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Abstract: An understanding of the distribution and extent of marine habitats is essential 

for the implementation of ecosystem-based management strategies. Historically this had 

been difficult in marine environments until the advancement of acoustic sensors. This 

study demonstrates the applicability of supervised learning techniques for benthic habitat 

characterization using angular backscatter response data. With the advancement of 

multibeam echo-sounder (MBES) technology, full coverage datasets of physical structure 

over vast regions of the seafloor are now achievable. Supervised learning methods 

typically applied to terrestrial remote sensing provide a cost-effective approach for habitat 

characterization in marine systems. However the comparison of the relative performance of 

different classifiers using acoustic data is limited. Characterization of acoustic backscatter 

data from MBES using four different supervised learning methods to generate benthic 

habitat maps is presented. Maximum Likelihood Classifier (MLC), Quick, Unbiased, 

Efficient Statistical Tree (QUEST), Random Forest (RF) and Support Vector Machine 

(SVM) were evaluated to classify angular backscatter response into habitat classes using 

training data acquired from underwater video observations. Results for biota classifications 

indicated that SVM and RF produced the highest accuracies, followed by QUEST and 

MLC, respectively. The most important backscatter data were from the moderate incidence 

angles between 30 and 50. This study presents initial results for understanding how 

acoustic backscatter from MBES can be optimized for the characterization of marine 

benthic biological habitats. 
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1. Introduction 

Quantitative analysis of acoustic backscatter intensity from multibeam echo-sounder (MBES) 

provides valuable information for mapping of seafloor habitats. The importance of preserving the 

effect of incidence angle from angular backscatter intensity to characterize seafloor types is well 

established [1–4]. Although these works have primarily focused on developing models for seafloor 

sediment characterization, some studies have also incorporated this information for the discrimination 

of benthic biota [5–9]. Among these, terrestrial classification methods have been applied including; 

general clustering [8], linear discriminant analysis and principal component analysis [9,10], decision 

trees [5] and factor analysis [6]. With the multitude of classification approaches available there is a 

need to compare different algorithms to gain further insights into classifier performance when using 

acoustic sources. 

Generally, angular backscatter from MBES and side scan sonar are a product of two acoustic 

scattering processes; volume and interface scatterings [11]. Interface scattering is the energy produced 

at the water-sediment surface. Volume scattering occurs when part of an acoustic signal penetrates the 

physical structure and is scattered by the heterogeneities in the sedimentary layers. Acoustic scattering 

can be separated into three main sectors; near nadir, moderate incidence angle and outer angle. For a 

flat seabed without macro-roughness at near nadir area (near vertical incidence angle), angular 

backscatter is a product of large scale roughness. By contrast, at moderate incidence angle the 

backscatter is a combination of the volume inhomogeneity and small scale interface roughness. At the 

outer incidence angle only small scale roughness is important [12]. Backscatter intensity between 

incident angles of 30 and 50 is often used to reference backscatter data to remove the angular 

dependence for creating normalized backscatter images [7]. For distinguishing between soft and hard 

habitats, the maximum separation of angular backscatter intensity has been observed at an incidence 

angle of 40 [7]. By using entire angular response curves (e.g., incidence angle between 0 and 70 at 

one degree intervals), Hamilton and Parnum [8] demonstrated high class separation at moderate 

incidence angles between 35 and 45 with less discrimination for near nadir angles. The measurements 

at near nadir have minimum contribution to the discrimination process as these measurements have 

been found to be mainly dominated by noise [2,6]. However, near nadir and outer angles are still 

required for the geo-acoustic inversion process and for the construction of a generic model from 

angular response information [1,3]. This study will assess the interaction of different angular domains 

for class differentiation. 

The characterization process can also use important features from angular curves. Extracting simple 

characteristics (e.g., mean and slope of angular backscatter intensity) from angular domains [2,13] or 

parameters by modeling the angular curve as a specific shape distribution [3] can contribute to class 

differentiation. Parnum and Gavrilov [9] found that the mean angular backscatter between 15 and 45 
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provided a better discrimination than the slope of angular backscatter (i.e., 15–45) for distinguishing 

rock, sand and rhodolith beds. 

Use of a single classification for an entire backscatter response curve may result in habitat maps of 

low spatial resolution [2,4,8]. To overcome this problem, Fonseca et al. [13] suggested the backscatter 

imagery is used to manually construct a homogenous region for each angular backscatter response 

analysis (i.e., acoustic theme). The homogenous region is constructed using human visual interpretation 

by manually grouping areas assumed to have similar backscatter texture. In a recent study, automated 

delineation technique has been proposed because the manual approach may produce inconsistent 

results due to the human errors [14]. They used an automated spatial image segmentation process for 

the backscatter imagery to improve the resolution of the angular response classification and prediction, 

based on comparing backscatter values in pixels to template backscatter curves, which are those 

occurring most often in the data set. This approach has the advantage of automatically delineating 

acoustic facies in both image and angular space. The thematic maps therefore do not suffer from the 

lack of spatial resolution from using a single classification for an entire backscatter response curve 

(i.e., typically half of a swath width). Here, the concept of automated spatial image segmentation of the 

backscatter imagery will be combined with the angular backscatter response classification to construct 

benthic habitat maps. 

In this study we compare the relative performance of four supervised learning methods using a 

MBES image and angular backscatter with towed video for ground truthing to classify seafloor biota 

and substratum habitats. Secondly, we compare the relative importance of angular backscatter at 

different incidence angles to gain an understanding of the contribution of different angular domains in 

the classification process. 

2. Methods 

2.1. Study Site 

The study area is located on the western side of Cape Duquesne in Discovery Bay, south-eastern 

Australia. Depth ranged from 12 m to 80 m (Figure 1). The shallow reef structures supported diverse 

assemblages of red algae and kelps, dominated by Ecklonia radiata, Phyllospora comosa and 

Durvillaea potatorum. Deeper regions were dominated by sponges, ascidians, bryozoans and 

gorgonian corals [15]. 

2.2. Acoustic Data 

Acoustic data was acquired on the 6 and 7 of November 2005. The acquisition system consisted of 

a hull-mounted Reson Seabat 8,101 MBES. The Seabat 8,101 operated at a frequency of 240 kHz, 

designed specifically for shallow water surveying purposes. This swath system consisted of 101 

individual beams and each with a beamwidth of 1.5 (along and across track). Horizontal positioning 

was accomplished using Starfix HP Differential GPS system (±0.30 m) integrated with a POS MV 

(Positioning and Orientating System for Marine Vessels) for heave, pitch, roll and yaw corrections  

(±0.02 accuracy). Real-time navigation, data-logging, quality control and display were made possible 

using the Starfix suite 7.1 software (Fugro Survey Pty Ltd.). Daily sound velocity profiles were 
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collected to correct for water column sound speed variations. For backscatter data, raw amplitudes 

were post processed using the Centre for Marine and Technology’s (CMST) software [10] to generate 

a backscatter image and to extract angular backscatter intensity. The CMST software applied 

geometric and radiometric corrections. Geometric corrections included vessel movement (e.g., roll, 

pitch, yaw, heave and heading) and slant range to estimate the actual depth and location of 

measurements made by each beam on every ping. Radiometric correction compensated for time 

variable gain, spreading and absorption losses, footprint size and also angular dependence corrections. 

Angular dependence correction used a ‘sliding window’ every 25 consecutive pings to obtain 

normalised backscatter using a reference angle of 30. A spatial interpolation Kriging method was then 

applied to produce a backscatter image with 5 m pixels. In addition to the backscatter image, angular 

intensity data was also extracted (i.e., number of pings were similar as in the angular dependence 

correction). Each angular backscatter curve was derived at the resolution of half a swath width, 

separately for port and starboard sides, located at the midpoint of each swath. 

Figure 1. Bathymetric map from multibeam echo sounder survey of the study area. The 

grey circles represent the ground truth data from georeferenced towed underwater  

video observations. 

 

2.3. Ground Truth Data 

A georeferenced towed underwater video system (Pro 3 VideoRay Remotely Operated Vehicle) was 

used to provide ground truth information for model building and evaluation. Underwater acoustic 

positioning of the towed video system was achieved using a Tracklink Ultra Short Base Line (USBL) 
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acoustic tracking system, with vessel errors (roll, pitch and yaw) corrected using a KVH motion sensor 

(KVH Industries, Inc.). Wide area Differential Global Positioning System (DGPS) (OmniSTAR) was 

used to fix the vessel location and apply corrections for the acoustically positioned video (±2.5 m 

accuracy). The recorded video data was then classified according to the Victorian Towed Video 

Classification scheme to identify the benthic biota and substrata classes. The classification scheme 

followed the guidelines published by the Interim Marine and Coastal Regionalisation for 

Australia [16]. Biota classes were categorized into five dominant groups; Mixed Brown algae (MB), 

Invertebrates (INV), Mixed Red algae and Invertebrates (MRI), No Visible Biota (NVB) and Mixed 

Brown algae and Invertebrates (MBI). The substratum classes were Reef, Sediment and 

Reef/Sediment. To assign ground truth classes to angular backscatter data (i.e., for classification 

process) an approximate intersection method was applied by searching for the nearest majority class 

within a 10 m radius of the angular backscatter response location. The spatial position of the 10 m 

radius for the angular response was chosen by considering all swath lengths at different depths and 

50% overlap of survey lines. Radii were drawn and visually checked to ensure they were not too sparse 

or overlapping each other. Smaller and larger radii were also tested but found to be inconsistent with 

the neighborhood classes. All available reference data (i.e., angular backscatter response with class 

name) were randomly sampled for model development (70%) and for accuracy assessment (30%). 

2.4. Supervised Learning 

Four supervised learning methods were used in this study to classify the angular backscatter 

intensity; Maximum Likelihood Classifiers (MLC), Quick Unbiased Efficient Statistical Tree 

(QUEST) decision tree, Random Forest (RF) decision tree and the Support Vector Machine (SVM). 

These supervised learning methods were used to combine ground truth data and angular backscatter 

response to predict habitat classes for the remaining angular backscatter data. We used 71 variables, 

each representing angular backscatter intensity strength at one degree incidence angle from 0 to 70.  
The MLC is a well-known parametric supervised classification approach that has been widely used 

in remote sensing applications [17] and produces promising results [18]. The MLC approach computes 

mean and covariance matrices for each class from training data and assumes that the probability 

density function is a normal Gaussian distribution. For classification, probability of each class is 

estimated from the training data and the unknown sample data is classified to the class that has the 

highest membership probability. We applied MLC using the Bayesian decision rule algorithms 

described in Theodoridis and Koutroumbas [19]. In terms of angular backscatter response 

classification, Simons and Snellen [4] used the Gaussian rule for designing a Bayesian classification 

approach, however they used averaged backscatter at a single angle while our approach utilized 

backscatter at various angles.  

A decision tree recursively partitions a dataset into smaller subdivisions on the basis of a set of tests 

defined at a branch or node in the tree [20]. We applied the QUEST decision tree which has 

advantages over common decision tree methods such as Classification and Regression Trees (CART) 

by reducing the potential for over fitting [21]. The QUEST method achieves this by not employing an 

exhaustive variable search routine and is unbiased in choosing variables which afford more splits [22]. 

We used the QUEST executable program obtained from http://www.stat.wisc.edu/~loh/quest.html. We 



Remote Sens. 2012, 4 3432 

 

 

also tested a multiple decision tree approach in Random Forests (RF). The RF uses a combination of 

tree predictors such that each tree depends on the values of a random vector sampled independently 

and with the same distribution for all trees in the forest [23]. The RF generates multiple trees at each 

node with classes being predicted by a majority vote. Standard decision trees split each node using the 

best split among all variables but RF split each node using the best among a subset of predictors 

randomly chosen at that node. We applied RF using a function in Matlab® [24] which can be 

downloaded at http://code.google.com/p/randomforest-matlab/. 

Support Vector Machine (SVM) is a non-parametric technique developed from statistical learning 

theory [25]. In SVM, a line is determined and drawn between two classes using the available training 

data. In a high dimensional space, this line is called a hyper plane and since many lines may occur, 

SVM searches for the optimal hyper plane. A radial basis kernel was applied [26] and classification 

run using the LIBSVM tool [27] available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

2.5. Spatial Segmentation and Class Assignment 

For generation of habitat maps utilizing previous classification results from angular response curves, a 

spatial segmentation was applied to backscatter image. This technique segments the backscatter image 

into clusters of similar backscatter values. In terms of benthic habitat classification and mapping, the 

concept of spatial segmentation of backscatter imagery has been previously applied to assist with object 

image analysis and classifications [28]. For this purpose we employed a mean shift image segmentation 

technique available from the Edge Detection and Image Segmentation System (EDISON) tool [29]. The 

EDISON tool uses kernel density estimation to group pixels in feature space. The number of features 

included lattice coordinates (X and Y) and color layers (e.g., greyscale or color image). Since EDISON is 

optimized and originally developed for color image applications, we first converted the backscatter 

image into a pseudo color image across the RGB (Red, Green and Blue) spectrum in Matlab. Then, 

spatial segmentation was accomplished using default spatial and color resolutions (i.e., 7 and 6.5 

respectively), with a minimum size region of 100 pixels. All the segments produced from this process 

were then spatially compared with angular backscatter response classification results (geographical 

location and predicted class) for class assignment. Because the size of each segment was different and 

had an irregular shape according to the original backscatter image texture, the number of angular 

responses in each segment was not the same. Class assignment for all segments was completed using k-

nearest neighbor method (k = 7). In this process, a centroid was computed for each segment and a search 

was made around each centroid for the nearest angular backscatter class location. Segment maps with 

class labels were then converted to raster for further accuracy assessment and map comparison analysis. 

Application of spatial image segmentation and k-nearest neighbor for producing maps with angular 

response data have been described in Che-Hasan et al. [5]. 

2.6. Accuracy Assessment and Habitat Map Comparison 

Error matrices were used to assess map accuracy utilizing 30% of ground truth observations that 

were not used in the classification process. For each map overall accuracy and kappa coefficient 

were calculated. The user and producer accuracy was also calculated to investigate individual class 

accuracy [30]. Kappa coefficient is the agreement between classification and reference data and to 
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correct for chance agreement between classes [31]. User’s accuracy indicates the probability that the 

actual map pixel represents the category on the ground, while producer’s accuracy is the probability of 

a reference pixel being correctly classified [32]. A Z statistic was applied to determine the differences 

in classification accuracy for the four methods [30]. To critically evaluate the spatial distribution of 

predicted habitat using the different techniques, we performed map comparison analysis using the Map 

Comparison Kit [33]. Similarity between any two categorical maps was assessed in terms of Kappa 

Location (KLoc) and Kappa Histogram (KHisto) statistics. KLoc represents the similarity of spatial 

allocation of categories between two maps, while KHisto is a measure for the quantitative similarity 

(i.e., quantity in terms of fraction of all cells) [33]. 

2.7. Variable Importance Measure 

At each bootstrap iteration of the RF process the resultant tree is used to predict those data not 

included in the training process (‘out of bag’ or OOB observations) and calculate a misclassification 

rate [23,34]. An advantage of using RF ensemble methods over a single classification tree approach is 

that OOB samples for each tree can then be used to derive measures of variable importance. The 

importance of a given feature is evaluated based on the difference between the misclassification rate of 

the OOB data and the misclassification rate if values of a given variable are randomly permuted for the 

OOB observations and passed down the tree to create new predictions. RF can produce not only 

overall, but also per class variable importance. For comparison purposes, variable importance values 

were scaled from 0 to 1 as classes exhibited differing ranges. 

3. Results 

3.1. Habitat Map Accuracy 

The overall accuracy varied from 69.9% to 84.8% for the biota classifications (Table 1). The 

highest accuracy was achieved by SVM, presented in Figure 2. This was then followed by RF, QUEST 

and MLC. Statistical comparison of error matrices using the four techniques revealed that QUEST, RF 

and SVM were significantly different from the MLC approach (Z > 1.96; Table 2). The QUEST, RF 

and SVM produced similar results, except for the comparison of QUEST and SVM which was 

significantly different (Z = 2.2).  

Table 1. Accuracy comparison from four different classifiers. 

Classifiers 
Biota Substratum 

Overall Accuracy 

(%) 
Kappa Coefficient 

Overall Accuracy 

(%) 
Kappa Coefficient 

Maximum Likelihood Classifier 69.9 0.51 74.5 0.59 

QUEST decision tree 79.6 0.66 80.2 0.67 

Random Forest decision tree 83.8 0.73 83.0 0.72 

Support Vector Machine 84.8 0.75 82.6 0.71 
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Table 2. Z values from pairwise comparison of error matrices between different classifiers. 

MLC = Maximum Likelihood Classifier, QUEST = QUEST decision tree, RF = Random 

Forest decision tree, SVM = Support Vector Machine. 

Comparison 
Z Statistic 

Biota Substratum 

MLC vs. QUEST 3.6* 2.0* 

MLC vs. RF 5.6* 3.1* 

MLC vs. SVM 6.0* 2.8* 

QUEST vs. RF 1.8 1.1 

QUEST vs. SVM 2.2* 0.8 

RF vs. SVM 0.4 0.3 
 

*Significant at the 95% confidence interval (critical value Z = 1.96). 

Figure 2. Habitat maps of biota and substratum classifications from the best model (the 

Support Vector Machine for biota and the Random Forest decision tree for substratum). 

 

Per class accuracy measurement (average of user’s and producer’s accuracy) illustrated that most of 

the classes were able to be distinguished, except for the MLC which was not able to differentiate the 

MB class (0%) (Figure 3). Generally, MB, INV and NVB showed >70% accuracy while MRI and MBI 

showed lowest class accuracy (<60%).  

Characterizing substratum types using the same classifiers exhibited similar results as the biota 

classifications (Table 1). The RF (83.0%; Figure 2) and SVM (82.6%) performed best, followed by 

QUEST (80.2%) and MLC (74.5%). A pairwise comparison from all non-parametric classifiers 
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(QUEST, RF and SVM) demonstrated that their results were not significantly different (Z < 1.96) 

except with MLC (Table 2). Individual accuracy from all three substratum classes showed values 

>70% from all classifiers with MLC achieving the highest accuracy for reef class (86.1%) (Figure 4). 

Figure 3. Per class accuracy (mean value between user and producer’s accuracy) for five 

biota classes and four different classifiers. *Note that the average accuracy of MB = 0% for 

Maximum Likelihood Classifier. MB = Mixed Brown algae, INV = Invertebrates,  

MRI = Mixed Red algae and Invertebrates, NVB = No Visible Biota, MBI = Mixed  

Brown Invertebrates. 

 

Figure 4. Per class accuracy (mean value between user and producer’s accuracy) for three 

substratum classes and four different classifiers. 
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3.2. Habitat Map Comparison 

In general, all biota habitat maps showed considerable agreement in terms of the spatial location 

(KLoc from 0.70 to 0.90) and quantity (KHisto from 0.75 to 0.98) (Table 3). However, no single 

classifier combination gained both the highest KLoc and KHisto. For KLoc, the comparison between 

RF and SVM showed the highest similarity (0.90). For KHisto, the highest similarity was achieved 

between QUEST and SVM (0.98). All the comparisons with the MLC map yielded the lowest map 

similarity values. 

Table 3. Results from habitat map comparisons. KLoc = measure for the similarity of 

spatial allocation, KHisto = measure for the quantitative similarity. MLC = Maximum 

Likelihood Classifier, QUEST = QUEST decision tree, RF = Random Forest decision tree, 

SVM = Support Vector Machine. 

Map Comparison 
Biota Substratum 

KLoc KHisto KLoc KHisto 

MLC vs. QUEST 0.76 0.75 0.69 0.95 

MLC vs. RF 0.70 0.81 0.70 0.95 

MLC vs. SVM 0.70 0.76 0.70 0.88 

QUEST vs. RF 0.88 0.91 0.87 0.97 

QUEST vs. SVM 0.79 0.98 0.87 0.83 

RF vs. SVM 0.90 0.90 0.94 0.84 

For substratum habitat map comparisons all map comparisons produced good KHisto values 

ranging from 0.83 to 0.97. Further, the QUEST, RF and MLC represent the highest map similarity 

with KHisto of 0.97 (QUEST and RF) and 0.95 (MLC and QUEST, MLC and RF). The RF and SVM 

revealed the highest similarity of spatial location (KLoc = 0.94). 

3.3. Variable Importance 

The variables at the moderate incidence angle (i.e., 30–50) were generally found to be the most 

important (Figures 5 and 6). Some variables at the outer angle were also important especially for biota 

(Figure 5(a)), but slightly lower for substratum (Figure 6(a)). However, the variable importance for the 

individual habitat classes showed a slightly different trend when compared to the overall variable 

importance (Figure 5(b–f)). Variables at the outer angle were identified as important for MB, MBI and 

INV. The moderate incidence angle was the most important variable for NVB. Further, there was not a 

clear pattern of which angular domain was important for MRI. Although variable importance for MRI 

shows highest value at incidence angle around 60, it was only from a single variable. A similar 

pattern was observed for substratum classes (Figure 6(b–d)). Most of the variables at the moderate 

incidence angle were important for Sediment. By contrast, only small numbers of variables at the outer 

and near nadir angles were important for Reef/Sediment. 
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Figure 5. Variable importance (overall and individual class) from Random Forest model 

scaled from 0 to 1 for biota classification. The horizontal axis represents incidence angle at 

one degree interval while the vertical axis represents the value of the variable importance. 

(a) Overall variable importance for biota classification, (b) variable importance for Mixed 

Brown algae, (c) variable importance for Invertebrates, (d) variable importance for Mixed 

Red algae and Invertebrates, (e) variable importance for No Visible Biota, and (f) variable 

importance for Mixed Brown algae and Invertebrates. 

 

Figure 6. Variable importance (overall and individual class) from Random Forest model 

scaled from 0 to 1 for substratum classification. The horizontal axis represents incidence 

angle at one degree interval while the vertical axis represents the value of the variable 

importance. (a) Overall variable importance for substratum classification, (b) variable 

importance for Reef, (c) variable importance for Sediment, and (d) variable importance  

for Reef/Sediment. 
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4. Discussion 

In this study we have applied four supervised learning methods to classify the angular response 

from MBES data to distinguish biotic and substratum habitats. Generally, all classifiers were capable 

of using angular backscatter data for predicting different habitat types, with SVM (biota) and RF 

(substratum) achieving the highest accuracy. The application of automated classifiers using angular 

response data are becoming more common [4,8]. The results of our study permit a direct comparison 

of classifier performance, as the same training and test data were applied for all four supervised 

learning methods. In addition, our approach identified the most influential angular domain that 

contributed to the differentiation of habitat classes, which is often difficult to quantify from acoustic 

scattering properties.  

Classification comparisons suggested that the three non-parametric classifiers (SVM, RF and 

QUEST) mostly performed better compared to the parametric method (MLC) for classifying biotic 

habitat classes. Although MLC is a standard and widely used approach for classification of satellite 

imagery, the disadvantage of a parametric method is that a Gaussian frequency distribution is assumed 

in feature space for each class. Normal distribution (i.e., Gaussian) has been applied with angular 

backscatter response data using a Bayesian classification approach at a single angle [4]. This method 

was found to be useful for construction of generic acoustic models at near nadir angle [3]. However, 

the distribution of backscatter can differ between angular regimes and seafloor types; as such it may 

not be appropriate to assume the same distribution for all incidence angles [35]. Among the four 

classifiers, MLC uses the simplest method of discrimination using the mean and standard deviation 

between each class. This study demonstrated that these values may not be appropriate for angular 

response backscatter classification; especially for habitats that share similar characteristics with small 

class separation (i.e., MB and MBI). By contrast, decision tree methods and SVM implement more 

advanced rules to separate between classes. For example, a decision tree approach is capable of 

constructing hundreds of decision rules. Similarly, a SVM approach generates complex 

multidimensional lines dependent on the kernel function employed. Nevertheless, in terms of overall 

kappa analysis, MLC accuracy performs similar to SVM with a moderate classification agreement (i.e., 

Kappa coefficient between 0.40 and 0.80) [36]. 

RF, QUEST and MLC classification of substratum was slightly better or more consistent than the 

biota classifications. The SVM approach is sensitive to parameter values especially choice of kernels, 

regularization parameter and kernel width [27]. In reviews of SVM application in terrestrial remote 

sensing, studies have identified this issue as one of its limitations [37]. Accordingly, SVM needs 

correct parameter calibration to get consistent results with the two classification schemes (i.e., biota 

and substratum classifications), potentially requiring different values for these parameters. However, 

there is no heuristic method to obtain correct parameters necessitating a trial-and-error approach [37]. 

The common approach of parameter calibration or selection in SVM is to run multiple SVM 

classifications using a range of values for each parameter [27]. The best value is determined by the 

highest accuracy of the SVM internal cross validation process within the training data. This approach 

is not practical for application in this study, because our thematic map accuracy assessment was based 

on the spatial location of angular backscatter response (30% training data), and not using the original 

variables (i.e., the angular backscatter response data) [36].  
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The comparison between two categorical maps is commonly applied in terrestrial applications, and 

is becoming increasingly important for applications in benthic habitat mapping [38–40]. In this study, 

map comparison did not identify the most accurate classifier; rather it measured the relative agreement 

between two thematic maps. Therefore, the similarity analysis produced in this study is a 

representation of precision, not a level of accuracy. The results of this analysis complement the 

information provided by the accuracy assessment and Z-statistic test, which was based on an error 

matrix. Values of KLoc and KHisto showed moderate agreement between the classification map sets 

presented. The relatively moderate agreement observed could be explained as a function of the small 

number of classes involved. The relatively large areas of some of the classes may also result in over 

estimation of map similarity measures. For example, INV and NVB (biota map) and Reef and 

Sediment (substratum map) dominated approximately 80% of the study site. Measures of similarity 

between map comparisons may also be a function of the same segmentation and class assignment 

process applied for each classifier used to increase the spatial resolution of classification outputs. 

For classifications of biota and substratum, the variables at the moderate incidence angle were the 

most important. This is in agreement with previous studies [7,8,10]. Hamilton and Parnum [8] showed 

that angular backscatter response from 35 to 45 exhibited large class separation. They also suggested 

that the near nadir angles (±15 to 20) may be less useful in the classification process. A similar 

pattern was also observed for angular response curves from soft-smooth and hard-rough habitats [7]. 

Nevertheless, the near nadir and outer angles may provide useful information for class separation and 

are used for Angular Range Analysis (ARA) to predict sediment types [1]. This was evident from 

different patterns in the variable importance measure from each habitat class. The moderate incidence 

angles were useful in distinguishing NVB from the remaining biotic habitats. However, other angles 

were necessary to separate INV, MRI, MB and MBI classes. The importance of the outer angles 

identified in this study may be confounded by local variation in bathymetry (slope, bedforms) or the 

MBES data collection approach (shore parallel) which may influence the angular response at the outer 

angles by the localized gradient in the study area. This could potentially explain the more complex 

angular response curves observed in classes with expected high topographic complexity. Future work 

may evaluate response curves for classes found on topographically variable terrain (i.e., macro algae 

on flat pavement vs. high profile rugose reef). Furthermore, peaks in incidence angles greater than 60 
may also be caused by the changeover of different backscatter detection methods during data 

acquisition (amplitude detection at inner beams towards phase detection on the outer beams) [41]. 

The application of classifiers at a single angle is useful for discriminating sediment types [4]. 

However there may be advantages in taking into account multiple angles within a single classification 

process. The inclusion of more variables representing incident angles could potentially result in a 

better model fit, and greater separability of classes by using the entire backscatter angular response.  

This study extends the approach presented by Rzhanov et al. [14] combining the angular response 

analysis with information from the segmented backscatter image for characterizing biota habitats. An 

angular based approach takes advantage of the variation in acoustic response between habitat variables 

defined across the entire angular range. Concurrently, an image-based approach takes advantage of the 

spatial resolution afforded by using image based segmentation. There are some considerations that 

need to be taken into account when combining angular and image datasets. For example, the angular 

response derived from port or starboard may not necessarily represent homogenous regions in 
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backscatter image intensity, thus containing multiple segments. In the case of angular response derived 

from a homogenous segment, only a partial rather than a full response curve is used in the 

classification process for class assignment. In these situations it is likely that there will be more 

difficulty in the classification process because the use of information from a partial response curve 

may reduce class separability. Whilst an image segmentation approach was employed for class 

assignment, the methodology does not take advantage of the spatial variability in the backscatter image 

during the actual classification process. Rather than using a classification approach to combine angular 

response class assignment outputs to an image, an alternative approach may be to assign angular 

response parameterization values to image segments that could be combined with additional data 

sources during the classification process. For example, the differentiation of substratum and biota 

classes may be improved by incorporating bathymetry and derivatives [42,43], backscatter textural 

analysis [44] and other environmental variables such as exposure [45]. 

5. Conclusions  

In this study four supervised learning approaches were evaluated for acoustic characterization of 

seafloor habitats using multibeam echo-sounder backscatter data. To construct a full coverage habitat 

map, classified angular response data were combined using a backscatter image segmentation process. 

It was possible to achieve overall classification accuracies between 69.9% to 84.8% (kappa values of 

0.51–0.75) for biota and 74.5% to 83% (kappa values of 0.59–0.71) for substratum maps. SVM 

performed best for biota (84.8%, kappa = 0.75) and RF produced best results for substratum (83%, 

kappa = 0.72) with no significant difference between classifier performance. QUEST achieved lower 

accuracies than RF for biota and substrata (79.6% and 80.2% respectively) and significantly lower 

accuracies than SVM for biota (79.6%). MLC achieved better overall accuracies for substratum than 

biota (74.5% and 69.9% respectively), however, results were significantly lower than the other 

classifiers tested. Maps produced from all classifiers were showing moderate to good similarities in 

terms of pixel quantity (KHisto from 0.75 to 0.98) and location (KLoc from 0.69 to 0.94). The small 

number of classes and relatively large areas may contribute to the high map similarity measures 

observed. This study also quantifies the relative importance of angular domains, with moderate 

incidence angles (30–50) contributing most to the class differentiation process. The near nadir angles 

(0–30) and outer angles (60–70) also showed small contributions to class discrimination however 

the influence of local depth gradient and slope warrants further investigation. The approach presented 

has the advantage of class discrimination using the full angular backscatter response in conjunction 

with the spatial resolution achieved by integrating an image segmentation method. 
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