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in different studies and achieved successful results [56, 57] and
was evaluated with different filter sizes by Tavus et al. [31] for
flood extent mapping. Based on the visual checks, it was deter-
mined that 7 x 7 window size provided the best results. For
these reasons, here, the Improved Lee Sigma filter, which
solves the disadvantages of the Lee Sigma filter such as bias
problem, was preferred and applied with 7 x 7 window size.
Finally, the SAR dataset was terrain-corrected and orthorecti-
fied by using the Range Doppler Terrain Correction algorithm
before performing the classification (see Figure 4).

On the other hand, both Sentinel-2 images were
employed for extracting additional features on the land cover
of the study area including flooded areas and for selecting
training areas (polygons) for supervised classification of five
classes (agriculture, urban area, flooded area, forest, and per-
manent water). The training polygons for all classes except
the flood were delineated in DS4. The areas with flood were
selected in DS3, which is partially cloudy, and the floodwater
was still visible in some regions. In addition to the intensity
data obtained from all 13 bands of Sentinel-2 sensors, NDVI

(normalized difference vegetation index) and MNDWI
(modified normalized difference water index) information
were generated to be used as supplementary features to
improve the classification. The MNDWI yields to better
separation of settlement areas from water and employs
short-wave infrared (SWIR) band instead of near-infrared
(NIR) when compared with the normalized difference water
index (NDWI) [58]. Here, DS3 was used particularly to select
training samples for the flooded areas. The training polygons
contain 8.782 pixels in urban, 8.212 pixels in permanent
water, 84.048 pixels in forest, 2.636 pixels in flood, and
75.745 pixels in agriculture classes.

The random forest (RF), which is an ensemble ML tech-
nique of decision trees (DTs) [59], was used as the semisu-
pervised classification method for the determination of the
five classes in SNAP. In the RF method, the DT's were created
randomly at the training stage and evaluated for the best
score based on the average of the results of the trees. The
RF is aimed at selecting the most important features when
creating the DTs. Samples required for all classes for model
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training were collected from all feature images, and the poly-
gons of the representative areas were manually delineated in
Sentinel-2 datasets (DS3 and DS4) as mentioned above.

3.3. Landslide Inventory and Susceptibility Mapping with
Aerial Photogrammetry. Aerial photogrammetric datasets
acquired on 17 August 2018 (after the flood) by the General
Directorate of Mapping (GDM), Turkey, were used here for

landslide inventory preparation and susceptibility assess-
ment. 11 stereo images taken in a single strip over the
Ikizce-Caybasi area, which was one of the most affected sites
from landslides triggered by the intense and prolonged rain-
fall, were utilized for the investigations. The images were
taken in four spectral bands (RGB and NIR) by using Ultra-
cam Eagle camera produced by Vexcel Imaging, Austria, and
have high spatial resolution (30 cm). The camera has a frame
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FIGURE 10: The DTM and the landslide inventory of Ikizce-Caybasi area.

TaBLE 1: Descriptive statistics of the topographical data obtained for subarea and the area with landslide.

Ikizce-Caybasi area
Parameters Y

Landslide inventory area

Min Max Mean Std. Dev. Min Max Mean Std. Dev.
DTM (m) 93.0 894.5 386.6 130.9 151.8 703.6 412.9 96.0
Slope gradient (°) 0 86.9 23.1 13.9 0 77.1 17.6 12.3
Slope aspect (°) -1 360 179.0 106.9 -1 360 194.4 112.9
TWI -3.16 25.31 4.29 2.45 -1.70 25.23 4.55 2.65
Distance to drainage (m) 0 1706.1 477.8 342.3 0 1661.8 406.7 300.7
Plan slope curvature -3.73 6.35 3.50 791 -1.22 1.44 3.58 6.60
Profile slope curvature -4.41 5.17 -8.81 6.14 -2.30 1.93 -1.54 6.10

format of 20.010 x 13.080 pixels with 0.005 mm detector size
and 100.5 mm focal distance. To produce the Digital Surface
Model (DSM), Digital Terrain Model (DTM), and orthopho-
tos, the interior and exterior orientation parameters, which
were estimated in a bundle block adjustment process using
GNSS surveyed ground control points at GDM, were
employed in Trimble Inpho software [60]. The orthophotos
and the grid DSM/DTM have resolutions of 30 cm and 1 m,
respectively, with a location accuracy of ca. 15cm [61].

In the last few decades, the importance of landslide
susceptibility assessments and mapping has increased signif-
icantly, and researchers using various methods have
produced landslide susceptibility maps (e.g., [62, 63]). In
the present study, landslide susceptibility evaluations were
performed in the towns Ikizce and Caybasi in Ordu (see

Figures 1 and 9) because the most of landslides occurred in
this part of the region at the same time with the flood as well.
A total of 25 landslide polygons, which were delineated man-
ually using the DSM and the orthophotos produced in the
study, form the landslide inventory (Figure 10). The mass
movements were classified as deep-seated circular active fail-
ures according to the characteristics published by Cruden
and Varnes [64]. The polygon sizes range from 0.4km? to
5.4km?, with a total area of 17 km®.

To assess the landslide susceptibility in the Ikizce-
Caybasi area, the preparatory parameters were investigated.
For this purpose, the lithological map and topographic
factors with respect to landslides were assessed. The most
prone lithologies observed in the subarea are weak sedimen-
tary rocks and volcanic (see Figure 9). Approximately 40% of



Geofluids 11
300000000000 310000900000 320000900000 330000900000 340000900000 350000900000 36000000 370000900000
4576000900000 4576000900000
4564000000000 4564000000000
4552000000000 4552000000000
4540000900000 4540000900000
4528000900000 4528000000000
024 8Km
300000000000 310000900000 320000900000 330000000000 340000000000 3500000000 360000900000 37000000000
Legend

- Agriculture
- Forest
- Urban area

- Permanent water
- Flooded area

o Town

F1GURE 11: Result of the flood analysis produced for the whole area affected by flooding.

the landslides were observed in the weak claystone-
sandstone. 20% of the landslides were mapped on Early-
Middle Eocene aged sandstone and mudstone, 20% of the
landslides were mapped on Maastrichtian-Palacocene aged
mudstone, limestone, sandstone, and marl, and 16% of the
landslides mapped on Middle-Late Eocene aged andesite,
basalt, and pyroclastic rocks. Six topographic parameters,
altitude, slope gradient, slope aspect, plan and profile slope
curvatures, topographic wetness index, and a hydrological
factor distance to drainage network were evaluated as the
landslide preparatory parameters in the region [61]. Descrip-
tive statistics of these parameters for the subarea and the area
with landslides were investigated, respectively (Table 1). As a
result, the failures within the subarea are observed on the
mean topographic slopes of 17°, in areas with a mean topo-
graphic wetness index (TWI) value of 4.55, and at a mean

distance of approximately 406 m from the drainage network
as shown in Table 1.

The results of landslide susceptibility evaluations provide
the first insight on the landslide-prone areas, which is partic-
ularly essential for acquiring rapid results when working with
high-resolution datasets. Using the lithological map and
topographic factors, the landslide susceptibility model of
the subarea was produced with the RF method. The use of
the RF method is rather new for landslide susceptibility
modeling (e.g., [65-70]). Currently, there has been a signifi-
cant increase in the implementation of ML algorithms for
the production of landslide susceptibility maps. The major
problems with the expert-based techniques, which can be
considered as the alternative methods, are the time and
labor-intensive processing and sometimes accessibility to
the area. Here, the RF method was selected since it was found
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FIGURE 12: Result of the flood analysis produced for Terme subarea.

very effective among other ML algorithms by Sevgen et al.
[69]. The landslide inventory data were used to train the
model. For the model training, the landslide polygons were
used with an 80/20 ratio. Owing to the imbalanced distribu-
tion of the landslides in the subarea, only the region in the
middle part of the site (marked with black in Figure 10)
was implemented for the model training. The larger
landslides in the southern part of the subarea and the other
landslides in the East were not employed in the model train-
ing stage but used for accuracy assessment. A total of
139,096,240 grid cells (8 feature classes each with pixels
labelled as 6,954,812 landslide and 10,432,218 non-landslide)
were implemented in the training stage. The total number of
grid cells in the study area is 88.790.485. The receiver operat-

ing characteristics (ROC) curves and the area under the curve
(AUC) were used for accuracy assessment [71].

4. Results and Discussion

When the long-term annual precipitation data for Ordu and
Unye were evaluated (Figure 5), it was observed that the var-
iations between 2017-2018 and 2018-2019 were quite large.
In 2017, the precipitation amount in Ordu was among the
lowest since 1959. On the other hand, the precipitation in
Unye in 2018 was among the highest from the beginning of
the measurements. Having such high variations between
different years may have triggered the floods. In addition,
the monthly averages for Unye between July and September
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2018 were up to 2.8 times when compared with the long-term
monthly averages (Figure 6). This fact is not visible in Ordu
monthly averages, since the annual precipitation of Ordu
was very close to the long-term averages. When the cumula-
tive data between 1 and 15 August (Figure 7) were consid-
ered, the extreme precipitation on August 2nd was followed
by heavy rainfall on August 8th and 9th, which increased
the destructive effects. In addition, the rainfall was concen-
trated in 2-3 hours at most on these days (Figure 8).

Figure 11 shows the RF classification results of the whole
area affected by flooding. The flooded areas shown with cyan
in the Figure correspond with the expectations based on the

topography and evidenced by the damage reports. Although
the settlement areas were classified correctly, the agricultural
areas and forests could not be separated sufficiently especially
in mountainous areas. One potential reason for this is radar
shadows, which can be investigated in more detail in the
future. The permanent water areas could be classified accu-
rately thanks to the posthazard data of Sentinel-2 (DS4).
The results were evaluated also for the two subparts: Terme
area (Figure 12), which is plain and the floodwater remained
longer, and Ikizce-Caybasi (Figure 13), which is the same
area in which landslide susceptibility results were produced.
The performance of the RF model developed within the
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TaBLE 2: The landslide probability distribution in Ikizce-Caybasi
Area [61].

Class Probability range (%)  Area (km?) Percentage
Very high 80-100 34 3.9%
High 60-80 10.9 12.3%
Moderate 40-60 15.2 17.2%
Low 20-40 17.1 19.3%
Very low 0-20 42.1 47.4%

scope of the flood mapping was provided by the SNAP Tool
and evaluated here by considering the correct classification
percentage and accuracy statistics. Accordingly, the overall
correct classification % of the model was 90.51%, while the
accuracy value calculated for the flood class in the model
was 0.97.

As one of the most landslide-prone area in Turkey, up-
to-date landslide susceptibility maps, which depict spatial
probabilities for landslides likely to occur in the future, need
to be produced for Ordu Province as a fundamental mitiga-
tion measure. On-demand aerial image acquisition for
DSM and orthophoto production offers an advantage. The
use of ML methods with high predictive capacity for land-
slide susceptibility model construction increases the reliabil-
ity of these maps. The RF model training outputs were used
for the whole subarea dataset to produce the resultant
landslide susceptibility map (Figure 14(a)). The resultant
landslide susceptibility map obtained by using the model
was assessed in 5 equally divided classes as follows; very
low, low, moderate, high, and very high (Table 2). The sizes
of the areas with high and very high susceptibility values were
10.9km” and 3.4 km?, respectively.

The performance assessment of the model was investi-
gated with the ROC curves and the AUC statistics. The test
grid cells were implemented for the ROC curves. In the
ROC curve evaluations, the classes 0 and 1 represent
nonlandslide and landslide data, respectively. Accordingly,
the AUC value was calculated to be 0.92 that means the
prediction performance of the model is enough to estimate
possible future landslides in the region (Figure 14(b)).

5. Conclusions and Future Work

In this study, a meteorological catastrophe that occurred in
Ordu in August 2018 was assessed in terms of precipitation
data, and landslide susceptibility and flood extent maps by
using multitemporal and multisource optical and radar data-
sets. The present study also summarizes a meteorological
catastrophe and its harmful consequences. The long- and
short-term precipitation data analysis indicated large yearly
and monthly variations in the regions and heavy rainfall over
a few hours. Depending on climate change, a further increase
in the frequencies of such catastrophic events is expected. To
reduce the harmful effects of these catastrophes, the conse-
quences should be understood clearly and the necessary
precautions must be considered.

Here, aerial photogrammetric images acquired after the
event were utilized for landslide inventory mapping and sus-
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ceptibility evaluation. Sentinel-1 SAR and Sentinel-2 optical
EO data were fused at feature level for the flood extent map-
ping. A semisupervised ML method, RF, was used both for
the landslide susceptibility assessment and the flood
mapping. Regarding flood extent mapping using radar and
optical EO data by feature-level fusion with the RF method,
the results were found suitable for the purposes. High revisit
time and availability of Sentinel-1 SAR and Sentinel-2 optical
imageries are advantageous for disaster management
purposes. In addition, the capabilities of the freely available
SNAP Tool ensure usability of the data by different organiza-
tions and professionals from various disciplines. However,
the application of the processing algorithm requires some
level of expertise and standardized methods for this purpose
can aid nonexperienced users. The training data required by
the supervised classification method were delineated manu-
ally on the optical dataset, and the same areas could be used
in SAR images, which showed the potential of the combined
use of both sensors after geometric preprocessing. Although
no fieldwork could be conducted up to date, they may help
to assist the determination of the actual land use and the
assessment of the ground conditions.

Regarding the landslide susceptibility mapping, the man-
ual interpretation of landslides requires high expertise and is
a time-consuming process for engineering geologists and
geomorphologists. The development of automated or semi-
automated techniques can increase efficiency by decreasing
the processing time and operator bias. Landslide inventory
preparation is essential to analyze their mechanisms and to
predict the landslide hazard and risk. This task is nowadays
supported by the EO data with diverse spatial, spectral, and
temporal resolutions. However, the development of new pro-
cessing methods is crucial to handle the increasing complex-
ity of the data obtained from different sensors, to reduce the
requirement for computational sources, and to achieve high
performance. In future work, the landslide susceptibility
map will be expanded to the other parts of the region based
on aerial image availability before and after the extreme rain-
fall. In addition, rule sets will be developed for performing a
rule-based classification to increase the generalization poten-
tial. Integrated multihazard assessment is also required, and
methods for this purpose will also be integrated as suggested
by Yanar et al. [72].
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