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Evaluation of Fourier Integrals Using ß-Splines

By M. Lax and G. P. Agrawal

Abstract. Finite Fourier integrals of functions possessing jumps in value, in the first or in the
second derivative, are shown to be evaluated more efficiently, and more accurately, using a
continuous Fourier transform (CFT) method than the discrete transform method used by the
fast Fourier transform (FFT) algorithm. A ß-spline fit is made to the input function, and the
Fourier transform of the set of B-splines is performed analytically for a possibly nonuniform
mesh. Several applications of the CFT method are made to compare its performance with the
FFT method. The use of a 256-point FFT yields errors of order 10~2, whereas the same
information used by the CFT algorithm yields errors of order 10~7—the machine accuracy
available in single precision. Comparable accuracy is obtainable from the FFT over the
limited original domain if more than 20,000 points are used.

I. Introduction. An accurate fast evaluation of the Fourier integral is of consider-
able interest because of the application of the Fourier transform techniques to a
wide variety of problems. In the physics literature, applications have been made to
the solution of nonlinear partial differential equations, and it is customary to
evaluate the Fourier integral using some version of the fast Fourier transform (FFT)
algorithm [10]—[12], [15], [22], [25]. The FFT procedure is applied with "guard
bands" (extra points) even when sharp edges, such as mirror edges, produce
discontinuities in the function. The purpose of this paper is to demonstrate that if
the function or one of its derivatives is discontinuous, reasonable accuracy can be
obtained using the FFT only if an extraordinary number of sample points are used.
This point will be demonstrated by considering several examples and reporting (a)
exact results, (b) FFT results and (c) CFT results, both as to accuracy and as to CPU
time. The CFT (continuous Fourier transform) algorithm is an algorithm we have
applied to the calculation of electromagnetic fields in a three-dimensional loaded
(nonlinear) laser resonator with sharp mirror edges [14]. This algorithm is based on
making a ¿»-spline fit to the original function with the help of PORT, the Bell
Laboratories Mathematical Subroutine Library. An analytic integration of the
Fourier transform of the ß-splines for arbitrary nonuniform spacing permits the
construction of an algorithm that takes advantage of uniform interior spacing
(permitting the internal use of FFT on the spline coefficients) yet handles end
regions that require nonuniformly spaced mesh points correctly.

II. Historical Perspective. Although the primary aim of this paper is to indicate
and overcome the limitations of the FFT, we shall comment briefly here on other
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536 M. LAX AND G. P. AGRA WAL

algorithms that may be used to accomplish a similar purpose. We have not made
numerical comparisons because in most cases the algorithms are not specifically
suited to the solution of partial differential equations. The latter problem supplies its
input in the form of an array of values at regularly spaced points, and values at other
points are, in general, unavailable. Moreover, the input is not analytic so that
derivatives are not directly available.

Elementary approaches, such as a trapezoidal [1] FFT or an algorithm such as
Filon's [9] based on a parabolic fit, suffer from the presence of kinks (jumps in
slope) in the fitting function. Such kinks, by Tauberian arguments, generate incor-
rect high frequency tails in the Fourier transform. A higher order procedure, such as
the Chebyshev fitting procedure of Piessens and Branders [ 18], has the advantage of
being adaptive and automatic, although it does not completely avoid the kink
problem. The Piessens-Branders automatic Chebyshev algorithm, moreover, is ap-
propriate when the function fix), whose Fourier integral is desired, is available
analytically, or at least numerically at points chosen by the program rather than
specified in advance. Similar restrictions also apply to the Piessens-Haegemans
Gaussian quadrature procedure [19].

Numerical evaluation of Fourier integrals with the help of cubic splines was
proposed by Einarsson [7], [8] and by Silliman [23]. These methods can be combined
with Richardson's extrapolation, and the FFT may be used to sum the resulting
series. This procedure, in common with ours, avoids kinks. The only disadvantage of
the Einarsson-Silliman procedure is that it requires a knowledge of the second
derivative at the end points. Although these derivatives can be computed from a
table of values/(Xy), we found it more convenient to use the PORT library to make
a spline fit to the sample values/(x,):

1. The PORT spline program uses the first and last interior points to provide
information equivalent to derivative information at the boundaries.

2. The order k of the spline fit is not restricted to k = 4.
3. Discontinuities at the end points are handled easily using multiple mesh points

at the ends.
The package of spline programs due to de Boor [6] could equally well have been

used since the PORT subroutines are based on de Boor's original algorithms [5].
Most directly related to our work is Marti's algorithm [17] for recursively

computing the Fourier coefficients of ¿»-splines with nonequidistant knots. Our
paper differs from his in having supplied (1) an analytic formula for the ¿»-spline
Fourier coefficients, (2) an algorithm for combining these coefficients to obtain a
Fourier integral, (3) a simplification of the Fourier coefficients for the uniformly
spaced case that permits internal use of the FFT and (4) explicit determination of
end corrections to supplement (3) above since the end mesh points will be multiple
points. Marti's procedure does not have end corrections because he does not take
advantage of uniformity in the interior, but treats all cases by a general formula.
This is logically simpler, but produces a slower code that takes no advantage of the
FFT. We have not proposed a specific algorithm for evaluating our analytic
expression for the general nonequidistant case, and Marti's algorithm is probably
excellent for this case.
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EVALUATION OF FOURIER INTEGRALS USING ¿»-SPLINES 537

Marsden and Taylor [16] derive a quadrature formula for a Fourier integral whose
form is similar to the Euler-Maclaurin relation between sums and integrals with end
corrections involving derivatives of fix) at the end points. Splines are involved only
indirectly in that the coefficients are chosen to make the error vanish if fix) is a
spline of degree k. In principle, their procedure is equivalent to an integration over
the ¿»-spline fit to the integral, and their results should agree with ours. In practice,
however, the conditions they impose to determine the integral do not uniquely
specify the interpolating spline for k > 3. Moreover, their algorithm involves the
evaluation of derivatives at the end points. For our purposes, the derivatives must be
replaced by appropriate finite difference formulas, and the algorithm for doing so is
not specified by them. Thus their algorithm and ours should be exact for polynomi-
als of degree k, but the errors will be different. The Marsden-Taylor work is quite
interesting and deserves further analysis. Since we were made aware of this work by
one of the referees and an explicit code is not available, we shall not attempt at this
time to make a numerical comparison between their algorithm and ours.

III. ¿»-Spline Fit. Consider the Fourier integral over the finite domain [a, b]

(1) g(fi) = fhf(x)e^dx,

where the input function fix) may have a discontinuity in itself or in one of its
derivatives at certain points in its domain. Consider a nonuniform mesh X/,j = 1 to
N; a = x, < ■ ■ • <i xN — & Two neighboring mesh points may coincide. We assume
that/(x) has an expansion in terms of basis splines (¿»-splines) [5], [6], [20], [21]

(2) fix) =   2 CjBjAx),
7=1

where the A: th order ¿J-spline Bj k(x) is a polynomial of degree ik — 1) in the
nonempty interval (Xj, xJ+k) and can be obtained from the recurrence relation [5],
[6]

(3) BM(x) =      X~XlxBM_xix) +    Xj + k~X   ¿W-|(*),

where x¡< x < xJ+k and B; x(x) = 1 if x. < x «£ xj+] and zero otherwise. It follows
from (3) that 0 < ¿?y ¿(x) < 1; Bj kix) is zero outside the interval [x,, xj+k] and
possesses only one maximum inside it.

To represent a function/(x) with a discontinuity in its value (or its sih derivative)
at x,, we must choose the multiplicity m¡ of the mesh point x, to be k (or k — s). The
expansion coefficients Oj in (2) are obtained by a least-squares fitting procedure.

IV. Fourier Integral. On substituting (2) in ( 1 ) we obtain

(4) g(u)=   2 ajfJ+>xBJ¡k(x)dx,
j= i     xj

where we have used the property that Bj k(x) = 0 outside the interval [xy, xJ+k]. The
integral in (4) is evaluated using the identity [21]

[xjXj+l • ■ • xJ+k]F(x) = {k_ 1);  *       _ x) f*J+kF^ix)BMix) dx,
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538 M. LAX AND G. P. AGRAWAL

which can be obtained using Peano's theorem (for example, see Section 3.7 of [4]).
Here [XjXJ+i ■ ■ ■ xJ+k]Fix) and F(k\x) are, respectively, the A:th divided difference
and the A:th derivative of the function Fix). By choosing Fix) = exp(iux) and using
the result in (4), we obtain

N-k
(5) giß) =   2 aje^^jk(ß),

7=1

where

(6a) «;..00 - ik " !!' ("';k ',Jy) [**» ■ "*MV"
iip) exp(ipxj)

(6b) =Í7Z#W0V.-VJ>
i'N

and h,+i = (xJ+x — x¡). In the following and in (6b) it is implicitly assumed that all
divided differences refer to the exponential function ei>lx.

The apparent similarity of (5) with the discrete Fourier transform is striking. The
expansion coefficient ay, obtained through a ¿»-spline fit, is multiplied by a u- and
^-dependent correction factor <Pj k(n), and the product is to be used in place of the
function value f(xj). In effect, the FFT sum acquires a separate "window factor" at
each mesh point.

Equation (5) is derived for a mesh of arbitrary spacing. However, the case of a
uniform mesh is of practical importance: The window factors except for end
corrections become uniform; the sum, in (5) acquires the form of a discrete Fourier
transform, and FFT algorithms can be used to perform this sum efficiently. To take
advantage of the simplifications of a uniform mesh, it is convenient to break up the
Fourier integral, (1), into regions connecting points of discontinuity. In this way,
code corrections associated with nonuniform spacing of knots need only be applied
as end corrections. The end points are chosen to have multiplicity k. A uniform
mesh of N points in the interval [a, b] with end-point multiplicity k is given by

x, — x2 — ■ ■ ■ — xk — a,   xN_k+x - — xN_x — xN — b,

(xj+x—Xj)=h,       j = k, k + l,...,N — k.

The evaluation of the correction factor $. k(¡i) is readily carried out using (6) and we
find

(8)
/ eitLh - l\k

*M(íi) = $(M) = A|-r¡r-     ,      j = kto(N+l-2k).

At the left-hand end point í>y A forj = 1 to ik — 1) and at the right-hand end point
<ï>': k for j = N — 2(k — 1 ) to (N — k) are to be evaluated separately because in
evaluating the divided difference in (6) one or more points coincide. The procedure
is however straightforward, and we give the details in the Appendix. It should be
remarked that evaluation of these end corrections requires a number of steps
proportional to the spline order k independent of the total number of mesh points TV
(for the case of a uniform mesh) for each ju.

We have developed a continuous Fourier transform (CFT) algorithm based on (5)
with proper end corrections. The FFT is used to sum the series in (5). For each ju the
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EVALUATION OF FOURIER INTEGRALS USING ¿?-SPLINES 539

correction factor $, ¿(u) is applied to obtain the Fourier integral g(/t). In the next
section we compare the performance of the CFT and the FFT for three test
problems.

V. Applications. As we have mentioned in the introduction, the FFT does not yield
accurate results, unless extraordinarily large values of N are used, for an input
function with discontinuous behavior or with rapid oscillations. In this section we
illustrate the performance of the CFT and compare it with the FFT for three test
functions. All calculations are done on a DEC-10 machine in single precision.

Case 1—Square Pulse. The input function/(x) is assumed to be

1     if|x|<l,
0    otherwise.

From (1) the Fourier transform of fix) is readily obtained,

(10) g(ft) = (2sinu)/u.
In using the FFT,/(x) is supplied on the interval [ — 8, 8] to provide the necessary
"guard band", and the resulting g(¡x) is compared with exact values given by (10).
The calculations are done with NF = 64, 256, and 1024 FFT points. In general the

(9) /(*) =

Table 1
Comparison of CFT and FFT for a square pulse

FFT

NF g(n)

CFT

N=\0

EXACT

r/8 64

256

1024

1.9474251

1.9488929

1.9489846

1.9489906 1.9489907

7t/8 64

256

1024

0.2673821

0.2777420

0.2783844

0.2784273 0.2784273

17*78 64

256

1024

0.0086711

0.1129784

0.1145425

0.1146465 0.1146465

15t/4 64

256

1024

-0.0174109

-0.1145691

-0.1197030

-0.1200422 -0.1200422
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540 M. LAX AND G. P. AGRA WAL

accuracy is poor at high frequencies. While using CFT, a uniform mesh with
multiplicity k — 3 (spline-order) at the end points (-1 and 1) (which are also the
points of discontinuity) is chosen. Since/(x) is constant inside [- 1,1], only 10 mesh
points (including multiplicities) are chosen. In Table 1 we have compared the CFT
and FFT results at some frequencies. It is evident from Table 1 that the CFT with 10
points gives considerably more accurate results than the FFT method with 1024
points.

Case 2—Exponential Function e~p^ . This case is interesting because, unlike Case
1, the input function/(x) is continuous at all points with a kink at the origin, i.e., its
first derivative has a jump at x = 0. Substituting fix) = exp[— p \x\] in (1) and
taking a = -b, we obtain

(11) giß)
2p 2e~ph

—-——(ftsin u¿)
P  +M

p cos lib).
p' + f

For the calculations we chose p = 1, b — 16. In using the FFT, /(x) is supplied
inside the interval [ —16, 16] with NF = 256. For the CFT the integral was performed
only over the range [0, 16]. A mesh point with multiplicity k must be assigned at the
point of discontinuity x = 0. Since/(x) = exp[— p | x |] is an even function of x, the
value of the Fourier integral gift) is obtained by doubling the numerical value. By
choosing the number of sample points Ns = 128, fix) in the CFT is supplied at the
same points as in the FFT. This ensures that the information about/(x) is given to
the same extent to both programs. The CFT calculations were done with N = 107
mesh points and k = 4 ("cubic splines"). In Table 2 we compare the CFT and FFT
outputs with the exact values of g(u) obtained from (11). It is evident that the CFT
is superior to the FFT. At ¡i = 2m the FFT yields only one significant digit, while the
CFT is accurate up to six significant digits. It is to be noted that at ju. = 4-n the
relative error in the FFT value is 24%, and the situation gets worse at higher values
of fl.

Table 2
Comparison of CFT and FFT for an exponential function e~w

FFT

AV=256       AV=1024

CFT

A7-107

EXACT

t/2

T

2t

4x

7t

2.0026033

0.5794093

0.1866230

0.0520947

0.0155441

0.0081098

2.0001625

0.5769636

0.1841621

0.0495721

0.0127495

0.0042937

1.9999999

0.5768016

0.1839995

0.0494090

0.0125852

0.0041270

1.9999998

0.5768006

0.1839993

0.0494090

0.0125854

0.0041270
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In order to see how the FFT performance improves as NF increases, we made a
4-fold increase in the number of points, NF = 1024, and the corresponding values of
gi[i) are also shown in Table 2. We find that only one significant digit is gained by
increasing NF from 256 to 1024. The convergence of the FFT values to the exact
values appears to be slow.

Case 3—Truncated Cornu Spiral. This example is chosen to illustrate the useful-
ness of our CFT algorithm in unstable resonator problems of optics [14]. The finite
size of the output mirror produces sharp discontinuities in the field distribution at
the position of the mirror edges whenever the optical field is reflected at the output
mirror. If we assume that initially the field distribution is uniform, on first reflection
the field distribution/(x) is zero outside the mirror dimensions. If we consider only
one transverse dimension,/(x) is given by (9), and we have compared the perfor-
mance of the CFT and the FFT in Case 1. On second reflection at the output mirror
the optical field/(x) is a truncated Cornu spiral. The following analytic expressions
for the Fourier transform pair /(x) and gin) are obtained [3] after solving the
paraxial wave equation:

(12) /(*)=f 1
2p + F 1

2/7

for | x | < 1 and zero otherwise, and

¿00
(13)

L   2sin_u/J_ | _
2/u 2FÍp¡x)cos¡i + e'^F I -tip2

-e~"*F l+"/>2

where F(r) = C,(i) + iSx(t) is the complex Fresnel integral [2]

(14) «'Wu*"du.

In the numerical results reported below the parameter/? was chosen to be 0.158114.

Table 3
Comparison of CFT and FFT for a truncated Cornu spiral

x/2

2*

6t

FFT

Reg((i)   lm?W

1.8735905

1.2719076

0.1449800

-0.1697461

-0.0344188

-0.1282492

-0.0392334

0.1056147

-0.0233831

-0.0501655

CFT

Rtg(ß) Img(ii)

1.8736377

1.2719424

0.1449329

-0.1696989

-0.0343715

-0.1283733

-0.0392336

0.1057388

-0.0235073

0.0500408

EXACT

Reg(n) Img(n)

1.8736373

1.2719421

0.1449329

-0.1696986

-0.0343712

-0.1283736

-0.0392337

0.1057390

-0.0235074

0.0500407
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In Table 3 we compare gin) obtained by the CFT and FFT methods with the
exact value from (13). To use the FFT the input function/(x) was provided over an
interval [ — 8,8] with NF = 1024. For the CFT algorithm,/(x) is supplied within the
interval [—1,1], and Ns = NF/% = 128 sample points describe the input function
fix) with the same accuracy. Calculations were done using k = 4 and N = 107. It is
evident from Table 3 that, while the CFT method yields six significant digits, the
FFT is accurate only up to four significant digits near fi = 0 and the accuracy gets
worse at high u; for example, at ju = 67r only two significant digits are obtained.

VI. Discussion of Accuracy. It is clear from Tables 1-3 that the accuracy of the
CFT program is uniformly good for all values of u. However, the errors associated
with the FFT increase with /t. This conclusion is displayed in Figure 1, for (1) the
square pulse, (2) the exponential function, and (3) the truncated Cornu spiral. Figure
1 plots the absolute error in the FFT value of gin) versus u = 2nn/iàx), with n
displayed as the abscissa. Here Ax is the uniform interval between sample positions
Xj where j = 1,2,...,NF and NF = 256. In cases (1) and (3), the error oscillates
periodically. We have therefore plotted the envelope of successive maximum errors
as the conservative measure of validity of the FFT. In both of these cases, which are
characterized by a jump in/(x), the error is a strong superlinear function of n. For
the square pulse, the error at the first maximum is 1.18 X 10~3, whereas that at the
last maximum is 3.80 X 10~2, an increase of a factor of 32. For the truncated Cornu
spiral, the corresponding numbers are 1.75 X 10~3 and 2.31 X 10~2 for an increase
of a factor of 13. For the exponential function the increase is much less: from
2.60 X 10 3 to 4.60 X 10 3 with a ratio of 1.76. The errors in the imaginary part of
gin) for the Cornu spiral case are similar to those for the exponential function case
and are therefore not plotted.

The improved performance of the exponential function is caused by the fact that
the discontinuity is in the first derivative rather than the function. The improved
performance for the imaginary part of gin) for the Cornu spiral case is caused by
the smaller jump in the imaginary part of fix).

In all cases, however, the errors associated with the FFT are of the order of 10~2
for NF = 256, whereas the corresponding errors in the CFT program are not plotted
because they are of the order of 10~7 (which is limited by round-off error in these
single precision calculations). A comparable accuracy can be achieved over the
limited region of n plotted in Figure 1 using the FFT, but only if more than 20,000
points are used. Of course, g(jn) is then evaluated over a large range, and its values
over that larger range are less reliable.

VII. Discussion of CPU Time. As mentioned previously, it is difficult to make a
simple comparison between CPU times for the FFT and the CFT programs because
they serve different purposes. To evaluate a single Fourier integral, the CFT will win
"hands down". To compute precisely the N Fourier transforms yielded by the FFT
when there are 7v* input points, the FFT will win " hands down" if the input function
is smooth enough. The question that we can resolve, here, is which algorithm will
take less time if a given accuracy is desired, and a given fixed number of output
points is required when discontinuities or kinks are present. In general, one only
needs enough points in the transform space to adequately characterize the output
function.
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Figure 1

Variation of the absolute error in the FFT values of g(p), p = 2trn/(£ix) at
various points in its domain for three cases considered in Section 4. A 256
point FFT is used to obtain the Fourier transform. As g(p.) is an even
function in all three cases, only the region ¡i > 0 is shown. The curves are
plotted for (a) the square pulse, (b) the exponential function, and (c) the
truncated Cornu spiral. In the last case the absolute error occuring in the real
part of g(fi) are similar to those for case (b) and are therefore not plotted. In
all three cases the absolute errors associated with the CFT are of the order of
10~7, and on this scale the plot is indistinguishable from the abscissa-axis.

To make the required comparison we shall use the truncated Cornu spiral, Case 3
of Section 4. Calculations were done with the minimum number of points required
to achieve an accuracy of 10 ~7 for each program, and an accuracy of 5 X 10 3 for
each program. The results are summarized in Table 4. This table demonstrates that
the time taken for the FFT sum scales with the number of sample points A4 as
Ns log Ns for both the FFT method and the FFT portion of the CFT method. Three
CFT runs are included in this table to demonstrate this point from a large number of
auxiliary runs.

The table indicates that, to achieve machine accuracy (10~7 in single precision),
the FFT program required 20,000 points and took longer than the CFT program to
execute. On the other hand, for low accuracy, 5 X 10"3, the FFT program was 7
times faster than the CFT program.

We should mention that the FFT program used was the Singleton [24] algorithm
as incorporated in the PORT library. This is the fastest of the programs among those
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available to us. The spline fit also came from the PORT library. No attempt has
been made to optimize our end corrections or the spline fitting program.

Table 4
Comparison of CPU time for CFT and FFT algorithms

Program
Absolute

accuracy

Sample

points N

Core

Kwords

CPU time in seconds for different parts of the program

FFT Spline

fit

End

corrections
Total

FFT

FFT

CFT

CFT

CFT

1X10"7

5X10"3

1X10-7

1X10"7

5X10~3

20,000

256

510

240

32

46

7

19

17

16

37.918

0.250

0.667

0.233

0.033

18.990

8.840

1.251

11.539

4.671

0.578

37.918

0.250

31.196

13.744

1.862

VIII. Conclusions. We have presented an algorithm to calculate the finite Fourier
integral gin) of an input function/(x) based on a spline fit to/(x) and an analytic
integration of the spline functions. This program is particularly useful as a Fourier
transform when/(x) has jumps in value, kinks (jumps in slope), or jumps in higher
derivatives. In all these cases,/(x) is not band limited, and the performance of the
FFT is poor. For low desired accuracy, the FFT program with enough points to
achieve this accuracy will run faster than the CFT program. For high accuracy,
especially close to machine accuracy (10~7), the CFT program will provide the
required accuracy with shorter CPU time and a significantly lower core requirement.
See column 4 of Table 4.

Because of the large space taken up by the compiled portion of the PORT library,
the FFT program would appear to use less core when 5000 or fewer points are
needed. However, in solving wave-propagation equations in three dimensions [14],
two-dimensional Fourier transforms are needed, and the core requirements are
proportional to TV2. Thus, even when the desired accuracy can be achieved using the
FFT algorithm, this may not be feasible for several reasons: (i) the amount of core
needed may not be available, (ii)/(x) is measured only at certain values of x in a
given experiment, (iii)/(x) is calculated at discrete values of x numerically, and it
may be expensive to compute it at a larger number of points.

It should be remembered that the CFT and the FFT do not in fact perform the
same function. The FFT provides a discrete Fourier series representation of a
function fix) based on requiring/(x) to be periodic over an extended domain. The
CFT, on the other hand, actually computes the Fourier integral of fix) over a finite
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domain. The latter is often what the user wants. Our program satisfies this need, and
for poorly band limited functions it certainly saves space and sometimes saves CPU
time.
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Appendix—End Corrections for Uniform Mesh. In this appendix we evaluate

ik~ 1)1(Al)
w)

[0hJ+] ■••hJ+k],

for j = I, k — I andj = N — 2ik — 1), (TV — k). At these values of j two or more
mesh points coincide and care should be exercised in evaluating the divided
difference in (Al). For the case of $, k, there are k points which coincide, and we
have

(A2) *hkin) = h(k   J)![00--- (*- times)A].
i iß)

Using the definition of divided differences [13], [0 h] = ie'ßh — l)/h. The second
divided difference is given by

(A3)
[00A] [0A] - [0 0] _ 1 (c''"* - 1)     ,.     (e"" - 1)-:- — hm-

e^O

= -[e">h-(l+iph)].

One can continue similarly using the fact that for a general function/(x) the z'th
divided difference when all points coincide is given by/(,_I)(x)/(i — 1)!. We then
obtain

(A5) h(k- 1)1 2
P = k

(ißh) p-k

where the latter form is to be used for small values of ju,.
The procedure outlined above can be carried out to obtain $2 k, 03 k,..., etc., in a

similar way. The algebra is lengthy but straightforward. We obtain

(A6)     02,,(M) = 2h(k - l)\

(A7)     <D3,,(u) = 3A(A-l)!

2  (2^'-*-l)^|-
P=k

3P+3-k     2P+3-k  ^   ! x tiflhy-

P = k 3! 2! />!
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Further calculations are needed to obtain the end corrections at the other end
point. For instance

(*-0!
Uß)h<DN-k,k iß) k   [AA--A0]

(A8)
(-!)**(*-!)!

(inhf
1 - eH 1 - iph + • • • + i-ißh) k-\

ik-l)\
p-k

h(k-l)\e» 2   (   ffi       = e**»,,k(~p).

Similar algebra shows that the right-hand end corrections are related to the left-hand
end corrections by the formula

(A9) *» .xu(p) = eW*»M(-/i),      7=1 to (k-l).N-k-U-

We now present an explicit form of the left-hand end corrections <bj kin),f = 1 to
k — 1 for the spline orders k = 2, 3 and 4. The end corrections at the right-hand side
are readily obtained from the following expressions by using the relation given by
(A9). The series (A5)-(A7) can be summed to obtain an analytic form for <bJtkip).
For k = 2,

h
(A10)

For k = 3,

(AH)

(A12)

For k = 4,

(A13)

(A14)

(A15)

4>,

* 2A

■[**-(! +A)].

<D2,3 [e2X-4ex + 3 + 2X].

<t>, 1 + A
A2
2 6

$ 2,4

*3,4

_ 6A" A4

3A r2T*[e

ALax_9   2x + 9eA_ 11 _3A
AH 2 2

2A 5ex + 7 + 6A + 2A2],

where A = ¡nh. Care must be exercised to avoid computing errors when implement-
ing the end corrections, (A10)-(A15), for small values of |juA| . In this case the
exponentials in (A10)-(A15) are expanded in a power series which is terminated to
achieve required accuracy. For the sake of completeness we give the expressions for
$j¡ to be used in the CFT code for small | uA | . For k — 2,

(A16)

For k = 3,

(A17)

<D1,2 'M + £ JL   AL
120      720

<D1,3
, 1   ,   A       A2       A3 A41 3      12      60      360     2520
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(A18) 02,3

For k = 4,

(A19) *M

(A20) <D2>4

(A21) $3,4

where A = z'/iA.
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