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ABSTRACT

Sea surface temperature (SST) fronts detected in Advanced Very High Resolution Radiometer (AVHRR) data
using automated edge-detection algorithms were compared to fronts found in continuous measurements of SST
made aboard a ship of opportunity. Two histograms (a single-image and a multi-image method) and one gradient
algorithm were tested for the occurrence of two types of errors: (a) the detection of false fronts and (b) the
failure to detect fronts observed in the in situ data. False front error rates were lower for the histogram methods
(27%–28%) than for the gradient method (45%). Considering only AVHRR fronts for which the SST gradient
along the ship track was greater than 0.18C km21, error rates drop to 14% for the histogram methods and 29%
for the gradient method. Missed front error rates were lower using the gradient method (16%) than the histogram
methods (30%). This error rate drops significantly for the histogram methods (5%–10%) if fronts associated
with small-scale SST features (,10 km) are omitted from the comparison. These results suggest that frontal
climatologies developed from the application of automated edge-detection methods to long time series of AVHRR
images provide acceptably accurate statistics on front occurrence.

1. Introduction

Ocean surface thermal fronts are known to be im-
portant from the perspectives of both physical and bi-
ological oceanography. Strong baroclinic current jets
with associated frontal eddies often occur within surface
frontal zones. Particularly in coastal seas, frontal regions
have been shown to be loci of high primary production
with corresponding large standing stocks of phytoplank-
ton (Holligan 1981).

With the increase in the availability of satellite-de-
rived sea surface temperature (SST) data, there has been
interest in developing automated methods for detecting
fronts in these data. These range from simple methods
using a local statistic of the SST field, such as the gra-
dient, variance, or skewness (Cornillon and Watts 1987),
to more involved methods, such as cluster-shade algo-
rithms (Holyer and Peckinpaugh 1989) or histogram al-
gorithms (Cayula and Cornillon 1992; Cayula and Cor-
nillon 1995). The Cayula–Cornillon method has been
applied to SST imagery for the purpose of generating
frontal climatologies by Kahru et al. (1995) in the Baltic
Sea, by Ullman et al. (1998) in the North American
Great Lakes, and by Ullman and Cornillon (1999) off
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the northeast coast of the United States. It has also been
applied to global SST fields by I. Belkin et al. (1999,
unpublished manuscript). Moore et al. (1997), using a
gradient front detection method, investigated the mean
path and variability of the polar front in the southern
ocean.

When applying automated methods of front detection
to satellite imagery, it is important to verify that these
techniques are finding real oceanographic fronts and not
atmospheric features or artifacts of the processing. Al-
though the use of frontal datasets has thus far been
mostly for descriptive purposes, objectively detected
fronts could be used for numerical model validation or
as data to be assimilated into a model. For these pur-
poses, it is necessary to understand the error statistics
of the satellite frontal data (i.e., the degree of confidence
that a front exists). One way to approach this problem
is to statistically compare the fronts detected in satellite
images with those observed in SST data taken from
thermosalinographs carried aboard ships in transit. Such
a comparison is complicated by the fact that, in the
spatial sense, the ship data are one-dimensional while
the satellite data are two-dimensional. The greater in-
formation content of the satellite data must be accounted
for when evaluating error rates of front detection al-
gorithms.

In this paper, we provide a comparison between the
SST fronts detected in satellite imagery using both a
gradient method and the Cayula–Cornillon method with
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FIG. 1. Mean probability of detecting a front, using the multi-image
method, computed over 1995–96. The mean track of the C/V Ole-
ander is shown by the heavy black line.

those detected in continuous temperature measurements
made aboard a merchant ship of opportunity in transit
between New York and Bermuda. The comparison is
broken down into analyses of the rate of detection of
false fronts in the satellite data and the rate at which
real fronts are missed in the satellite data. The outline
of the paper is as follows. Section 2 discusses the data
sources and the methods utilized to identify SST fronts
in each dataset. Section 3 presents the results of the
comparison followed by a summary and conclusions in
Section 4.

2. Data and methods

a. Satellite data processing

The SST fields for 1995–96, covering the coastal re-
gion extending from Cape Hatteras to Nova Scotia (Fig.
1), were derived from Advanced Very High Resolution
Radiometer (AVHRR) measurements made aboard the
polar orbiting satellites, NOAA-9 and NOAA-14. The
SST is calculated from the infrared channels 4 (10.3–
11.3 mm) and 5 (11.5–12.5 mm) using the algorithm
developed under the National Oceanic and Atmospheric
Administration (NOAA)/National Aeronautics and
Space Administration (NASA) Pathfinder program
(Smith et al. 1996). Each satellite pass, of which typi-
cally 2–4 were available per day, was manually navi-
gated to an accuracy of approximately one pixel (;1.1
km at nadir) and then remapped to an equirectangular
projection with a pixel size of 1.2 km at the image center.
Uncertainty in the location of a pixel in the remapped

image is estimated to be approximately two pixels. Im-
age SST resolution is 0.1258C, with an upper bound on
the relative (pixel to pixel) error of 0.28C (Ullman and
Cornillon 1999). Cloud flagging is accomplished using
a multi-image declouding algorithm that is briefly de-
scribed by Ullman and Cornillon (1999) and is discussed
in more detail by T. Mavor et al. (1999, unpublished
manuscript).

Detection of fronts in declouded SST images is per-
formed using the method described by Cayula and Cor-
nillon (1992, 1995) and with a simple gradient algo-
rithm. A brief description of the Cayula–Cornillon al-
gorithm is given below; further details can be found in
the above references. The algorithm consists of a single-
image edge-detection step followed by a step that uti-
lizes edge information from images in the immediate
temporal neighborhood to improve the detection of
weak fronts and fronts in the vicinity of clouds. In sec-
tion 3, the results of both the single-image and multi-
image algorithms are compared to the in situ fronts.

The single-image edge-detection procedure uses a se-
ries of statistical tests on the temperature field within
overlapping 32 3 32 pixel windows to identify the pres-
ence of fronts within the window. Windows having two
clearly identifiable temperature populations (with the
means of the populations differing by at least 0.3758C)
that are spatially compact are assumed to contain fronts,
with pixels at the temperature transition between the
two populations marked as edge pixels. Since the edge
pixels at this stage do not always form continuous fronts,
a local (pixel level) contour following routine, utilizing
SST gradient information, is used to connect isolated
edge pixels into frontal segments. Segments shorter than
10 pixels are subsequently eliminated from consider-
ation. After the single-image detection step, maps of
persistent edges are produced for each image by com-
positing all edges found by the single-image step in
neighboring images (those within 2.5 days of the current
image). These persistent edges are thinned and then fed
back into the single-image algorithm as additional input
to the contour following step.

In addition to the single-image and multi-image al-
gorithms, for the sake of comparison, we also applied
a (single image) gradient-type edge-detection algorithm
to the AVHRR data. The window-level tests in the Ca-
yula–Cornillon algorithm were replaced in this case by
a gradient magnitude test. The Sobel gradient operator
(Russ 1995) was used, with all pixels having a gradient
magnitude greater than 0.28C km21 marked as possible
edge pixels. The contour following routine was then
applied to the image using these pixels. The required
CPU usage per image on a DEC/Alpha workstation was
approximately 12 s for the single-image histogram
method, 15 s for the single-image gradient method, and
40 s for the multi-image histogram method.

b. Ship data processing
The in situ SST data used in this study were obtained

aboard the container ship C/V Oleander, a participant
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in the NOAA Volunteer Observing Ship Program. Dur-
ing 1995–96, the ship made approximately weekly trips
between Port Elizabeth, New Jersey, and Bermuda. Fig-
ure 1 shows the mean ship track superimposed on an
image depicting the 2-yr mean probability (1995–96) of
detecting a front in AVHRR SST images using the multi-
image method. Surface temperature was measured using
a continuous flow system with an intake depth of ;5–6
m. The sampling rate was 15 s during 1995 and 10 s
during 1996, with a corresponding spatial sampling rate
of O(100 m). To more closely match the spatial reso-
lution of the AVHRR data, the Oleander temperature
data were averaged to 1.2-km spacing alongtrack, with
distances measured from West Bank light in lower New
York Bay.

Identification of SST fronts in the ship data was ac-
complished with a gradient-type algorithm. The along-
track temperature gradient was computed using centered
differences. An alongtrack point was identified as a fron-
tal point if the gradient satisfied either of the following
criteria:

=T
21$ 0.28C km or (1)) )=s

=T =T =T
21. 0.18C km and . 5 (2)) ) ) ) 7) )8=s =s =s 70 km

where T is thermosalinograph temperature, s is along-
track distance, and the angle brackets denote an average
over approximately 70 km. The thresholds in (1) and
(2) were arrived at empirically. Note that a gradient of
0.18C km21 is equivalent to the smallest resolvable gra-
dient (approximately 1 digital count per pixel) in an
SST image. Criterion (2), based on the Fedorov (1986)
definition of a front, identifies a front if the alongtrack
gradient exceeds this value and is also significantly
greater than the average gradient magnitude in the sur-
rounding region.

Implementation of (1) and (2) to an alongtrack tem-
perature series often results in the marking of several
adjacent points if the frontal width is of the order of a
few kilometers. In these cases, all adjacent frontal points
within a region of constant gradient sign were identified.
A single front was then located at the mean position of
these frontal points.

c. Evaluation of AVHRR front data

In the following section, the AVHRR front dataset is
analyzed in two ways. The rate of detection of false
fronts (i.e., fronts not observed in the ship data) and the
rate at which in situ fronts are missed are both estimated.
False front errors are assessed by searching the ship
front set for a front that matches each AVHRR front,
while missed front errors are quantified by searching
the AVHRR fronts for a front matching each ship front.

We define a matching front as one that occurs within
Dt h and Dx km.

As will be discussed below, the choices of Dt and Dx
are not independent. We selected Dt 5 6 h based on the
following rationale. The results of Cornillon and Stram-
ma (1985) demonstrated the potential for marked diurnal
changes in SST patterns observed in AVHRR imagery.
For this reason, we wanted to avoid situations in which
satellite and in situ SST fronts were being compared at
time lags of O(12 h). A small value for Dt best accom-
plishes this but at the cost of a reduction in the number
of valid matchups. The choice of 6 h as the cutoff rep-
resents a compromise between the desire to minimize
diurnal effects and the need to generate a significant
number of matchups for statistical purposes. In fact, the
error statistics presented in the next section were re-
computed (not shown) for different values of Dt (and
the associated Dx discussed below), with only minor
differences noted.

The choice of Dx is justified as follows. Discrepancies
in the position of an SST front can result from 1)
AVHRR navigation errors (;2.5 km), 2) propagation
of SST features in time [;5 km in 6 h, using a prop-
agation speed of 20 km day21 (see Lee and Cornillon
1996)], and 3) slope of frontal interfaces giving rise to
offsets in the position of the front at the surface and at
the depth of the ship intake (;5 km using a slope of
1023 and sensor depth of 5 m). Combining these errors
quadratically gives Dx 5 7.5 km. An independent test
of this scale was performed using the data. For each
AVHRR (in situ) front, the distance to the nearest in
situ (AVHRR) front detected within Dt h was computed.
Figure 2 presents histograms of the number of matching
fronts as a function of the separation distance. At large
distances, the number of matches appears to approach
a constant value (estimated to be approximately 5 per
2-km bin). Taking this value as the ‘‘noise’’ level in the
matchup procedure, approximately 15% of the fronts
deemed matching using Dx 5 7.5 km are likely to be
incorrectly classified as such, suggesting that the choice
of Dx is reasonable.

3. Results

a. Alongtrack distribution of fronts

Before discussion of the error rate statistics, we pro-
vide in this section an overview of the frontal data. The
distribution of SST fronts as a function of distance
alongtrack (from New York) in both the thermosali-
nograph and AVHRR data (using the multi-image meth-
od) is shown in Fig. 3. For the latter fronts, only those
fronts intersecting a ship track during the periods that
the ship was in transit are shown. Peak detection of
fronts in the ship data (Fig. 3a) occurs in two zones,
centered at 200 and 400 km from New York. These
correspond, respectively, to the shelfbreak frontal zone
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FIG. 2. Histograms of the distance to the (a) nearest matching
Oleander front for each AVHRR front (multi-image method) and (b)
nearest matching AVHRR front for each Oleander front. The solid
line represents the level of five matches per 2-km bin.

FIG. 3. (a) Histogram of the number of fronts detected in the Ole-
ander thermosalinograph data as a function of the distance from New
York for 1995–96. (b) Similar histogram for fronts found in the
AVHRR images using the multi-image method. (c) Fraction of 32 3
32 pixel windows that were greater than 65% clear. (d) Ratio of the
corrected number of AVHRR fronts (the number that would have
been seen if all windows were at least 65% clear) to the number of
fronts expected based on the Oleander statistics of a).

and the north wall of the Gulf Stream. In the AVHRR
data (Fig. 3b), only the shelfbreak peak is apparent.

An analysis of the number of fronts detected as a
function of the degree to which 32 3 32 pixel windows
were clear (not shown) indicates that 90% of all AVHRR
fronts detected with the multi-image method along the
Oleander track are found within windows that are great-
er than 65% clear. Figure 3c, depicting the fraction of
AVHRR windows that are greater than 65% clear, shows
a general offshore decrease, with a minimum just off-
shore of the Gulf Stream (;500 km). Using the distri-
bution in Fig. 3c, the histogram of detected AVHRR
fronts can be corrected to obtain the number of fronts
that would have been seen if all windows along the
Oleander track were at least 65% clear. An estimate of
the expected number of AVHRR fronts, assuming totally
clear viewing, is given by the product of the ship front
histogram and the ratio of the number of AVHRR im-
ages (1281) to the number of Oleander trips (135). The
ratio of the corrected to the expected number of fronts
in AVHRR images is shown in Fig. 3d. The mean value
is approximately 0.7, indicating an overall underesti-
mation in the number of fronts detected by the multi-
image method relative to the ship data algorithm. From
250 to 450 km (Gulf Stream north wall), the ratio of
observed to expected fronts (Fig. 3d) is significantly
lower than the average, suggesting that in this region,
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TABLE 1. False front statistics for fronts found in AVHRR data.

AVHRR method
Threshold
(8C km21) Total No. matching No. not matching

Percent error
(false)

I
Multi-image
Single-image
Gradient

0
0
0

350
285
960

255
205
530

95
80

430

27
28
45

II
Multi-image
Single-image
Gradient

0.1
0.1
0.1

237
190
520

204
164
371

33
26

149

14
14
29

FIG. 4. False front error rate as a function of the alongtrack SST
gradient magnitude computed from AVHRR images. Error rates are
computed in bins of 0.18C km21 and plotted at the bin centers.

fronts are missed by the multi-image method at an even
higher rate. We believe that this results from the be-
havior of the declouding algorithm. Pixels in the vicinity
of transient frontal zones, such as the Gulf Stream, are
often flagged as cloudy in an otherwise clear scene.
Since the number of frontal pixels is a small fraction
of the total number of pixels in a window, the effect on
the fraction clear (Fig. 3c) is negligible. The reason that
a similar drop in front detection is not observed for the
shelfbreak front is that this front experiences less move-
ment than the Gulf Stream front, and hence the tem-
perature discontinuity has less effect on the cloud-
screening algorithm.

b. False front error rate

The first validation issue to be addressed is the es-
timation of the rate of commission of false front errors.
For a given AVHRR front, a matching in situ front is
one that is found within Dx km alongtrack and Dt h of

the AVHRR front. Conversely, if the ship was at the
location of an AVHRR front within Dt h of the AVHRR
image time and a front was not found in the ship data,
then that AVHRR front was labeled as nonmatching. If
the ship did not pass the location of an AVHRR front
within this time period, no comparison could be made.

The upper part of Table 1 (I) summarizes the results
of this comparison for the three AVHRR edge-detection
algorithms considered. The rate of commission of false
front errors is 27%–28% for the multi-image and single-
image histogram methods and 45% for the gradient
method. The high error rate is partly due to the fact that
a front oriented nearly parallel to and crossing the ship
track is likely to be undetectable in thermosalinograph
data because the alongtrack SST gradient would be
small. For each AVHRR front, the gradient in the along-
track direction was estimated from the AVHRR SST by
averaging the gradient within a 5 3 5 pixel box centered
on the intersection point between the front and the ship
track. Figure 4 shows the (false front) error rate as a
function of the alongtrack SST gradient magnitude (in
0.18C km21 bins). For gradient values between 08 and
0.18C km21, the error rate is greater than 40% for all
methods but falls rapidly with increasing gradient mag-
nitude.

The classification of each AVHRR front was adjusted
to account for the angle between the ship track and the
direction of the SST gradient. The AVHRR fronts for
which the estimated alongtrack gradient magnitude was
less than 0.18C km21 [the value of threshold (2) in the
definition of an in situ front] were reclassified into the
‘‘no comparison’’ category, since these would be un-
detectable in the ship data using the front criterion (2).
Statistics for the comparison, using this more restrictive
definition of a valid matchup, are shown in the lower
part of Table 1 (II). For the histogram methods, the
adjusted error rate is 14%, and for the gradient method,
it is 29%. Comparison of the matchup statistics for a
given method with and without application of the gra-
dient threshold shows that a significant number of
matching fronts [20%–30% of the number matching in
Table 1 (I)] were found when the alongtrack gradient
was less than 0.18C km21. Some of these may be a result
of errors in the matchup procedure, as noted in section
2c. Most are likely the result of the fact that the gradient
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FIG. 5. Missed front error rate as a function of the fraction of a
33 3 33 pixel window that is clear in AVHRR images within 6 h
centered on the in situ front location. Also shown is the error rate
from the Monte Carlo simulation.

was estimated from the AVHRR images and thus may
be in error because of satellite navigation errors, time
differences between satellite passes and the ship obser-
vations, and atmospheric effects.

c. Missed front error rate

Next we consider the reverse comparison, namely the
determination of the fraction of the fronts observed in
the in situ data that are not detected in the AVHRR
imagery (missed front errors). For each in situ front, the
AVHRR dataset was searched for a matching front using
the same Dt and Dx used in the previous section. Since
a given window in an AVHRR image is likely to be
sufficiently clear less than 20% of the time (see Fig.
3c), many in situ fronts will not be detected in the
AVHRR imagery. Accurate estimation of the rate of
commission of missed front errors thus requires con-
sideration of the degree to which the region around an
in situ front is clearly viewed as well as the masking
effect of clouds on the detection of fronts in AVHRR
images.

A measure of the clarity of view in the region around
an in situ front is the fraction of the pixels within a 40-
km square (33 3 33 pixel) window, centered on the
front location, that is not cloud covered. This fraction
was computed at each front location for each AVHRR
image within Dt h of the time of detection of the front.
For a given front, the maximum fraction clear from the
set of images within Dt h was used as the measure of
cloudiness.

To independently assess the effect of cloud cover on
the retrieval of fronts in AVHRR imagery, a Monte
Carlo simulation was performed as follows. The single-
image edge detector was applied to 50 of the clearest
images for the period 1985–96. All fronts in these base
images that crossed the mean path of the Oleander were
considered to be the in situ fronts. Next, a set of 10
cloud masks from randomly selected images was su-
perimposed on each of the 50 images, and the resulting
500 images were analyzed with the single-image edge
detector. For each front found in the base images, match-
ing fronts were sought in each of the 10 masked images,
and the fraction clear was computed. This allowed es-
timation of the (missed front) error rate as a function
solely of the fraction clear in the masked image. The
result is shown by the solid line in Fig. 5. The error
rate is approximately 100% for clear fractions less than
about 0.25 and decreases linearly to zero above this
value.

The error rate for each of the AVHRR front detection
methods is also shown in Fig. 5 as a function of the
fraction clear. The histogram methods exhibit qualita-
tively the same behavior as the Monte Carlo results,
namely, the approximately linear decrease of the error
rate with increasing fraction clear above a particular
threshold. At a given fraction clear, however, the error
rates are roughly 30% higher than the Monte Carlo error

rate, suggesting that in situ fronts are being missed for
reasons other than the masking effect of clouds. The
error rate for the gradient method is lower than for the
histogram methods and displays a qualitatively different
dependence on the fraction clear. There is no threshold
below which fronts are not found, reflecting the fact that
the gradient method is applicable even under very
cloudy conditions.

Figure 5 indicates that even with almost completely
clear windows in the AVHRR, fronts present in the in
situ data are frequently not detected in the AVHRR im-
ages. The upper part of Table 2 (I) presents missed front
error statistics limited to those in situ fronts for which
an AVHRR image was at least 95% clear within a 33-
pixel window around the front location. Error rates of
29% and 34% are found for the multi-image and single-
image methods, respectively. The gradient method per-
forms better according to this measure, with only 16%
of the in situ fronts missed. In the analysis that follows,
we restrict attention to those fronts that correspond to
a 95% clear or higher AVHRR window.

The characteristics of the missed front errors are first
investigated in relation to the spatial scale of the SST
features associated with the in situ fronts. For each in
situ front, the feature scale is defined as the distance
from the front to the nearest local SST gradient maxi-
mum where the gradient sign is opposite to that at the
front. The feature scale (see Fig. 6) is estimated from
the in situ data and is a rough measure of the spatial
scale of the smaller of the water masses meeting at the
front. Note that because it is estimated from the ship
data, the feature scale may not be an entirely accurate
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TABLE 2. Missed front statistics for fronts found in Oleander thermosalinograph data for which the fraction clear in an AVHRR image
was greater than 0.95. The threshold in the second column refers to the SST feature scale.

AVHRR method
Threshold

(km) Total No. matching
No. not

matching
Percent error

(missed)

I
Multi-image
Single-image
Gradient

0
0
0

116
116
116

82
76
98

34
40
18

29
34
16

II
Multi-image
Single-image
Gradient

10
10
10

20
20
20

19
18
19

1
2
1

5
10

5

FIG. 7. Missed front error rate as a function of the SST feature
scale (see text) for those fronts for which an AVHRR image was at
least 95% clear. Error rates are computed in 5-km bins and plotted
at the bin centers.FIG. 6. Diagram showing an example of the SST feature scale Lfeature.

representation of the true two-dimensional feature scale.
The error rate is shown as a function of the SST feature
scale in Fig. 7. The error rate for the histogram methods
decreases rapidly with increasing feature spatial scale,
with a substantial fraction (.30%) of the in situ fronts
missed for scales less than ;10 km. The error rate for
the gradient algorithm does not decrease as rapidly, in-
dicating that this method is less scale dependent than
the histogram method.

To detect a front within a window, the histogram anal-
ysis step of the Cayula–Cornillon algorithm requires the
spatial extent of the smaller of the two SST populations
to be at least 25% of the window size (Cayula and
Cornillon 1992). Given a clear window, a water mass
of 10-km width extending across the window represents
almost exactly 25% of the area within a 32-pixel (;38
km) window. Thus, fronts associated with features at
scales smaller than 10 km separate water masses that
are too limited in spatial extent to be detected in the
histogram analysis step. However, the contour following
step can extend fronts beyond the window in which they
were detected (Cayula and Cornillon 1992), making it

possible to have segments of fronts in windows in which
the histogram tests failed to detect a front.

Taking 10 km as a cutoff for the feature spatial scale,
the lower part of Table 2 (II) shows the missed front
error rate for all fronts with scales larger than this value.
The error rates for the histogram methods drop dra-
matically to 5% for the multi-image method and 10%
for the single-image method. Examination of the match-
up statistics for the histogram methods with and without
the feature scale cutoff shows that many matching fronts
were found in the AVHRR images at feature scales less
than 10 km. In addition to the fact that roughly 15% of
the matching fronts are likely to be erroneously clas-
sified as such (discussed in section 2c), there are several
factors that likely contribute to this observation. The
first of these is the ability of the contour following step
to extend frontal segments into portions of the image
in which the histogram analysis failed to detect a front
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FIG. 8. Missed front error rate as a function of the signal-to-noise
ratio in the the AVHRR data along the Oleander track for those fronts
for which an AVHRR image was at least 95% clear. The signal-to-
noise ratio is the maximum SST step, within 6Dx of the front, over
a distance equal to the in situ front length scale divided by the root-
mean-square pixel to pixel SST difference computed over the interval
6Dx.

(e.g., because one population was too small). The multi-
image step can introduce a similar result, although com-
parison of the single-image and multi-image results in
Table 2 suggest that this effect is small. Finally, as noted
above, the feature scale derived from the in situ data is
not necessarily a good estimate of the two-dimensional
water mass scale either because the ship track was not
optimal or because of the presence of complicated mul-
tiscale structures that are common, for example, along
the north wall of the Gulf Stream [see Fedorov (1986)].
In the latter case, the estimated feature scale would be
representative of the small-scale features embedded
within the large-scale features, whereas the front-detec-
tion algorithm may find a front associated with the un-
derlying large-scale structure.

The detection of fronts in an AVHRR image should
depend on the ratio of the magnitude of the SST step
to the level of noise in the image. For each in situ front,
the corresponding AVHRR SST was examined along
the Oleander track to evaluate this ratio. The temper-
ature step was computed using a cross-frontal length
scale estimated from the ship data. The maximum SST
step over this scale, computed for all AVHRR points
within 6Dx, was used as the representative step. The
SST noise level was computed as the root-mean-square
pixel-to-pixel SST difference over the same 6Dx in-
terval. Figure 8 presents the missed front error rate as
a function of the AVHRR signal-to-noise ratio. For the
histogram edge detectors, the error rate drops abruptly

at a signal-to-noise level of about 4. At levels below
this value, the noise level is high enough to obscure a
real front in about 50% of the cases while above 4, the
error rate is ;10%–20%. The error rate for the gradient
method at low signal-to-noise level (1–2) is zero, al-
though there are few fronts detected in this range.

4. Summary

This paper has presented the results of a comparison
between SST fronts detected in AVHRR imagery and
those observed in 2 yr of continuous temperature mea-
surements made aboard a ship of opportunity. Fronts in
AVHRR SST images were identified using two histo-
gram methods (Cayula–Cornillon) and a gradient meth-
od. Fronts in the ship data were detected using a gradient
threshold method. Since errors in the gradients com-
puted from the ship data are much smaller than errors
in AVHRR SST due to atmospheric effects, the error
rates presented here can be viewed as an assessment of
the distorting effect of the atmosphere and the particular
edge-detection methodology applied to the SST images.

When estimating the rate of detection of false fronts,
it is important to consider the magnitude of the SST
gradient along the ship track. This is because an arbi-
trarily strong front oriented nearly parallel with the ship
track will not be detected in the ship data. After elim-
inating from consideration all AVHRR fronts with
alongtrack gradients less than 0.18C km21, the false front
error rate was 14% using either of the histogram meth-
ods and 29% using the gradient method. The observa-
tion that the gradient method finds twice as many false
fronts suggests that this method is less tolerant of noise
in the SST image than are the histogram methods. In
fact, visual inspection of AVHRR images and the fronts
detected by the various methods showed that the gra-
dient method often found fronts near the edges of clouds
where the SST is often noisy.

The rate at which in situ fronts are missed using the
AVHRR detection methods is found to be highly de-
pendent on the degree to which the frontal region is
obscured by clouds. The masking effect of clouds was
estimated with a Monte Carlo simulation using 50 of
the clearest images with randomly chosen cloud masks.
If the region around a front is at least 95% clear, then
the error rate due to clouds is estimated to be approx-
imately 0. Actual error rates were subsequently com-
puted using only those in situ fronts for which a 95%
clear image was available. Resulting error rates were
approximately 30% using the histogram methods and
16% using the gradient method. The relatively high
missed front errors with the histogram methods appear
to result from two effects. The first is the occurrence of
small-scale SST features (,10 km) in the ship data that
may not be resolved by the edge detector operating on
32 3 32 pixel windows. Restricting attention to large-
scale features (.10 km), error rates of 5% and 10% are
found for the multi-image and single-image histogram
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methods, respectively, and 5% for the gradient method.
The presence of high noise levels in the AVHRR data
was also shown to affect the results, with error rates
rising significantly at signal-to-noise levels below 4.

Comparison of AVHRR SST fronts with in situ fronts
leads to the conclusion that automated edge-detection
algorithms perform well in detecting SST fronts given
clear viewing conditions. The Cayula–Cornillon method
performs significantly better than the gradient method
in that the false front error rate is 50% lower, while for
fronts associated with features with scales .10 km, the
rate at which in situ fronts are missed is approximately
equal for the two methods. Using the error rates esti-
mated here allows us to bound the errors on front oc-
currence probabilities computed from application of the
Cayula–Cornillon edge-detection algorithm to large sets
of SST images. Using these rates, we estimate that fron-
tal probabilities should be accurate to within about 15%
for fronts associated with SST features with scales great-
er than 10 km. Frontal climatologies produced using
these methods should thus provide reasonably accurate
portrayals of the distribution of fronts at these scales.
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