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Purpose: To perform automatic assessment of dementia severity using a deep learning

framework applied to resting-state functional magnetic resonance imaging (rs-fMRI)

data.

Method: We divided 133 Alzheimer’s disease (AD) patients with clinical dementia

rating (CDR) scores from 0.5 to 3 into two groups based on dementia severity; the

groups with very mild/mild (CDR: 0.5–1) and moderate to severe (CDR: 2–3) dementia

consisted of 77 and 56 subjects, respectively. We used rs-fMRI to extract functional

connectivity features, calculated using independent component analysis (ICA), and

performed automated severity classification with three-dimensional convolutional neural

networks (3D-CNNs) based on deep learning.

Results: The mean balanced classification accuracy was 0.923 ± 0.042 (p < 0.001)

with a specificity of 0.946 ± 0.019 and sensitivity of 0.896 ± 0.077. The rs-fMRI data

indicated that the medial frontal, sensorimotor, executive control, dorsal attention, and

visual related networks mainly correlated with dementia severity.

Conclusions: Our CDR-based novel classification using rs-fMRI is an acceptable

objective severity indicator. In the absence of trained neuropsychologists, dementia

severity can be objectively and accurately classified using a 3D-deep learning framework

with rs-fMRI independent components.

Keywords: dementia, progression assessment, imaging biomarkers, independent component analysis,

neuroimaging, convolutional neural network

Abbreviations: 3D-CNN, three-dimensional convolutional neural networks;CDR, clinical dementia rating;CSF, cerebrospinal

fluid; ICA, independent component analysis; rs-fMRI, resting-state functional magnetic resonance imaging; MCI, mild

cognitive impairment.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of

dementia among dementia patients, with a 40%–60% prevalence

(Ferri et al., 2005). It is a devastating illness and results in

major cognitive and behavioral impairments. The established

underlying mechanism is neurodegeneration, which is attributed

to the accumulation of Aβ, hyperphosphorylation of tau proteins,

and neuroinflammation (Leuner et al., 2007; Frautschy and

Cole, 2010; Shadfar et al., 2015). Although molecular chemistry

research on the mechanism of dementia has been conducted,

numerous reports suggest structural and functional changes

in the brain identified using neuroimaging (He et al., 2007;

Solé-Padullés et al., 2009; Adlard et al., 2014). The assessment

and treatment for patients with AD are multi-modal and

are based on the stage of the illness. At each stage, the

physician should alert and help the patients and their families

to anticipate future symptoms and the related care that may

be required. Although dementia symptoms can be controlled,

slowing disease progression down is not a direct treatment for

the pathophysiological mechanism of AD (Cummings and Fox,

2017). Given that most drugs currently used for treatment of

AD patients act by enhancing cholinergic transmission and thus

require viable synapses (DeKosky and Scheff, 1990; Terry and

Buccafusco, 2003; Sarter and Parikh, 2005; Cacabelos, 2007),

evaluation of the stage of dementia by experts is important

for appropriate symptom control; additionally, the evaluation

of viable synapse is important for determining the progression

of the disease (DeKosky and Scheff, 1990; Scheff et al.,

1990).

However, despite numerous neuroimaging studies, staging

of dementia is generally based on past history and mental

status examination by trained neuro-psychiatrists under the

guidelines of the clinical dementia rating scale (CDR; Hughes

et al., 1982). CDR helps the clinicians to rate the severity

of AD and related disorders on a scale from 0 (normal) to

3 (severe stage) based on clinical interviews with a caregiver

and the person with dementia. The areas that are coded are

memory, orientation, judgment, problem-solving, community

affairs, home, and hobbies. Despite the use of CDR, which is

consensual among neuro-psychiatrists, and is based on extensive

research and statistics to ensure the validity of the dementia

severity rating, the diagnostic process mainly depends on the

assessment of clinical symptoms. Furthermore, the diagnostic

criteria of AD involves a substantial observation period and

a reliable informant. In addition, it is too burdensome for a

general doctor to use CDR (Perneczky et al., 2006). Also, CDR

may have limitations in detecting early dementia (Rockwood

et al., 2000; Schafer et al., 2004). Therefore, an additional

tool for rating dementia severity is definitely required, and

neuroimaging techniques may serve to complement the CDR

scale.

Recently, resting-state functional connectivity is regarded as

an important biomarker for AD. Several studies have reported

that AD patients show decreased resting-state functional

connectivity in the default mode network (DMN; Greicius et al.,

2004; Hafkemeijer et al., 2012; Koch et al., 2012; Franciotti

et al., 2013; Krajcovicova et al., 2014; Joo et al., 2016). Although

atrophy was not observed, mild cognitive impairment (MCI)

was associated with decreased functional connectivity of the

medial temporal lobe or DMN region (Jin et al., 2012).

Several resting-state functional magnetic resonance imaging (rs-

fMRI) studies have addressed the issues of early detection,

classification, and prediction in AD, MCI, normal patients, and

subtypes of dementia. Previous reports have provided optimistic

results for the classification of AD, MCI, and healthy normal

aging individuals. Various approaches, such as independent

component analysis (ICA; Fox et al., 2006; Dosenbach et al.,

2007; Sylvester et al., 2009; Zhou et al., 2010), region of

interest (Wang et al., 2006; Chen et al., 2011; Challis et al.,

2015), graph theory (Supekar et al., 2008; Khazaee et al., 2015),

multivoxel pattern analysis using machine learning (Mahmoudi

et al., 2012), and multimodal (Dai et al., 2012; Dyrba et al.,

2015) approaches have shown high performance (72%–94%

accuracy). However, most prior studies have used datasets only

from a single site/source, except for a study in which the AD

neuroimaging initiative (ADNI) dataset was compared to their

in-house dataset for validation of MCI/Normal classification

algorithm (Suk et al., 2016). Therefore, the classification format

of most previous studies strictly followed the form of the

database. The ADNI dataset is aimed at early detection of AD,

and related studies focus on classifying the normal patients,

MCI, and early AD. Therefore, ADNI did not contain adequate

numbers of severe-stage patients diagnosed with CDR 2 or 3

score (late AD).

ICA is an effectivemethod for functional connectivity analysis

of brain imaging data (Lu and Rajapakse, 2006; Rajapakse and

Zhou, 2007; Brier et al., 2012). Previously, numerous studies have

reported greater functional connectivity in the salience (SAL) of

patients with mild dementia (primarily CDR 1) than in normal

individuals (Fox et al., 2006; Dosenbach et al., 2007; Sylvester

et al., 2009; Zhou et al., 2010). In contrast, functional connectivity

increments of the SAL were seen at levels between CDR 0 and

CDR 0.5, which implicates a reduced correlation at CDR 1.

This difference depends on the method used to acquire the

independent components (Brier et al., 2012). In the past, the ICA

components were reviewed by trained clinicians for the selection

of meaningful components (Oh et al., 2017). Currently, ICA

components can be automatically selected using highly advanced

algorithms (Beckmann et al., 2009; Filippini et al., 2009). On

applying these algorithms, we can consistently and automatically

select the ICA components in classification studies.

Deep learning has gained enormous attention (Gal and

Ghahramani, 2016; Amiri et al., 2018) in the last few years.

The recent advances in machine learning in terms of image

understanding have led to great advances with respect to

identifying, classifying, and quantifying patterns of medical

images, especially using deep learning. In particular, the

utilization of hierarchical functional representations learned

solely with data, instead of manually created features that are

designed based on domain-specific knowledge is at the core of

the progress (Raju et al., 2017; Shen et al., 2017; Amiri et al.,

2018). Previous studies have reported that the classification

of dementia, MCI, and normal individuals can be performed
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automatically using deep learning andmultimodal data including

neuroimaging data or biological measures from cerebrospinal

fluid (CSF; Suk and Shen, 2013; Liu et al., 2015; Suk et al., 2015).

Automated diagnostics using multimodal neuroimaging data

have the advantage of utilizing all information, and demonstrate

the potential to improve diagnostic accuracy. However, the

process is highly complex and requires additional computational

resources. Therefore, it would be preferable to obtain acceptable

accuracy with only unimodal data.

Three-dimensional convolutional neural network (3D-CNN)

in deep learning is a supervised learning framework and

is enabled to distinguish training data similar to the visual

processing of the human eye (Ji et al., 2013). While these

networks have been used specifically for visual recognition in

the 2D domain over the last few years by researchers in visual

computing and artificial intelligence research, it is unlikely

that 3D-CNN was used for volumetric neuroimaging data

classification and prediction. The novelty of this study is that 3D

ICA data were used as input for the 3D-CNNmodel. Considering

that previous studies have shown that group ICA features have

the potential to discriminate dementia severity, we classified the

severity of dementia using 3D deep learning with group ICA

input.

Despite its clinical importance, the severity estimation of AD

using image data was not conducted by any researcher at all,

except for one report that characterizes five resting state networks

of CDR 0.5 and 1 (Brier et al., 2012). Therefore, a major novel

feature of our research is the automatic classification of AD into

two groups of disease severity (very mild and mild vs. moderate

and severe).

To propose an alternative method to complement the CDR

scale in the evaluation of AD, we hypothesized that the functional

connectivity changes according to the stage of AD will be

observed in the rs-fMRI, and the severity of AD could be

classified using 3D-CNN.

MATERIALS AND METHODS

Dataset
This dataset was a part of a large cohort enrolled at National

Dementia Research Center, Chosun University, Gwangju, South

Korea. Each subject provided written informed consent before

the data collection. The data acqusistion was approved by the

institutional review board of the Chosun University Hospital,

Gwangju, South Korea (IRB number 2013-12-018).

The demographics of the participants are shown in Table 1.

CDR is a categorical variable. To better estimate the decline of

TABLE 1 | Subject demographics.

Very mild to mild AD Moderate to severe AD

(n = 77; 30 F/47 M) (n = 49; 32 F/17 M) p-value

Age (years) 73.57 ± 6.49 73.61 ± 4.76 0.160

Education (score) 10.09 ± 4.95 6.79 ± 4.54 0.227

MMSE (score) 23.84 ± 3.90 15.49 ± 4.87 0.09

CDR (score) 0.71 ± 0.25 2.08 ± 0.28 0.001∗

The p-value was computed by applying the t-test to the clinical dementia rating (CDR)

scores.

resting-state functional connectivity with increasing AD severity,

we allocated the labeled data into two groups. Group 1 includes

very mild to mild (CDR 0.5 and 1.0) and group 2 includes

moderate to severe (CDR 2.0–3.0) patients.

Resting-State fMRI Data Acquisition
All the participants were scanned with a Siemens Skyra 3.0-

Tesla scanner. A 2D EPI MR acquisition type was used with the

following parameters: TR/TE = 3,000/30 ms, flip angle = 90◦,

FOV = 240 × 240 mm, voxel size = 3.75 × 3.75 × 3.75,

spacing between slices = 4.8 mm, number of echoes = 1, imaging

frequency = 123.206 Hz, slice acquisition order = ascending

(bottom-up), direction = ‘Transverse > Coronal (2.6) > Saggital

(1.7)’, pixel bandwidth = 3440, inplane phase encoding

direction = ‘ROW’, number of phase encoding steps = 63, echo

train length = 31◦ sampling = 100◦ phase field of view = 100,

variable flip angle flag = ‘N’, and SAR = 0.0778.

Preprocessing of the Resting-State fMRI
Data
The rs-fMRI data was pre-processed with FMRIB Software

Library (FSL1) version 6.0. Standard preprocessing routines

were applied with motion correction, slice timing correction,

spatial smoothing with 6 mm full width half maximum Gaussian

kernel, temporal filtering, and thereafter each subject’s functional

data were co-registered to its corresponding structural image.

Subsequently, for acquiring the group ICA based connectivity

measures, FSL Multivariate Exploratory Linear Optimized

Decomposition into Independent Components (MELODIC)

version 3.14 was utilized to perform a single-session ICA. The

number of independent components was set as 30 (Qureshi

et al., 2017). We used variance normalization and thresholded

the independent component maps with an alternative hypothesis

test that was based on the fitting of a Gaussian/gamma mixture

model to the distributions of the voxel intensities within the

spatial maps and controlling the local false-discovery rate at

p < 0.5. The set of spatial maps from the group-average

analysis was used to generate subject-specific versions of the

spatial maps, and associated time-series, using dual regression

(Beckmann et al., 2005, 2009). First, for each subject, the group-

average set of spatial maps is regressed (as spatial regressors in

a multiple regression) into the subject’s 4D space-time dataset

(Oh et al., 2017; Qureshi et al., 2017). This results in a set

of subject-specific time-series, one per group-level spatial map.

Next, those time series are regressed (as temporal regressors,

again in a multiple regression) into the same 4D dataset,

resulting in a set of subject-specific 3D spatial maps, one

per group-level. We then tested for group differences, using

FSL’s randomized permutation-testing tool (Smith et al., 2004).

Among the 30 independent components, 15 were classified as

noise and/or artifacts using the automated clustering tool of

FSLNets2. Besides the automated selection, these components

were also validated by visual inspection by an experienced

clinical neurologist, similar to the procedure used in our

1www.fmrib.ox.ac.uk/fsl
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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FIGURE 1 | Dendrograms of the selected useful independent component-based functional networks using automated clustering. (A) Statistical analysis of each

component. (B) Dendrogram of very-mild and mild groups, two major divisions are shown in red and green color. (C) Dendrogram of moderate and severe groups,

no significant division was found among the functional networks according to the clinical dementia rating (CDR) level.

previous studies (Qureshi et al., 2017). Figure 1A depicts the

selected 15 components. It represents the well-known resting-

state functional networks including the DMN, sensorimotor

network, medial and lateral visual network, left and right dorsal

attention network, central executive network, cerebellar network,

salience network, limbic network, auditory network, and frontal

networks.

Features
We used the 3D volumetric images of these selected functional

networks for the classification between the CDR low and CDR

high groups. These 3D images were acquired by performing dual

regression (Beckmann et al., 2009) on the group ICA result.

Deep Learning and 3D-CNN Framework
Weused a 3D-CNNbased deep learning classification framework

in this study. This framework was implemented on the

TensorFlow library version 1.5 with Nvidia Geforce GTX 1080Ti

graphical processing unit (GPU) support. For the trainingmodel,

we used the Adam optimizer with a learning rate of 0.001,

epsilon value was set at 0.1, and minimal cost was used. Since

the size of the dataset was relatively small for deep learning, to

avoid model overfit, we used ten-fold cross-validation in this

study to report the mean accuracy of the model. A modified

version of VGG-Net classification framework was used in this

study. Specifically, we added batch normalization layers in the

convolution layer. A dropout rate of 0.7 was used in the fully

connected layers. The batch size was set at 12 and 50 epochs

were used. The parameters including learning rate, epsilon value,

dropout rate, batch size, and epoch size were optimized using

the following ranges. For epsilon, we tunned it in the range of

[0.1 : 0.05 : 1], for learning rate, we tunned it in the logarithmic

range of [1, 0.1, 0.01, 0.001, 0.0001, and 0.00001], for the dropout

rate, we tunned it in the range [0.1 : 0.05 : 1], for the batch

size, we optimized it by the maximum available GPU memory,

and the number of epochs were tunned in the range of [10 :

1 : 200]. To the best of our knowledge, CNN is the only deep

learning framework that learn from 3D input, therefore no

other deep learning architectures were tested during this study.

Figure 2 depicts the complete architecture of our 3D-CNN

deep classification framework. Details of the model are given in

Table 2.

Significance Testing
For assessing the statistical significance of the results, we

performed the permutation test on the classification accuracies

and permuted the labels of test data of each of the 10 folds

1,000 times to get the probability of successful classification with

a higher score than the actual test labels.

RESULTS

Our results suggest that CDR level can be used as a good

discriminatory predictor of the dementia stages. We achieved

a mean balanced test accuracy of 92.30% in a ten-fold cross

validation experiment using the 3D-CNN algorithm.

Classification
We achieved an optimistic 10-fold cross-validated classification

accuracy. Since the dataset was not balanced, we also computed

the balanced accuracy to remove any bias present in the

result due to unbalanced data. Table 3 shows all the
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FIGURE 2 | VGG-Net based three-dimensional convolutional neural network (3D-CNN) architecture.

performance evaluation measures in the data including the test

accuracy, train accuracy, specificity, sensitivity, and balanced

accuracy.

Statistical Significance
Statistically, this result has very high significance with

p < 0.001 for all the 10-folds of the classification experiment.

The significance measure through permutation testing were

computhed as the p-values as mentioned in Table 3 for each fold

of the cross-validation.

Clinical Significance
These results suggest that CDR-based novel classification of

rs-fMRI can be accepted as an objective severity index. Table 4

shows the ranking of each functional network as the features

of a deep learning framework based on the unpaired t-test.

The uncorrected p-value revealed the component’s significance.

Figure 3 shows the connectogram of the selected networks.

DISCUSSION

To the best of our knowledge, this is a pioneering study to classify

the severity of dementia using rs-fMRI and 3D-CNN deep

learning architecture rather than a 1D time-series information.

Because the assessment of symptoms of patients with AD is

important for appropriate treatment, the automatic classification

of AD of the two groups of disease severity has important

contributions for clinical practice.

TABLE 2 | Details of the three-dimensional convolutional neural network (3D-CNN) architecture.

Layer Feature Map Stride Kernel Activation structure

Convolution 64 1 × 1 × 1 3 × 3 × 3 Conv

Convolution 64 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Maxpool 2 × 2 × 2 2 × 2 × 2

Convolution 128 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 128 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Maxpool 1 × 1 × 1 2 × 2 × 2

Convolution 256 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 256 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 256 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Maxpool 2 × 2 × 2 2 × 2 × 2

Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Maxpool 2 × 2 × 2 2 × 2 × 2

Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Convolution 512 1 × 1 × 1 3 × 3 × 3 Batchnorm+ReLU+Conv

Maxpool 1 × 1 × 1 2 × 2 × 2

Fully Connected 4096 Dropout rate 0.7 ReLU

Fully Connected 4096 Dropout rate 0.7 ReLU

Output

Fully Connected 2

Softmax

Classification Layer Argmax
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TABLE 3 | Classification accuracy using 10-fold cross-validation.

Fold Train Acc (%) Test Acc (%) p-value AUC Specificity (%) Sensitivity (%) BAC

1 99.44 95.83 <0.001 0.9936 0.9421 0.9871 0.9647

2 99.72 95.31 <0.001 0.9832 0.9561 0.9294 0.9428

3 99.94 91.66 <0.001 0.9838 0.9162 0.8864 0.9161

4 99.94 88.02 <0.001 0.9649 0.9320 0.8021 0.8671

5 99.94 91.14 <0.001 0.9767 0.9532 0.8587 0.9059

6 99.94 95.83 <0.001 0.9934 0.9734 0.9419 0.9577

7 99.04 94.79 <0.001 0.9809 0.9483 0.9398 0.9441

8 99.88 83.85 <0.001 0.9765 0.9456 0.7383 0.8419

9 99.61 92.18 <0.001 0.9740 0.9231 0.9146 0.9189

10 99.72 96.88 <0.001 0.9936 0.9739 0.9642 0.9690

Mean ± SD 99.72 ± 0.29 92.55 ± 4.11 0.982 ± 0.009 0.946 ± 0.019 0.896 ± 0.077 0.923 ± 0.042

TABLE 4 | Statistical analysis of each component.

Component name Component number uncorrected Rank

p-value (<)

Sensory-motor network 1 0.038933 2

Medial visual-related network 2 0.046845 7

Executive control network 3 0.040517 3

Default mode network 4 0.052597 13

Auditory related network 5 0.051502 11

Left dorsal attention network 6 0.042201 4

Cerebellar network 7 0.056729 14

Lateral visual-related network 8 0.052143 12

Salience network 9 0.058392 15

Right dorsal attention network 10 0.049393 10

Lateral visual-related network-II 11 0.043619 5

Fronto-parietal network 12 0.049307 9

Medial frontal network 13 0.038227 1

Cerebellar network-II 14 0.045902 6

Auditory related network-II 15 0.047154 8

There are previous studies on automated diagnosis using

deep learning and multimodal neuroimaging data involving

the CSF and laboratory assessments. Among these, there are

numerous studies that classified dementia, MCI, and healthy

individuals (Suk and Shen, 2013; Liu et al., 2015; Suk et al.,

2015). It may be helpful to analyze structural MRI changes

in distinguishing between normal patients, MCI, and AD.

However, since structural changes are more likely to have

progressed beyond a certain level, structural MRI may act as

a confounding factor when considering individual differences.

CSF studies may be helpful in assessing severity. To acquire

CSF samples, we perform an invasive procedure, which is a

lumbar puncture. However, considering the enviornment of out

patient departments in Korean hospitals, it is diffciult to perform

invasive procedures. Overall, if cost-effectiveness was taken into

account, it would be best that the severity was determined using

only noninvasive rs-fMRI. If only rs-fMRI was used, the imaging

time could be less than a few minutes and may prove effective in

clinical management.

Only one study reported the characteristics of five resting

state networks of CDR score from 0.5 to 1 (Brier et al., 2012).

FIGURE 3 | Connectogram of all the selected networks. Left connectogram shows the positively correlated connections among the functional networks. Right

connectogram shows the negatively correlated connections.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 February 2019 | Volume 11 | Article 8

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Qureshi et al. Evaluation of Dementia Using Deep Learning

This report provided clues to the discriminatory potential of

group ICA features that could contribute to the classification

of dementia severity. However, no study has been conducted

on patients with CDR scores of 2 or 3 with ICA as features,

which were classified automatically from noise using FSLNet

and deep learning structure. Therefore, the major contribution

of our research is the automatic classification of AD into two

groups of disease severity (very mild and mild vs. moderate and

severe).

Our results showed a mean test accuracy of 92.30% in

a 10-fold cross validation experiment using the 3D-CNN

algorithm. We believe that a deep neural network constitutes

the optimal classification weight through iterative learning,

but the extent of contribution of the ICA component of

deep learning architecture to the algorithm is not known.

To reveal the black box of 3D-CNN, we also compared each

component between very mild/mild vs. moderate/ severe

patients. Previous studies have reported that the DMN is

the most significant different functional network between

normal patients and MCI and dementia (Wang et al., 2006;

Jin et al., 2012; Koch et al., 2012), and the salience network

had differences between CDR 0.5 and 1 (Fox et al., 2006;

Dosenbach et al., 2007; Sylvester et al., 2009; Zhou et al.,

2010). Interestingly, our result showed that the medial frontal,

sensory-motor, executive control, left dorsal attention, lateral

visual-related, cerebellar, medial visual-related, auditory-

related, frontoparietal, and right dorsal attention networks

have high ranks and statistical differences. After the onset

of dementia, functional connectivity seems to be observed

in an altered way. We assumed that those networks have

more influence on our classifier. Although DMN and salience

network do not have enough statistical significance, the

combination of the information from various components

and their relationship including functional connectivity

may contribute to the classification algorithm. Figures 1, 2

show the relationships among the components. Red color

represents positive correlations and blue color represents

negative correlation among the components. These associations

represent the activity of each component, and there were no

significant differences between the two groups, which is also

shown in Table 4. Even in case of subtle differences, with deep

learning these can be utilized to extract features to render the

weights more suitable.

Research on drug development for AD has not been able

to improve drug-based treatments, in spite of the recently

advanced understanding of the molecular-cellular biology of the

disease (De Strooper, 2014; Gauthier et al., 2016). Although,

there may be numerous reasons for the failure of new drug

development, as the stage of dementia differs from patient to

patient, it is difficult to evaluate the response to symptoms

alone. In addition, dementia could be a confounding factor

due to the differences in the characteristics of individuals

including genomic, proteomic, and metabolomic cascades. A

previous study reported that current trials have focused on

clinical efficacy and not on the rigorous testing of the putative

mechanisms of disease (Becker et al., 2014). Considering that

the central cholinergic deficit in AD is the consequence of

neurodegeneration, the imaging method of measuring viable

synapses is appropriate for evaluating drug responses. Because

fMRI measures the function of the brain through the blood

oxygen level dependent technique, it may help to compensate for

the weaknesses of drug efficacy assessment through symptoms.

Our classification algorithm based unimodal rs-fMRI extracts

features from the degeneration of the functional connectivity in

dementia. During the evaluation of drug response or behavioral

therapy according to the stage and symptoms of AD, it would

be helpful to investigate the recovery of functional connectivity

objectively.

The novelty of our study is that we analyzed the severity

of dementia, although our study also has limitations.

We used our dataset to create a 3D-CNN classifier, but

we could not perform the verification procedure with

other datasets. Because of the ADNI dataset, which has

been widely used in previous dementia studies, we could

focus on early stage dementia detection; and the numbers

of late-stage dementia patients were not adequate for

comparison. It is necessary to apply our algorithm to other

datasets with adequate numbers of patients with late-stage

dementia.

Another limitation is due to the characteristics of deep

learning. A total of 15 ICAs were selected as input for

deep learning, but it is difficult to determine the precise

effect on the neural network. To overcome this limitation, we

statistically analyzed the differences of ICA between the two

groups.

Another limition of the present study is in terms of the

limited number of subjects, however, it is inappropriate to apply

standard data augmentation approaches on the neuroimaging

data to increase the number of training samples. We believe

that the introduction of any type of synthesized data in training

phase can significantly bias the learning process. In addition, the

signal to noise ratio in fMRI data is relatively small therefore

it is very difficult to apply deep learning to the raw data.

A major advantage of using ICA is the removal of artifacts

because they very much look like the BOLD signal in raw

data.

One of the most important aspects of this research

is the use of neuroimaging to predict the progression of

diseases that humans can not predict, especially for the

subjects with MCI who progress to dementia as compared

to those who do not progress to dementia in the future.

However, we cannot represent it in our present study. The

classification task in this research has a limitation because

the data labels used in this study are based on contemporary

clinical evaluations. In addition, classifying current disease

status is important but clinically, predicting the progression

from MCI to dementia and classifying severity in dementia

is more important for proper and appropriate treatment,

and also prediction from MCI to dementia and current

severity classification can have a decisive impact on prognosis.

Taking all of these measures into account, our analysis can

be considered as a clinically relevant study involving future

outcomes. In the future, we will also perform an advanced

study to predict the progression from MCI to dementia using
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biomarker-based serial labeled data and domain transfer learning

methods.

In conclusion, our study suggests that our novel classifier

using rs-fMRI is acceptable as an objective severity indicator

complementing the CDR scale in the evaluation of AD. In the

absence of trained neurologists, we can classify the dementia

severity objectively and accurately using 3D-deep learning. Our

application and classification algorithm would be an aid for

observing the regeneration of functional connectivity due to

drug treatment according to the stage and symptoms of AD in

the future.
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