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Algorithms for constructing hierarchical structures from user-generated metadata have caught the interest
of the academic community in recent years. In social tagging systems, the output of these algorithms
is usually referred to as folksonomies (from folk-generated taxonomies). Evaluation of folksonomies and
folksonomy induction algorithms is a challenging issue complicated by the lack of golden standards, lack of
comprehensive methods and tools as well as a lack of research and empirical/simulation studies applying
these methods. In this paper, we report results from a broad comparative study of state-of-the-art folksonomy
induction algorithms that we have applied and evaluated in the context of five social tagging systems. In

addition to adopting semantic evaluation techniques, we present and adopt a new technique that can be used
to evaluate the usefulness of folksonomies for navigation. Our work sheds new light on the properties and

characteristics of state-of-the-art folksonomy induction algorithms and introduces a new pragmatic approach
to folksonomy evaluation, while at the same time identifying some important limitations and challenges of

folksonomy evaluation. Our results show that folksonomy induction algorithms specifically developed to
capture intuitions of social tagging systems outperform traditional hierarchical clustering techniques. To
the best of our knowledge, this work represents the largest and most comprehensive evaluation study of
state-of-the-art folksonomy induction algorithms to date.
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1. INTRODUCTION

In recent years, social tagging systems have emerged as an alternative to traditional forms
of organizing information. Instead of enforcing rigid taxonomies with controlled vocabu-
lary, social tagging systems allow users to freely choose so-called tags to annotate resources
[Koerner et al. 2010; Strohmaier et al. 2010]. In related research, it has been suggested
that social tagging systems can be used to acquire latent hierarchical structures that are
rooted in the language and dynamics of the underlying user population [Benz et al. 2010;
Heymann and Garcia-Molina 2006; Hotho et al. 2006; Cattuto et al. 2008]. The notion of
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“folksonomies” - from folk-generated taxonomies - emerged to characterize this idea1. While
a number of algorithms have been proposed to obtain folksonomies from social tagging data
[Plangprasopchok et al. 2010a; Heymann and Garcia-Molina 2006; Benz et al. 2010], we
know little about the nature of these algorithms, their properties and characteristics. Al-
though measures for evaluating folksonomies exist (such as [Dellschaft and Staab 2006]),
their scope is often narrow (i.e. focusing on certain properties only), and they have not been
applied widely to state-of-the art folksonomy algorithms. This paper aims to address some of
these shortcomings. In this work, we report results from (i) implementing 3 different classes
of folksonomy induction algorithms (ii) applying them to 5 different tagging datasets and
(iii) comparing them in a study by adopting an array of evaluation techniques. The main
contribution of this paper is a broad evaluation of state-of-the-art folksonomy algorithms
across different datasets using existing semantic evaluation techniques. An additional con-
tribution of our work is the introduction and application of a new, pragmatic technique for
folksonomy evaluation that allows to assess the usefulness of folksonomies for navigation.
The results presented in this paper highlight some challenges of choosing among different
folksonomy algorithms, but also lead to new insights about the properties and character-
istics of existing folksonomy induction algorithms, and help to illuminate a path towards
future, more effective, folksonomy induction algorithm designs and evaluations. To the best
of our knowledge, this work represents the largest and most comprehensive comparative
evaluation study of state-of-the-art folksonomy induction algorithms to date.
The paper is structured as follows: In section 2, we give a description of three classes of

state-of-the art algorithms for folksonomy induction. Section 3 provides an introduction to
semantic evaluation of folksonomies. We present a novel pragmatic (i.e. navigation-focused)
approach to evaluating folksonomies in section 4. In section 5, we describe our experimental
setup and in section 6 the results of conducting semantic and pragmatic evaluations are
presented. Finally, we discuss implications and conclusions of our work.

2. FOLKSONOMY INDUCTION ALGORITHMS

While different aspects of emergent semantics have been studied by the tagging research
community (see, for example, [Angeletou 2010; Yeung et al. 2008; Au Yeung et al. 2009]), the
common objective of folksonomy induction algorithms is to produce hierarchical structures
(“folksonomies”) from the flat-structured tagging data. Such algorithms analyze various
evidence such as tag-to-resource networks [Mika 2007], tag-to-tag networks [Heymann and
Garcia-Molina 2006], or tag co-occurrence [Schmitz et al. 2006] to learn hierarchical relations
between tags. While further algorithms exist (such as [Li et al. 2007]), we have selected the
following three classes of algorithms because (i) they were well documented and (ii) for their
ease of implementation. Figures 1 and 2 illustrate exemplary folksonomies and folksonomy
excerpts induced by these algorithms. In the following, we briefly describe each considered
class of algorithms and how we have applied them in this paper.

2.1. Affinity Propagation

Frey and Dueck introduced Affinity Propagation (AP) as a new clustering method in [Frey
and Dueck 2007]. A set of similarities between data samples provided in a matrix represents
the input for this method. The diagonal entries (self-similarities) of the similarity matrix are
called preferences and are set according to the suitability of the corresponding data sample
to serve as a cluster center (called “exemplar” in [Frey and Dueck 2007]). Although it is not

1Different definitions for the term “folksonomy” exist in the literature (see for example [Yeung et al. 2008;
Plangprasopchok et al. 2010b]). Without necessarily agreeing with either of these definitions, for practical
matters, we adopt the view proposed by [Vander Wal 2007] and used by for example [Plangprasopchok et al.
2010b] from here on, where a folksonomy is understood as a “user-created bottom-up categorical structure
[...]” [Vander Wal 2007].
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(a) Affinity Propagation (b) Hierarchical K-Means (c) DegCen/Cooc

Fig. 1. Examples of folksonomies obtained from tagging data using (a) Affinity Propagation (b) Hierarchi-
cal K-Means and (c) Tag Similarity Graph (DegCen/Cooc) algorithms. The different algorithms produce
significantly different folksonomies, their semantics or pragmatic usefulness for tasks such as navigation is
generally unknown. The visualizations include the top five folksonomy levels of the Flickr dataset. Deg-
Cen/Cooc produces hierarchies where most general tags, e.g. 2005, christmas, december occupy the top
hierarchy levels (the dataset includes tags from December 2005, see Section 5.1 for detailed dataset descrip-
tion). The color of the root node is green (the root node is visible in (a) and (b)), then the color gradient
starts at blue for the top levels and proceeds to red for the lower levels. DegCen/Cooc produces hierarchies
that are broader and include more nodes at top levels (more blue in (c)).

required to set a cluster number explicitly, the preference values correlate with the number
of resulting clusters (lower preference values result in fewer clusters and vice versa).
In several iterations, AP exchanges messages between data samples to update their “re-

sponsibility” and “availability” values. Responsibility values reflect how well data samples
serve as exemplars for other data, and the availability values show the suitability of other
data samples to be the exemplars for specific data samples. Responsibility and availability
are refined iteratively with a parameter λ as an update factor. A full description of AP is
beyond the scope of this paper, we point the interested reader to [Frey and Dueck 2007] for
further information.
Based on [Frey and Dueck 2007], the authors of [Plangprasopchok et al. 2010a] have

introduced an adaption of affinity propagation to infer folksonomies from social tagging
data. The authors incorporated structural constraints directly into the global objective
function of affinity propagation, so that a tree evolves naturally from execution. In this
paper, we follow a simpler approach by applying the original AP recursively in a bottom-
up manner. In a first step, the top 10 Cosine similarities (pruned for memory reasons)
between the tags in a given dataset serve as the input matrix, and the minimum of those
serves as preference for all data samples. Then, AP produces clusters by selecting examples
with associated data samples. If the ratio between the number of clusters and the data
samples is between 3 and 15 (which we use as an adjustable parameter), then the result
will be retained, otherwise another run with lower (too many clusters have been selected)
or higher preference values (too few clusters have been selected) will be executed. Finally,
the centroids of the clusters are calculated by using the sum of the connected data samples
normalized to unit length. Now the Cosine similarities between the centroids serve as the

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Markus Strohmaier et al.

2005

christmas wedding winter

party family

friends birthday baby kids

marriage reception

rom spiritual artworld

snow nature

white mountain landscape wildlife

Fig. 2. A small excerpt from the DegCen/Cooc Flickr folksonomy containing the root node and selected
other top level nodes.

input matrix for the next run of affinity propagation. This approach is executed until the
top-level is reached.
Since our objective is to construct a tag hierarchy where each node represents a unique

tag, a tag in each cluster is used as a label. The label is selected by choosing the nearest
tag to the centroid. Furthermore, this tag is removed from the actual tags contained in
the leaf cluster and is not used as a representative in lower hierarchy levels. We set the
AP parameter λ0 to 0.6 with increasing values depending on the iteration count (i) (λi =
λi−1 + (1.0 − λ0) ∗ i/imax). AP will terminate after either a maximum of 5000 iterations
(imax) or if the exemplars of clusters are stable for at least 10 iterations.

2.2. Hierarchical K-Means

In [Dhillon et al. 2001], the authors introduce an adaption to the k-means algorithm for
textual data by optimizing the Cosine similarity instead of Euclidean distance [Dhillon
et al. 2001], while [Zhong 2005] introduced an efficient version of an online spherical k-
means. Without going into detail, these adaptations allow an online version to be at least
as fast as a batch spherical k-means with better results. We utilize k-means iteratively in a
top-down manner to build a tag hierarchy. Basically, in the first step, the whole input data
set is used for clustering the data into 10 clusters. Our decision to use k=10 was motivated
by a desire to capture cognitive limitations of users who are interacting with folksonomies
(e.g. to capture the limited ability of users to navigate hierarchies with 100s of children
nodes). Clusters containing more than 10 connected samples are further partitioned while
ones with less than 10 samples are considered as leaf clusters. However, since a cluster set
of 11 samples would also be partitioned into 10 clusters we introduced a special case to give
some freedom to the clustering process for these border cases by setting the cluster number
to the maximum of 10 or number of data samples divided by 3 what would result in 3
clusters in case of 11 samples. The tag representing a node is selected by taking the nearest
tag to the centroid. Furthermore, this tag is removed from the actual tags contained in a
cluster and which are further clustered in the next step, if there are more than 10 samples
left.

2.3. Generality in Tag Similarity Networks

In [Heymann and Garcia-Molina 2006], the authors introduce an algorithm as an alternative
to producing hierarchical structures from tagging data by means of hierarchical clustering
approaches. The input for the algorithm is a so-called tag similarity network – an unweighted
network where each tag is a node in the network, and two nodes are linked to each other if
their similarity is above a predefined similarity threshold. In the simplest case, the threshold
is defined through tag overlap – if the tags do not overlap in at least one resource then they
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Table I. Statistical Properties of the Induced Folksonomies

BibSonomy CiteULike Delicious Flickr LastFM
br dia br dia br dia br dia br dia

Affprop 3.36 6 3.42 4 3.61 5 3.23 4 3.99 4
Clo/Cos 2.21 13 2.1 16 2.46 12 2.25 13 2.05 10
Deg/Cooc 8.04 8 6.82 9 8.14 9 9.17 7 6.25 7
KMeans 3.78 6 3.81 10 3.71 36 3.81 5 3.72 17
Random 10 2 10 3 10 2 10 4 10 3

Source: Statistical properties of the induced folksonomies by all proposed methods.
br depicts the average branching factor, computed over all non-leaf nodes (For
comparison, the branching factors of the reference taxonomies are: WordNet 4.86,
Yago 14.32, Wikitaxonomy 48.82). dia depicts the full network diameter, based
on 500 randomly selected nodes (For comparison, the diameters of the reference
taxonomies are: WordNet 7, Yago 7, Wikitaxonomy 2).

are not linked to each other in the tag similarity network. The second prerequisite for the
algorithm is the ranking of nodes in a descending order according to how central the tags are
in the tag similarity network. In particular, this ranking produces a generality order where
the most general tags from a dataset are in the top positions. The algorithm starts by a
single node tree with the most general tag as the root node. The algorithm then proceeds
by iterating through the generality list and adding each tag to the tree – the algorithm
calculates the similarities between the current tag and each tag currently present in the
tree and adds the current tag as a child to its most similar tag. The authors describe their
algorithm as extensible as they leave the possibility to apply different similarity, as well as
different centrality measures. The presented algorithm adopts cosine similarity and closeness
centrality, and we denote this algorithm henceforth CloCen/Cos.
In [Benz et al. 2010], the authors describe an extension of the algorithm presented in [Hey-

mann and Garcia-Molina 2006]. Generally, this new algorithm is based on principles similar
to Heymann’s algorithm – but the new algorithm applies tag co-occurrence as the similarity
measure and the degree centrality as the generality measure (DegCen/Cooc). In particular,
the algorithm executes an extensive preprocessing of the dataset e.g. to remove synonym
tags or to resolve ambiguous tags. For this paper, we study both published variations of
these algorithms: CloCen/Cos and DegCen/Cooc. For reasons of simplicity, we skipped pre-
processing of the dataset and only applied the alternative similarity and centrality measures.
Table I summarizes some statistical properties of all resulting folksonomies.
In the following, we briefly discuss and present state-of-the art evaluation techniques for

folksonomy algorithms. Specifically, we review current semantic evaluation techniques in
section 3 and present a new pragmatic approach to folksonomy evaluation in section 4.

3. SEMANTIC EVALUATION

A universal measure for evaluating the overall semantic quality of a taxonomy is difficult
to envision or design for several reasons. First, taxonomies are usually constructed not only
for the mere purpose of representing knowledge, but they are often targeted towards a par-
ticular application. Depending on the application type and the anticipated user population,
different aspects of the taxonomy will be more or less important, which should be reflected
in any evaluation approach. If, for example, there exists a direct interface where humans
work with the taxonomy, the quality of the lexical labels to describe concepts will be more
important than in a case where the taxonomically captured knowledge serves only as an
input for an automatic process. Hence there exist different evaluation paradigms focusing
on assessing different aspects of a learned taxonomy. In general, we can broadly distin-
guish between three evaluation paradigms (also c.f. [Dellschaft and Staab 2006; Brank et al.
2006]):
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Table II. Statistical Properties of the Reference Datasets

#concepts #relations #labels

Wordnet 79,690 81,866 141,391
Yago 244,553 249,465 206,418
Wikitaxonomy 2,445,974 4,447,010 2,445,974

Source: Statistical properties of the reference datasets used
in the semantic evaluation.

—Application-centered : When taxonomies are engineered towards a certain application, a
natural measure of taxonomy quality would be the performance improvement achieved by
using different taxonomies as input. A requirement hereby is the existence of measures to
compare the achieved results. Though this paradigm reflects clearly the actual “utility” of
a taxonomy, a problematic issue is how to disentangle the influence of the input taxonomy
from other application parameters.

—Human Assessment : This paradigm relies on the judgement of human experts how well an
taxonomy meets a set of predefined criteria. Hereby it is obviously an important question
on which criteria to agree. This paradigm can be expected to provide valuable assessments
of taxonomy quality at a high cost due to the heavy involvement of human interaction.

—Reference-based : The prerequisite of this methodology is the existence of a “gold-
standard”, to which the learned taxonomy can be compared. The gold standard can be
an taxonomy itself, but also e.g. a set of documents covering the domain in question.
The key issues hereby are how to assess the quality of the gold-standard itself, and the
establishment of valid comparison measures.

Comparing the paradigms, [Dellschaft 2005] concludes that only reference-based methods
are practically feasible for large-scale and frequent evaluation. We will adopt this approach
as an initial semantic evaluation methodology in the scope of our work. As an additional
check for the validity of this methodology in the context of our work, we also performed a
human subject experiment where we asked human subjects to judge the quality of a subset
of learned hierarchical relationships. We will now first provide details on the reference-based
evaluation, and then explain the setup of our human subject experiment.

3.1. Reference-based Evaluation

When adopting a reference-based evaluation paradigm, it is a non-trivial task to judge
the similarity between a learned concept hierarchy and a reference hierarchy, especially re-
garding the absence of well-established and universally accepted evaluation measures. This
typically requires researchers to find answers to at least two crucial questions: (i) Which
reference (gold-standard) ontology to choose, and (ii) which measure to use to compute the
similarity between the learned and the gold-standard ontology. In order to support a com-
parative evaluation of all the folksonomy induction algorithms presented earlier, we have
chosen a set of rather general reference datasets – i.e. taxonomies derived from WordNet,
Yago and Wikipedia (see below). The reason for that lies in the significant vocabulary over-
lap that we found between the folksonomies and these reference datasets. Other reference
datasets, such as MusicMoz2 or the ACM Classification Schema3, did not produce sufficient
vocabulary overlap for comprehensive evaluation. Particular vocabulary matching scores
are presented in Table IV. In the following, we briefly describe each of the gold standard
taxonomies used in our work, and then proceed with the presentation of the evaluation
measures adopted by this paper.

2http://musicmoz.org/
3http://www.acm.org/about/class/
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—WordNet [Miller 1995] is a structured lexical database of the English language. It contains
roughly 203.000 terms grouped into 115.400 synsets. Among the synsets, several relations
are defined; one of the most important ones is the taxonomic relation. As a first gold-
standard, we extracted the taxonomic hierarchy among synsets in WordNet.

—Yago [Suchanek et al. 2007] is a large ontology which was derived automatically from
Wikipedia and WordNet. Manual evaluation studies have shown that its precision (i.e.
the percentage of “correct” facts) lies around 95%. It has a much higher coverage than
WordNet (see Table II), because it also contains named entities like people, books or
products. The complete ontology contains 1.7 million entities and 15 million relations; as
our main interest lies in the taxonomy hierarchy, we restricted ourselves to the contained
is-a relation4 among concepts.

—The “Wikitaxonomy” [Ponzetto and Strube 2007] is the third dataset used for evaluation.
This large scale domain independent taxonomy5 was derived by evaluating the semantic
network between Wikipedia concepts and labeling the relations as isa and notisa, using
methods based on the connectivity of the network and on lexico-syntactic patterns. It
contains by far the largest number of lexical items (see Table II), but this comes at the
cost of a lower level of manual control.

Starting from several gold-standard taxonomies, the next task is to judge the similar-
ity between a learned taxonomy F and a reference taxonomy T . Finding a universally
applicable, valid similarity score for two (possibly very large) hierarchical structures is non-
trivial. Yet, a number of useful measures have been proposed by past research. Dellschaft et
al. [Dellschaft and Staab 2006] for example propose two measures, i.e. taxonomic precision
and taxonomic recall for this purpose. The basic idea is hereby to find a concept c present
in both taxonomies, and then to extract a characteristic excerpt (consisting e.g. from the
sub- and super-concepts) from both taxonomies, i.e. ce(c,F) and ce(c, T ). If both excerpts
are very similar, then the location of the concept c in both taxonomies is similar. Hence,
taxonomic precision and recall have a local part tp and tr , respectively, according to:

tp(c,F , T ) =
|ce(c,F) ∩ ce(c, T )|

|ce(c,F)|
tr(c,F , T ) =

|ce(c,F) ∩ ce(c, T )|

|ce(c, T )|

Then, all local values are summed up over the concept overlap between both structures
according to:

TP(F , T ) =
1

|CF ∩ CT |

∑

c∈CF∩CT

tp(c,F , T )

Whereby CF denotes the set of concepts in the learned folksonomy and CT the set of
concepts of the reference taxonomy. TR is computed analogously. Finally the taxonomic
F-measure is computed as the harmonic mean of taxonomic precision and recall according

to TF (T ,F) = 2·TP (T ,F)·TR(T ,F)
TP (T ,F)+TR(T ,F) .

The same idea underlies the measure of taxonomic overlap proposed by Maedche [Maed-
che 2002]; its local and global part are computed according to:

to(c,F , T ) =
ce(c,F) ∩ ce(c, T )

ce(c,F) ∪ ce(c, T )

4http://www.mpi-inf.mpg.de/yago-naga/yago/subclassof.zip (v2008-w40-2)
5http://www.h-its.org/english/research/nlp/download/wikitaxonomy.php
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TO(F , T ) =
1

|c ∈ CF ∩ CT |

∑

c∈CF∩CT

to(c,F , T )

In all cases, an important aspect is the composition of the characteristic excerpt ce.
A common approach is to choose the semantic cotopy [Maedche 2002], which consists of
all sub- and superconcepts of a given concept c and the concept itself. Because all local
measures tp, tr and to are based on the intersection of excerpts, adding the concept c to
each cotopy leads to a “trivial hit” - i.e. ce(c,F) ∩ ce(c, T ) >= 1 in all cases. This has an
especially strong effect when the average size of the excerpts is small, which happens e.g.
in rather shallow hierarchies. We first used the semantic cotopy as characteristic excerpt,
but with limited success - because especially the randomly generated folksonomies were
strongly favored by this method due to their inherent shallow structure. For this reason,
we used another excerpt, i.e. the common semantic cotopy (as defined in [Dellschaft and
Staab 2006]). It basically contains the sub- and superconcepts of c which are present in
both taxonomies, but excluding the concept c itself. This choice eliminates the problematic
“trivial hit”, leading to much more useful results.
While these measures have not been applied widely, they are theoretically sound and

interesting. This makes them promising candidates for the folksonomy evaluation study at
hand. We will adopt all measures for our evaluation, i.e. taxonomic precision, recall, F1-
measure and overlap. As an additional check for the validity of these measures, we performed
a small human subject experiment, which will be introduced next.

3.2. Evaluation by human assessment

Although the human ability to interpret and integrate information in a meaningful way
can surely be seen as superior to current automatic approaches, the task of evaluating the
“quality” of a learned hierarchical structure remains challenging even for skilled subjects.
Especially the manual comparison of two (potentially very large and complex) taxonomies
will probably not lead to consistent and reproducable evaluation results. For this reason, we
have chosen a simpler approach targeted towards the assessment of the consistency of each
learned taxonomy. Our basic idea hereby was to sample a subset of all direct taxonomic
subsumption pairs from a learned hierarchy, and then to let humans judge if (and if yes -
how) the two contained terms are related. We used a web interface to present each human
subject one term pair (A,B) at a time, asking “What’s the relation between the two terms
A and B?”. As an answer, the subject could choose between selecting one of the following
options:

(1) A is the same as B.
(2) A is a kind of B.
(3) A is a part of B.
(4) A is somehow related to B.
(5) A is not related to B.
(6) I don’t know the meaning of A or B.

In order to allow as many meaningful answers as possible from a broad audience, we
performed an a-priori filtering of the term pairs by a list of “common” words, namely the
5.000 nouns which were used most often in the Brown corpus6. We only kept those pairs
(A,B) as candidates for the study where both terms A and B were present in this list of
popular nouns.

6This corpus was compiled in 1960 and contains roughly 2 million words from a general set of English texts
(see http://khnt.aksis.uib.no/icame/manuals/brown/)
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The intuition behind this approach is that a “better” taxonomy will yield a lower percent-
age of pairs being judged as unrelated. The reason why we allowed for a further distinction
of relations (i.e. “same as”, “kind of”, “part of” and “somehow related”) is that we do
not expect our analyzed algorithms to produce exclusively semantically sharp taxonomic
(i.e. “kind of”) relations. Our semantic evaluation methodology will be complemented by
pragmatic evaluation measures, which are introduced next.

4. PRAGMATIC EVALUATION

While semantic evaluation of hierarchical structures in social tagging systems has received
some attention in the literature, pragmatic (i.e. task-oriented) evaluation represents a rather
new aspect [Helic and Strohmaier 2011; Helic et al. 2011]. In the following, we introduce a
novel way to evaluate the usefulness of folksonomies for user tasks in social tagging systems.
One way of assessing the suitability of folksonomies in supporting user tasks is to assess

their usefulness for searching or navigating social tagging systems. Following this line of
thought, we can measure the extent to which a folksonomy aids a user in navigating the
system. This is the approach employed in this paper. Instead of observing real user behavior,
our method of choice is simulation, mainly because current tagging systems do not adopt
folksonomy-based navigational support yet and simulation provides us with better exper-
imental control and thus makes it possible to evaluate different folksonomy constructing
algorithms across multiple datasets. In the following, we shortly introduce our simulation
model and its theoretical background.

4.1. Greedy Search and Network Navigability

One of the research questions attracting a lot of interest in the field of networks is the
relation between network structure and function, such as the relation between the structure
and routing function of a network. Ever since the “small world” experiment [Milgram 1967]
conducted by Stanley Milgram, researchers have been intrigued by the routing efficiency
or navigability question in social networks – how people are able to find unknown people
who are, potentially, geographically and socially distant to themselves. The key aspect of
this question is the absence of the global knowledge of the network – people know only their
friends and therefore posses only the local knowledge of the network but are still able to
find unknown people. Similar navigability has been observed in other real networks such
as metabolic or neural networks, or has been an important design goal for engineers of
communicational networks such as the Internet or different peer-to-peer networks (see e.g.
[Adamic et al. 2001]). Researchers identified the concept of similarity between nodes [Watts
et al. 2002; Menczer 2002; Leicht et al. 2006] or more generally the concept of distance be-
tween nodes [Kleinberg 2000a; 2000b; 2001; Watts et al. 2002; Adamic and Adar 2005] as an
important aspect of establishing networking navigability. Combining the notion of distance
between nodes with the algorithmic term of greedy routing [Kleinberg 2000b], Kleinberg
theoretically explained network navigability [Kleinberg 2000a; 2001] in the following way:
nodes use distance to select the next node in a routing session and the greedy algorithm
selects the adjacent node closest (with the smallest distance) to the current destination
node. The algorithm and its applications have been studied in the recent literature, see e.g.
[Kleinberg 2006].

In [Serrano et al. 2008] the authors abstract the notion of distance as introduced by
Kleinberg to a hidden distance between nodes. Hidden distances define a hidden metric
spaces which governs not only routing in the network but also the network formation and
emergence of network structural properties such as power-law degree distributions and high
node clustering. The authors connect observable emergent structural properties of a network
with its navigability by defining a region of navigable networks in two dimensional space
with clustering-coefficient [Watts and Strogatz 1998] and power-law exponent as dimensions.
On the other hand, a hidden metric space is also a geometric entity in which nodes are
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identified by their co-ordinates in it – distance between nodes is their geometric distance
in that particular metric space. An interesting research question is the structure of such
hidden metric spaces that underlie observable networks. In [Boguñá et al. 2009], the authors
introduce a model with the circle as a hidden metric space and show its effects on routing in
the global airport network. In [Krioukov et al. 2010] the authors discuss hyperbolic geometry
as a hidden metric space whereas in [Boguñá et al. 2010] the authors apply hyperbolic
geometry as a model of the hidden metric space of the Internet and design a novel greedy
Internet routing algorithm.
The relation between Kleinberg’s node distance and the recent work on hidden metric

spaces can easily be established. In Kleinberg’s model, the nodes are organized into a hierar-
chy according to their similarity – the distance between two nodes corresponds then to the
height of their least common ancestor in that hierarchy [Kleinberg 2001] (Adamic [Adamic
and Adar 2005] and Watts [Watts et al. 2002] have similar distance definitions that are also
based on the node distance in one or more hierarchies). Hyperbolic geometry, as well as
a hierarchy, distribute distances exponentially – it is, therefore, possible to approximate a
hyperbolic metric space by a tree [Krioukov et al. 2010].

4.2. Pragmatic Evaluation Method

In the first step of our folksonomy evaluation, we generate tag-to-tag networks from different
tagging datasets. We adopt a model of a tagging dataset as a tripartite hypernetwork
with V = R ∪ U ∪ T , where R is the resource set, U is the user set, and T is the tag
set [Cattuto et al. 2007; Schmitz et al. 2006; Ramezani et al. 2009]. An annotation of
a particular resource with a particular tag produced by a particular user is a hyperedge
(r, t, u), connecting three nodes from these three disjoint sets. Such a tripartite hypernetwork
can be mapped onto three different bipartite networks connecting users and resources, users
and tags, and tags and resources, or onto e.g. tag-to-tag networks. For different purposes
it is often more practical to analyze one or more of these networks. For example, in the
context of ontology learning, the bipartite networks of users and tags has been shown to
be an effective projection [Mika 2007]. In this paper, we focus on navigating the tag-to-tag
network (based on a tag-to-resource network), to mimic a tag-based user navigation task.

In the second step, we construct different folksonomies from a number of tagging datasets,
where we apply the algorithms that we have introduced in Section 2.
In the final step, we adopt a folksonomy as a particular incarnation of a hidden metric

space. We simulate greedy routing through the observable tag-to-tag network querying the
folksonomy for node distances – the idea is that greedy routing will be more successful
if the co-ordinates imposed by a folksonomy are closer to the real hidden metric space
of the network in question. We quantify the quality of a folksonomy by measuring the
success rate of the greedy algorithm (the number of successfully reached destination nodes
divided by the total number of routing sessions), and by the stretch, which is the ratio of
the average greedy hops to average shortest paths (this measure tells us how longer are
greedy paths as compared to global shortest paths). The measures are similar to those
introduced in [Boguñá et al. 2010]. In addition to the global values calculated in [Boguñá
et al. 2010], we calculate the measures for each observable shortest path in the networks. The
folksonomies that perform better, i.e. folksonomies where the success rate is higher better
reflect the underlying hidden metric space and therefore are more suitable for instructing
greedy routing. Stretch value is a control value – achieving values close to 1 means that
folksonomies are good at finding shortest paths quickly, i.e. in an almost optimal way. On
the other side, high strecth values, e.g. 2 or more would mean that greedy search takes often
sub-optimal paths and that the folksonomy in question does not represent the hidden metric
space optimally. Without making assumptions about actual user behavior, we can conclude
theoretically that better performing folksonomies would provide a better navigation support
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Table III. Datasets

BibSonomy CiteULike Delicious Flickr LastFM

Tags 56,424 347,835 380,979 395,329 281,818
Links 2,003,986 27,536,381 39,808,439 17,524,927 84,787,780

Source: Statistical properties of the tag-tag-networks derived from five social
tagging systems.

for users. We leave the task of testing whether this conclusion also holds in practice, e.g.
with actual user behavior, to future work.

5. EXPERIMENTAL SETUP

In our experiments, we apply 4 folksonomy induction algorithms (from 3 distinct classes)
to five different social tagging systems yielding 20 different folksonomies. We evaluate these
20 folksonomies on a semantic level against 3 reference datasets, and on a pragmatic level
against the task of navigation on the underlying tag network structure. The detailed exper-
imental setup is presented next.

5.1. Datasets

Data from the following social tagging systems was used as an empirical basis (see Table III
for an overview):

Dataset BibSonomy. This dataset7 contains nearly all 916,495 annotations and 235,340
unique resources (scientific articles) from a dump of BibSonomy [Hotho et al. 2006]
until 2009-01-01. The tag-tag network comprises 56,424 nodes and 2,003,986 links.
Dataset CiteULike. This dataset contains 6,328,021 annotations and 1,697,365 unique
resources (scientific articles) and is available online8. The tag-tag network consists of
347,835 tags and 27,536,381 links.
Dataset Delicious. This dataset is an excerpt from the PINTS experimental dataset9

containing a systematic crawl of Delicious and Flickr in 2006 and 2007. We extracted
all data from November 2006. The resources in this dataset are Web addresses. The
tag-tag network consists of 380,979 tags and 39,808,439 links.
Dataset Flickr. This dataset is also an excerpt from the PINTS Flickr crawls. It contains
the data from December 2005. The resources in Flickr are user-generated photos. The
tag-tag network consists of 395,329 tags and 17,524,927 links.
Dataset LastFm. This dataset is from [Schifanella et al. 2010]. It contains annotations
that were crawled from the last.fm website in the first half of 2009. The resources in
this dataset are songs, artists and albums. The tag-tag network consists of 281,818 tags
and 84,787,780 links.

5.2. Semantic Evaluation

While our reference-based semantic evaluation adopts the measures presented in Section
3.1, for the human subject experiment we first extracted all subsumption pairs containing
“common” terms (as described also in Section 3) present in each folksonomy induced from
the Flickr dataset. We focussed on this dataset because its scores in the reference-based
evaluation were comparatively high, and data from this system was used in related work
on folksonomy induction before [Plangprasopchok et al. 2010a]. From the resulting sets of
candidate pairs, we randomly selected 25 pairs for each folksonomy induction algorithm
under consideration, leading to 125 term pairs. As a control condition, we also added 25

7http://www.kde.cs.uni-kassel.de/ws/dc09/
8http://www.citeulike.org/faq/data.adp
9https://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Research/DataSets/
PINTSExperimentsDataSets/
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term pairs randomly sampled from one of our reference hierarchies (namely the WordNet
noun taxonomy), leading to a total number of 150 term pairs to be judged for each of our
subjects. We then sent a link10 pointing to the online study to students and staff from our
two IT departments. In summary, 27 persons took part in the evaluation. Because some of
them did not completely finish the rating of all pairs, we received 3,381 votes, including 249
“don’t know” choices – leading to a total of 3,132 useful answers for our study. In order to
consider only pairs for which we have a sufficient amount of votes, we only included those tag
pairs for which at least 18 subjects had provided useful answers. This left us with a final set
of 128 term pairs. For each term pair, we computed the fraction of each possible judgement,
and averaged these values subsequently over each folksonomy induction algorithm. Figure 4
shows the results. Apart from this, pragmatic evaluation was adopted in the following way:

5.3. Pragmatic Evaluation Using Greedy Search

With greedy search we model and then simulate navigation in tagging systems. We select
100,000 resource nodes uniformly at random from the bipartite tag-to-resource tagging
network. Each of these nodes represents a starting node for decentralized search, modeling
an arbitrary user entry page into the system (e.g. a landing page from a search engine,
the latest resource from a news feed, homepage, or similar). We assume that users who
come to the tagging system would explore the system to find one or more related topics or
resources of current interest. To model this, we select another resource node from the tagging
network uniformly at random. Tags associated with the second resource are both related
to each other (they overlap at least at the second resource) and represent a collection of
related resources that a user might be interested in. We define the set of resources connected
by those tags as target nodes for the greedy search. The goal of the agent is to find a short
path from the starting node to one of the target nodes in the search pair.
We use length of the shortest path as the reference point in the evaluation. This reflects a

typical scenario of navigation in tagging systems – the user will explore the tagging system
by navigating to find relevant topics and resources as quickly as possible, i.e., with as few
clicks as possible. We calculate the global shortest path between nodes from each search
pair using breadth first search. If there is no global path between nodes from a pair (i.e.
when one of the target nodes does not belong to the giant component) then this node is
removed from future calculations.
The folksonomy is applied as a hidden metric space to provide the distance between

nodes. Although search starts at a resource node, as soon as the first tag is selected, the
search becomes a search in the tag-to-tag network. Search is considered successful if the
algorithm finds at least one of the target tags. To model users behavior during navigation
we apply the following strategy: if the agent arrives at a certain node for the second time,
the search stops and is counted as a failure (no backtracking) – this mimics the situation
where a user arrives at a tag that he has already visited, and then decides to, e.g., switch
to the search field or to leave the system. The success rate s of the greedy search thereby
provides an answer to the question of the pragmatic suitability of a folksonomy to support
navigation. In addition to the success rate we calculate so-called stretch τ [Krioukov et al.
2010] with h (average greedy hop length) and l (average shortest path length) as:

τ =
h

l
(1)

To obtain a baseline (a lower bound) for the performance of a particular folksonomy, we
also apply a random folksonomy as a hidden metric space. The results of applying semantic
and pragmatic evaluation are introduced next.

10http://www.kde.cs.uni-kassel.de/benz/relations_and_cartoons.html
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Table IV. Lexical Overlap Among Concepts

BibSonomy CiteULike Delicious Flickr LastFM

WordNet 8,680 22,380 21,830 23,480 10,790
Yago 5,970 14,180 13,620 13,770 6,450
Wikitaxonomy 11,280 33,430 40,270 37,950 14,900
ACM 170 400 n/a n/a n/a
MusicMoz n/a n/a n/a n/a 330

Source: Lexical overlap among concepts present in the folksonomies and tax-
onomies. The values are approximated, as some folksonomy induction algorithms
led to slight variations of the overlap, but to a negligible amount (+/- 100 con-
cepts). WordNet, Yago and Wikitaxonomy exhibit significant overlap with nodes
from the learned folksonomies, while ACM Classification System and MusicMoz
exhibit little overlap.

6. RESULTS

6.1. Results of Semantic Evaluation

As a first result, we present the vocabulary overlap between concepts present in the folk-
sonomies and those in selected reference datasets (see Table IV). While the overlap is
significant for WordNet, Yago and Wikitaxonomy, it is extremely small for ACM and Mu-
sicMoz. Due to the small overlap, we discarded ACM and MusicMoz from all subsequent
investigations, and focused our evaluations on WordNet, Yago and Wikitaxonomy.
Figure 3 displays the results of the reference-based semantic evaluation. On the y-axis of

each figure, the similarity between each folksonomy and a reference gold-standard taxonomy
is depicted. We measure similarity using different measures, including taxonomic precision
(TP), taxonomic recall (TR), taxonomic F1-measure (TF) and taxonomic overlap (TO). As
explained in Section 3.1, all these measures are based on the comparison of “characteristic
excerpts” from both hierarchical structures. The local values are then summed up and
averaged into a global value.
At a first glance, the results from our experiments convey a consistent picture: Taking the

taxonomic F1-measure (black bars) as an example, one can observe that across almost all
experimental conditions the folksonomies induced by generality-based methods (Clo/Cos
and Deg/Cooc in the figures) outperform the clustering-based ones (Affprop and Kmeans).
A similar distribution is found for the other measures (TP, TR and TO). In all cases, the
folksonomy induced by the random algorithm performs worst and yields a similarity score
of close to zero.
A slight exception to these first observations are the folksonomies induced from the

LastFM dataset (lowermost row), for which e.g. affinity propagation slightly outperforms
the generality-based Clo/Cos algorithm. However, the general level of similarity is much
lower for all folksonomies based on this dataset. We attribute this to the fact that the
LastFM dataset has a relatively strong topical focus, i.e. the tagging of music-related items
like songs, artists or albums. Our choice of gold-standard taxonomies, however, was targeted
towards topically more general hierarchies in order to enable a comparison across diffferent
datasets. Our results suggest that this choice makes sense for thematically “general-purpose”
tagging systems like BibSonomy, CiteULike, Delicious or Flickr, but is less well-suited for
more specific ones like LastFM. We also experimented with domain-specific taxonomies like
the ACM Computing classification system11 which might be better suitable for BibSonomy
and CiteULike, as well as with a music genre taxonomy derived from MusicMoz12 fitting
obviously to LastFM – but due to the relatively small lexical overlap, we also had limited
success to this end. Hence we will focus in the remaining discussion of the results on our
more general datasets (topmost four rows).

11http://http://www.acm.org/about/class/
12http://www.musicmoz.org
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Fig. 3. Results of the reference-based semantic evaluation. The figures depict the similarity of each learned
folksonomy based on five datasets (rows: BibSonomy, CiteULike, Delicious, Flickr, LastFm) to three general-
purpose gold-standard taxonomies (columns: WordNet, Yago, Wikitaxonomy). by each algorithm under
consideration. Similarity is depicted on the y-axis and is measured by the taxonomic precision (TP), tax-
onomic recall (TP), taxonomic F1-measure (TF) and the taxonomic overlap (TO); see Section 3 for an
explanation of the measures. In all cases, higher values indicate stronger similarity to the gold-standard and
hence a better performance of the respective algorithm.
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Fig. 4. Results of the semantic evaluation performed by a user study. The upper five horizontal bars
correspond each to a folksonomy induced on the Flickr dataset by each algorithm under consideration; the
lowest bar depicts a control condition based upon the WordNet noun taxonomy. The different patterns
correspond to the average fraction of choices the human subjects have made when presented with a sample
of subsumption pairs from each hierarchy (see Section 3.2).

A conclusion that can be drawn from these empirical results is that the clustering tech-
niques we investigated seem to produce folksonomies which exhibit a smaller degree of simi-
larity to gold-standard taxonomies than techniques based on term generality. Especially the
folksonomies produced by taking degree centrality as generality measure and co-occurrence
as similarity measue seem to resemble most closely to the reference taxonomies. This is
an interesting observation, especially regarding that these measures are computationally
much more lightweight compared to e.g. closeness centrality, cosine similarity or elaborate
clustering mechanisms. We have also tried other parameter settings for K-means (different
k’s) and did not observe a substantial difference.
When comparing the clustering techniques, it seems that affinity propagation has a slight

advantage over kmeans, however to a much lesser extent than the difference to the generality-
based methods. An open question which remains is how to interpret the absolute similarity
values, or in other words: Is e.g. a score of 0.02 captured by the taxonomic F1-measure an
indication of a “strong” similarity between the learned and the reference taxonomy? Due
to the complexity and the size of the involved structures, it is difficult to make a clear
decision to this end. Because the values are averaged over the complete concept overlap, it
is possible that some branches are very similar, while others are not. In order to facilitate a
better understanding of the “true” quality of the learned folksonomies, we also performed
a small-scale human subject experiment, whose results will be discussed next.
Figure 4 summarizes the results of this experiment involving the human assessment of

folksonomies induced on the Flickr dataset. The topmost five rows correspond to the algo-
rithms used, while the lowermost row is a control condition based on the WordNet noun
taxonomy. The values on the y-axis depict the average fraction of choices for each possible
answer - as an example, among all judgements on subsumption pairs produced by affinity
propagation, the average fraction of “part of” answers was roughly 5,8% (0.058, black part
of the uppermost bar). Please note that only “positive” answers are included in this plot
(i.e. answers stating that there is a meaningful relation among two terms). However, the
percentage of “negative” answers (i.e. explicit statements by the users that two terms are
not related) can be deduced from the figure by subtracting the sum of positive votes from 1.
As an example, for affinity propagation we received a fraction of roughly 59% (0.59, topmost
row, average) of “not related” answers for each pair. So as a short statement, one can say
that the “longer” the bars are, the higher is the quality of the corresponding folksonomy.
To start with the lower and upper bounds, the folksonomy produced by the random

algorithm performs worst - all “positive” relation judgements are adding up to roughly
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0.2. On the contrary, the control judgements on the WordNet noun taxonomy sum up
to 0̃.82, including a large portion (0̃.42) of “kind of” answers. So as a first observation,
we can say that the random folksonomy was judged to be the worst and the WordNet
noun taxonomy was judged to be the best hierarchy – which confirms our intuition and
validates our experimental methodology. In between these bounds, the sum of positive
votes seems to confirm the impression from the reference-based evaluation: Again, the two
generality-based methods yield a higher percentage of positive votes compared to the two
clustering approaches. Despite this fact, taking a more detailed look one can also see that the
percentage of “kind of” and “part of” votes (which are semantically more precise compared
to “somehow related”) is highest for the KMeans clustering algorithm. This could of course
be an artifact of sampling, but could also point towards a greater semantic precision of the
folksonomy induced by KMeans clustering. However, taking a closer look at the “somehow
related” pairs, it turns out that despite their lesser degree of semantic preciseness, the
obtained relations can still be useful especially for organizational purposes of a category
hierarchy (e.g. “pot / stove”). In light of these observations, the results of the human
subject experiment can be seen as a confirmation of the validity of the measures we used
in our reference-based evaluation setting.
So in summary, the results of our semantic evaluation suggest that the generality-based

algorithms we analysed lead to folksonomies which capture a higher amount of meaningful
semantics compared to the ones obtained by clustering algorithms. This insight will now be
complemented by the results of the pragmatic evaluation.

6.2. Results of Pragmatic Evaluation

The results of pragmatic evaluation are depicted in Figure 5. As a baseline, we perform
exploratory navigation with a randomly generated folksonomy to obtain a lower bound. We
can assert that the cause why an agent using a random folksonomy as hidden metric space
finds considerable short paths is because tagging networks are highly connected and have a
low effective diameter (< 3.5) [Helic et al. 2010]. Due to high link density, the majority of
tags are connected by multiple short paths. That means that even if the agent takes a single
non-optimal or wrong link towards the destination tag, with high probability there exists
an alternative link which also leads to the destination tag. In particular for the (global)
shortest path of 2, an agent using a random folksonomy is considerably successful in finding
short path – regardless of the first tag selected, that tag is in the majority of cases linked
to the destination tag. However, as the path towards the destination becomes longer (≥ 3)
the ability of an agent using a random folksonomy as hidden metric space deteriorates.
The LastFM dataset exhibits even more extreme behavior in this respect – since tags in
this dataset are music genres, the overlap in certain resources seems to be extremely high.
However, for agents it is possible to find the shortest paths or alternative short paths with
the given folksonomies. Across all datasets, we see that agents using folksonomies produced
by the introduced algorithms find significantly shorter paths than when using a random
folksonomy.

Structurally, the hierarchies generated with K-Means are typically unbalanced. We per-
formed additional experiments to introduce a balancing factor to resolve these structural
issues to obtain more balanced clusters. However, preliminary results show that this ap-
proach improves the success rate of greedy search only marginally (the success rate could
be improved by 1% for the BibSonomy dataset), and thereby does not seem to have a
significant impact on the validity of our results.

A problem with Aff. Prop. seems to be the choice of the cluster representative. In the
current implementation, the cluster representative is chosen by taking the nearest sample to
the centroid. As the similarities in tagging datasets are often small and sparse, the similari-
ties between cluster members are equal, and thus the selection of the cluster representative
is completely arbitrary. The same issues seem to influence the construction of the hierarchy
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Fig. 5. Shortest path distribution, success rate and stretch of greedy search per observable shortest path in
the analyzed datasets. The left column depicts the distance between two tags with global knowledge (shortest
path), the middle column shows the number of times an agent finds a short path with local knowledge only
(success rate) and the right column plots the penalty incurred by using local knowledge as opposed to global
knowledge (stretch). Consistently, over all datasets the tag similarity network folksonomies (Deg/Cooc and
Clo/Cos) outperform other folksonomies, in particular for longer shortest paths. Affinity propagation and
K-Means perform better than the random folksonomy. The stretch values are consistently close to 1 – if
successful, greedy search finds the destination node, on average, in almost optimal number of steps. Slightly
higher stretch values for shortest paths longer than 4 come from a higher dispersion about the mean at
those shortest path lengths (as the shortest path distributions are strongly skewed with peaks at 2 there
are only few shortest paths longer than e.g. 4 and the dispersion becomes higher).
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Table V. Overall success rate s and stretch τ for analyzed datasets

Random Aff.Prop. K-Means Deg/Cooc Clo/Cos
s τ s τ s τ s τ s τ

BibS. 0.723 1.038 0.890 1.063 0.809 1.067 0.975 1.034 0.976 1.052
CiteU. 0.627 1.038 0.824 1.085 0.748 1.090 0.957 1.052 0.960 1.055

Delicious 0.702 1.035 0.878 1.067 0.808 1.088 0.962 1.037 0.976 1.055
Flickr 0.626 1.051 0.781 1.092 0.713 1.092 0.942 1.040 0.972 1.047

LastFM 0.847 1.020 0.965 1.028 0.940 1.032 0.995 1.015 0.995 1.029

Source: Overall success rate s and stretch τ for analyzed datasets. Existing algorithms produce
folksonomies that are more useful for navigation than a random baseline folksonomy. Folksonomies
obtained by tag similarity network methods (Deg/Cooc and Clo/Cos) perform better in supporting
navigation than folksonomies obtained by hierarchical clustering methods (Aff.Prop. and K-Means).
Stretch is in all cases close to 1 meaning that all of the observer folksonomies are applicable as a
hidden metric space.
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Fig. 6. Success rate and stretch of greedy search per observable shortest path in the BibSonomy dataset
with batch and online K-Means folksonomies. Two variants of K-Means perform similarly and are clearly
out-performed by the generality based folksonomy algorithms.

that is based on the similarity between the centroids of the previous execution steps. One
possible remedy for this could be to use an average similarity of connected data samples.
An advantage of Aff. Prop. is that on the upper hierarchical levels, the algorithm produces
broader structures than, for example, K-Means, which seems to make them more suitable
for navigation.
Summarizing, hierarchical clustering methods seem to lack additional information about

the dataset as given by the tag similarity network and centrality ranking. Note that while
[Heymann and Garcia-Molina 2006] came to a similar conclusion based on intuition, our
paper provides an empirical justification for this.
There are no significant differences in performance of DegCen/Cooc and CloCen/Cos

combinations of the centrality and similarity measures. We have performed additional exper-
iments and produced folksonomies by combining betweenness centrality and co-occurrence
as well as closeness centrality and co-occurrence. The choice of centrality or similarity mea-
sure does not significantly influence performance. Any combination of these two measures
perform similar.

6.2.1. K-Means Variations. To further investigate the reasons for a bad performance of hi-
erarchical clustering algorithms we produced folksonomies with another variation of the
K-Means algorithm. The results presented so far have been produced by the K-Means al-
gorithm operating in batch mode. We also produced K-Means folksonomies operating in
online mode (i.e. incremental additions). Figure 6 shows the simulation results with the
BibSonomy dataset. There are no significant differences in the performance of those two
algorithm variations. The simulations with other datasets produce comparable results –
across all datasets there are no significant differences in performance between the batch
and online K-Means algorithm variations.
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Fig. 7. Success rate and stretch of greedy search per observable shortest path in the BibSonomy dataset.
K-Means folksonomies have been produced with different cluster sizes. Again, all K-Means folksonomies
perform similarly and are left behind by generality based folksonomy algorithms.
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Fig. 8. Best Precision Choice (BPR) Rates for different datasets and algorithms. The figure presents the
precision of tags presented to a greedy agent at step n-1 (the last step before the agent reaches his target).
Consistent with other pragmatic evaluation metrics, the folksonomies obtained from tag similarity networks
achieve higher precision values than other approaches (k-means and Affinity Propagation).

6.2.2. Cluster Size. We also investigated the effects of cluster size (the choice of k) on
the performance of K-Means folksonomies. To that end, we produced further folksonomies
using online K-Means with k = 20 and k = 30 as the cluster size. Figure 7 shows the results
of pragmatic evaluation for our BibSonomy dataset with varying k. The plot shows that
there is little or no influence on the performance of folksonomies generated with different
k’s. Comparable results have been obtained on our other datasets, which suggests that the
choice of k - within the limits of our experiments - is not a confounding factor for evaluation.

6.2.3. Alternative Pragmatic Metrics. In addition to success rate and stretch, the usefulness of
folksonomies can be evaluated with other pragmatic evaluation metrics as well. For example:
When a user navigates to a target tag, we can calculate how hard it is for the user to identify
the target resources among the tags presented to her in the last step of navigation. The
last step of navigation represents a situation where the user is just one-click away from
her set of target resources. A useful metric to capture this problem is precision, which
we define as the number of relevant resources divided by the number of total resources
presented to the user for a given tag. We define relevant resources as all resources tagged by
all of the target tags. We can simulate this by letting a greedy agent navigate the tagging
system, and then calculate the fraction of greedy paths which go trough the best precision
tag for all algorithms and datasets at step n-1 (the last step before the agent reaches his
target). The outcome of this experiment is presented in Figure 8. Our results are consistent
with the results obtained from applying our other pragmatic evaluation metrics (stretch,
success rate): The folksonomies obtained from tag similarity networks outperform the other
approaches.
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7. CONCLUSIONS

To the best of our knowledge, this paper represents the most comprehensive attempt at
evaluating state-of-the-art folksonomy induction algorithms both empirically and via simu-
lation to date. Based on a review of existing measures for semantic folksonomy evaluation,
we have selected a subset and applied it to 20 folksonomies created from 5 social tagging
system datasets. The results of our semantic evaluation show that folksonomy induction
algorithms specifically developed for social tagging systems outperform algorithms based
on traditional hierarchical clustering mechanisms consistently across most datasets.
However, the results of the reference-based evaluation have shown to be somewhat sensitive
towards the composition of the characteristic excerpts used by existing taxonomy similarity
measures. Our particular composition of excerpts however painted a clearer picture of
the usefulness of different folksonomy induction algorithms. An assessment of the induced
folksonomies by human subject confirmed the validity of our reference-based evaluation.
In addition, we have presented a new pragmatic evaluation method that compared the 20
folksonomies from a navigation-oriented perspective. The results obtained from pragmatic
evaluation are consistent with the semantic evaluation: Again, generality-based approaches
tailored towards the characteristics of social tagging systems show a superior performance
compared to clustering algorithms. In summary, our work sheds new light on the properties
and characteristics of state-of-the-art folksonomy induction algorithms and introduced a
new pragmatic approach to folksonomy evaluation, while at the same time identifying some
important limitations and challenges of evaluating hierarchical structures in information
systems in general.
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of complex networks. Phys. Rev. E 82, 3, 036106.

Leicht, E. A., Holme, P., and Newman, M. E. J. 2006. Vertex similarity in networks. Phys. Rev. E 73, 2,
026120.

Li, R., Bao, S.,Yu, Y., Fei, B., and Su, Z. 2007. Towards effective browsing of large scale social annotations.
In Proc. of the 16th international conference on World Wide Web, WWW ’07. ACM, New York, NY,
USA, 952.

Maedche, A. 2002. Ontology Learning for the Semantic Web. Kluwer Academic Publishing, Boston.

Menczer, F. 2002. Growing and navigating the small world web by local content. Proc. Natl. Acad. Sci.
USA 99, 22, 14014–14019.

Mika, P. 2007. Ontologies are us: A unified model of social networks and semantics. Web Semantics:
Science, Services and Agents on the World Wide Web 5, 1, 5–15.

Milgram, S. 1967. The small world problem. Psychology Today 1, 60–67.

Miller, G. A. 1995. Wordnet: A lexical database for english. Communications of the ACM 38, 1, 39–41.

Plangprasopchok, A., Lerman, K., and Getoor, L. 2010a. From saplings to a tree: Integrating struc-
tured metadata via relational affinity propagation. In Proceedings of the AAAI workshop on Statistical
Relational AI. AAAI, Menlo Park, CA, USA.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.



A:22 Markus Strohmaier et al.

Plangprasopchok, A., Lerman, K., and Getoor, L. 2010b. Growing a tree in the forest: Constructing
folksonomies by integrating structured metadata. In Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 949–958.

Ponzetto, S. P. and Strube, M. 2007. Deriving a large-scale taxonomy from wikipedia. In AAAI (2007-
09-05). AAAI Press, Menlo Park, CA, USA, 1440–1445.

Ramezani, M., Sandvig, J., Schimoler, T., Gemmell, J., Mobasher, B., and Burke, R. 2009. Evaluating
the impact of attacks in collaborative tagging environments. In Computational Science and Engineering,
2009. CSE ’09. International Conference on. Vol. 4. IEEE Computer Society, Los Alamitos, CA, USA,
136 –143.

Schifanella, R., Barrat, A., Cattuto, C., Markines, B., and Menczer, F. 2010. Folks in folksonomies:
social link prediction from shared metadata. In Proc. of the third ACM international conference on
Web search and data mining, WSDM ’10. ACM, New York, NY, USA, 271–280.
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