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Abstract 
 

Matcher fusion is a recognized approach for improving 

biometric system performance. Component matchers may 

be “encapsulated,” reducing the need for understanding 

the inner workings of each matcher, and facilitating 

interchange of matchers. In large part, our interest in 

fusion was to determine how much performance 

“headroom” existed with current matcher technology. We 

employed five different latent fingerprint matchers. These 

matchers can use a variety of input data (features), 

allowing the influence of “data type” to be investigated. 

Numerical results show it is possible to reduce the final 

candidate list to two to six candidates, with the probability 

that the true mate appears in the top (first) position boosted 

by 6 – 15%-points. 

1. Introduction– Why Matcher Fusion? 

Latent fingerprints have become increasingly important 

in criminal law enforcement, border security, and 

anti-terrorism. Traditional methods of latent fingerprint 

matching and identification require intensive human expert 

involvement. Automation is being called upon to reduce 

human dependence, increase throughput, and reduce 

turnaround time. Such matchers are referred to as 

Automated Fingerprint Identification Systems (AFIS). 

Presently, automated matcher performance is still a 

limiting factor in such applications as “lights-out” 

operation. Matcher fusion provides an attractive method of 

improving search performance: it can be implemented with 

relatively modest effort; the component-matchers can be 

“encapsulated,” resulting in an architecture in which 

alternative matchers can be swapped in and out with relative 

ease; and multiple matchers, beyond two, can be 

accommodated.  

As a result of testing under its Evaluation of Latent 

Fingerprint Technology (ELFT-EFS) project, NIST is in 

the favorable position of having performance data on an 

appreciable number of latent fingerprint matchers. Each 

matcher has the capability to accommodate a variety of 

input data types. These matchers were designed and 

implemented by professional biometrics companies 

specifically for formal testing; and consequently may be 

considered representative of the state-of-the art.   

The general concept behind ELFT testing is found in [1]. 

Additional information on the testing methodology, the 

databases, the matchers, and the test results can be found in 

[2]. Steps in progressive automation are proposed in [3]. 

For this phase of the study we were most interested in the 

magnitude of performance gains achievable using different 

modes of operation (to be described).  Significant 

improvements via such fusion are an indication that not all 

information is being used by each component matcher; 

therefore there is “headroom” for further technology 

improvements.  

2. Principles of Matcher Fusion  

Matcher fusion works by augmenting the information 

used in making a decision. This “additional information” 

can fall into four basic categories: 1) additional external 

input; 2) additional extracted information (e.g., additional 

features used in searching); 3) additional information in the 

form of algorithmic improvements to the matcher (i.e., more 

“smarts”); and finally, 4) information regarding the strength 

and weaknesses of the component matchers. 

Additional external information exists when several 

(different) copies of a search fingerprint are used during a 

single search.  Section 7.4 focuses on this mode. 

Four levels of fusion are commonly identified in the 

literature: 1) decision level; 2) score level; 3) feature level; 

and 4) image level. A somewhat different perspective, one 

focusing on implementation architecture, is shown by the 

following diagrams.  

 

Input image

Preprocessor

Interim candidate
list

Preprocessor --Analyzes image 
to determine optimal algorithm

 Algorithm A Algorithm B

Subject = M731

Finger = 2

Score = 3513

 
 

 

 

In Figure 1 a Preprocessor is called upon to select the 

appropriate matcher (called “Algorithm” in figures), 

following an examination of input image characteristics. In 

the figure, the preprocessor would determine whether 
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Figure 1: Fusion Architecture Employing Preprocessor  
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matcher/algorithm A or B is employed. 

 

Figure 2: Fusion ArchitectureEmploying Mid-processor
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In Figure 2, a Mid-processor is used to combine the 

output of two matchers; this is done immediately after each 

matcher compares the search with a given file print. A 

generalization (not shown) combines both concepts: the  

preprocessor assists by determining the optimal weights 

used in merging the two outputs.  

Figure 3 illustrates the use of a postprocessor whose 

function is to merge candidate lists produced by the 

individual matchers.  While similar to Figure 2, there is one 

very important difference in that “interim candidate lists” 

generally do not contain all the file subjects looked at, but 

only the highest scoring matches. The fusion algorithm must 

therefore handle not only cases where the same candidate 

appears on both lists, but also where candidates appear on 

only one list.  

Figure 3 represents the type of system which we analyzed 

in this paper, and this choice was dictated by the nature of 

the available data. Retaining only the highest ranked 

candidates constitutes a type of data compression, and some 

information is lost. This suggests the performance of the 

system of Figure 3 will often be lower than that of Figure 2. 

However, for long candidate lists this effect is minimal. 

3. Weighting of Matchers 

If poorer quality data are mixed with higher quality the 

conclusions are often degraded. Such an effect is also 

observed with matchers. For best results it is necessary to 

weigh the output of a matcher based upon its intrinsic merit.   

A rigorous analysis is complicated, but insight can be 

gained from the following. Suppose two independent 

measurements/estimates, m1 and m2, are to be merged into a 

single estimate, mc.  A linear estimate for mc takes the form 

 

  mc  =  w1*m1 + w2*m2           … (1) 

where w1 and w2 are weights having the properties, 

w1, w2 >0, and w1 + w2 =1.  

 

It is known that for minimal variance the optimal weights 

are given by 

w1 = σ2
2
/(σ1

2
 + σ2

2
)   and   w2 = σ1

2
/(σ1

2
 + σ2

2
)  … (2) 

where σ1
2 

and σ2
2
 are the variances of the two 

measurements. The variance of mc is then given by 

σ1
2
σ2

2
/(σ1

2
 + σ2

2
). The last expression is always less than or 

equal to min{σ1
2
 , σ2

2
}, showing that the combined estimate 

is usually better, and never worse,  than the better of the two 

original estimates. 

But this is only true if the weights, w1, w2, are correctly 

chosen.  If we have no estimates of the errors (i.e., sigmas), 

then it is best to use equal weights. Unfortunately this can 

lead to a degraded estimate. This will occur if σ2/σ1 > √3 

(assuming “2” is the worse of the pair). We will return to 

this in section 7.3. 

4. Prior Work 

Sensor/matcher fusion remains an active area of research, 

as shown by the numerous recent references, a few of which 

are listed in Section 9. Many published papers have a very 

optimistic outlook on what gains are achievable. The paper 

by Daugman [4] is notable in this respect; we found its 

cautious tone to be justified. 

The papers by Vatsa, et al. [5]; Godil, et al. [6]; Scheirer, 

et al. [7]; Hong, et al. [8]; Ross and Jain, [9, 10]; and 

Figure 3: Fusion Architecture Employing Postprocessor

v Input image

v Postprocessor

v Interim candidate
lists

v Algorithm B

Subject = M731
Finger = 2
Score = 8513

Subject = M731
Finger = 2
Score = 8732 

* * * *
* * * *
* * * *

Subject = M938
Finger = 2
Score =3777

v Algorithm A

v Final (merged)
candidate
list
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Grother and Phillips [11] provide a good cross-section of 

application-oriented papers.  

High-level theoretical results are discussed by Ross et al. 

[12]; A. Jain [13]; K. Nandakumar, et al. [14]; Hube [15]; 

Baker and Maurer [16]; Dass et al. [17]; and Thomopoulos 

et al.  [18]. The paper by O. Melnik, et al. [19] is of special 

interest in that it attempts a kind of grand synthesis of 

several approaches.  

Recently there has been keen interest in the application of 

extreme value theory to score renormalization. References 

[20] through [24] provide some classical foundation 

material. Applications to the fusion problem are found in 

Scheirer, et al. [7]. 

 

5. Description of the Component Matchers 

and the Search Data 

 

The data for this study were generated by five matchers 

submitted to NIST for use in ELFT/EFS testing.  They are 

designated here, and in ref. [1], by A—E. It is not possible 

to go into the details of these matchers (partly for 

proprietary reasons, and partly for lack of space). However, 

much information concerning the test procedure and 

matcher performance will be found in [1 & 2]. In general, it 

is fair to state that Matcher A was the strongest, and the 

other matchers tended to have decreasing performance in 

alphabetical order, except that Matcher D (and not E) 

tended to be the weakest. 

Matcher characteristics important to this study are: a) 

each matcher was  able to execute a search using several 

types of input (search) data; b) every search looks at the 

entire database and nominally produces a candidate list of 

the one hundred highest ranking candidates; c) no matcher 

ever outputs more than one hundred candidates, but 

truncated candidate lists do occur; d) in rare cases, some 

matchers produced no candidate list at all; e) candidates on 

the list were ranked by their matcher score, highest score in 

top (first) position; f) the numerical range of matcher scores 

was however not prescribed; g) consequently, the range of 

matcher scores varied over several orders of magnitude – a 

large score for one matcher might be 0.9, while for another 

it would be 100,000; h) in addition to the native score, the 

candidate list included an estimate of “probability this 

candidate is a true mate” in the form of a number between 0 

and 100; finally, i)  the manner of calculating “probability of 

true mate” was not prescribed, though it was suggested the 

calculations should include  information beyond raw 

matcher score. 

To avoid biasing the results toward the optimistic side, it 

was decided to retain and score all cases in which there was 

at least one meaningful candidate list. The number of such 

“degraded mode” cases was not large, on the order of 2 – 

3%, but had a strong influence on the design of the 

algorithm. The following table summarizes the 

characteristics of the two principal search sets. 

 

 
 
                 Table 1 – Search Data Sets 

 

The next table summarizes the three types of input data 

(features) used in this study. 

 

 

 
 
                 Table 2 – Types of input data 

 

The search space (database = foreground + background) 

was 100,000 subjects, for a total of one million fingerprints. 

During every search the input was compared with each of 

the one million fingerprints. The one hundred largest scores 

were then placed on the output candidate list. 

6. Summary of Fusion Algorithms 

Investigated 

We looked at three types of fusion: 1) two different 

matchers, each using the same input data; 2) the same 

matcher for both, but using different input data (the data 

derived from the identical latent image); and 3) two 

matchers employing two different images (or features 

derived from these images).  In the last case, the two images 

belong to the same subject, but are not necessarily from the 

same finger. The rules for combining data are somewhat 

different for (3) than for the first two.  

 

 

6.1 Candidate List Reduction  
 

The fusion was done in two steps. First a greatly reduced 

candidate list was generated from the two candidate lists. 

There were two reasons for this approach. The first was our 

desire to further explore “candidate list reduction” (see [2]).  

The second was to establish the average number of 

imposters that candidate lists tend to have in common.  This 

number turns out to be surprisingly small, in the range of 1 – 

3. (By a “common imposter” we mean a candidate 

appearing on both lists which is not a true mate.) 
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We were also interested in the extent to which these 

common impostors would be high-scoring, and what 

characteristics might account for this. The “goodness” of 

this intermediate candidate list was measured by comparing 

it to the candidate list of equal length from the better of the 

two matchers.  

The rules for forming the intermediate (reduced) 

candidate list are: a) include the two first-position 

candidates (one from each list); b) selectively include the 

second positions (if no common candidates); and c) include 

all common candidates found on the two lists. This can 

result in duplications, which were then eliminated. 

 

6.2 Rescoring, FOMs 
 

Latent matchers are typically graded by their ability to 

place the correct mate into first place. This requires a 

re-ranking algorithm be applied to the intermediate 

candidate list. Four types were looked at. The first is 

rank-based, and similar to the familiar Borda count [25].  

The second is probability based, and uses the “probability 

of true mate” found on the candidate list, and mentioned in 

Section 5, items (h) and (i). 

The third and fourth were score-based.  Combining 

scores from different matchers requires renormalization, as 

individual matcher scores vary widely in magnitude.  We 

considered two different normalizations, one based on the 

global mean (mean over all subjects on all candidate lists) 

and one on a local mean (over that candidate list). (It is 

possible to avoid normalization by using the product instead 

of the sum. However, we did not consider this method 

because we wanted to consider unequal weighting of the 

two matchers.) 

Much research has gone into the question whether the 

product rule or the sum rule is best for combining scores. 

Some of the early work tended to favor the product rule. But 

it appears that with proper normalization the sum rules is 

superior (ref. [7-9]). More recently, extreme value theory 

has received considerable attention (ref. [20-24]). This 

theory is excellent for identifying unusually high scores, 

which are potential hits. It is also good for score 

normalization. But it is not clear that by itself it can handle 

large differences in performance of two systems.  

To differentiate the fused score from the native matcher 

scores, we refer to the former as a figure-of-merit, or FOM. 

We considered four types of FOMs. Representative 

equations for these are: 

1) Rank-based: 

    FOM1 = ((101 – ranka) + (101 – rankb))/2   …  (3) 

 

2) Probability-based: 

 

FOM2 = Pa + Pb – Pa*Pb/100       … (4) 

(The division by 100 is clarified by referring back 

to Section 5, item (h).) 

3) Native-score-based 

 

   FOM3 = 50*Scorea/Norma + 50*Scoreb/Normb   … (5) 

By “native score” we mean the score as it appears on the 

matcher candidate list. A candidate appearing on only a 

single candidate list is assigned zero for its second score.   

It will be noted that multiplicative factors have been 

inserted so as to make FOM generally lie between 0 and 

100. This is of help to the analyst when perusing candidate 

lists. (Unusual values could indicate errors.)  

 “Norm” denotes the average score of all candidates (the 

majority of which are non-mates). And as explained 

previously, we considered both a “local” and a “global” 

norm.  

 

6.3 Unequal  Weighting 
 

In section 3 we pointed out that when lower quality data 

are combined with higher quality it is necessary to 

compensate for this imbalance.  Accordingly, when fusing 

two matchers of unequal strength we modify (5) to read 

 

FOM =  50*Scorea/Norma + 50*dr*Scoreb/Normb … (6) 

 

where dr is a “de-rating” factor to account for the fact that 

matcher “b” is the weaker of the two.  Figure 7 shows the 

effect dr has on performance.  

 

7 Numerical Results 

This section summarizes salient results. We begin with 

the reduced candidate list. 

 

7.1 Reduced Candidate Lists 
 

Figure 4 shows typical candidate list lengths obtained. 

The letter pairs under each bar indicate the two matchers 

being fused. The average length (over all matcher pairs) is 

about 2.0. Since 0.7 of these are the true mate, the mean 

number of impostors is about 1.3 – a surprisingly low value, 

considering the original candidate list is 100 long. Note also 

that some matcher-pairs produce more candidates than 

others, suggesting these matchers are somehow more 

correlated; such an example is the triplet (B, C, E). 
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The Figure 5 shows the performance gain at the candidate 

list level. (Recall these are computed by comparing 

performance to an equal length candidate list from the better 

of two matchers.) 

 
 

The graph shows that performance gains can vary widely. 

Some combination such as A_B and C_E produce 

significant gains, while others such as A_D and B_D 

produce virtually no gain.  Figure 6 shows the net 

performance of each pair on the candidate-list level. 

 

 
 

It will be seen that the combination A_B produced the 

best result – perhaps not surprising, as these are the two best 

matchers.  

 

 

7.2 Top position 
 

To investigate the effect of different FOMs, we selected a 

“bellwether” subset of cases which were challenging. The 

following table summarizes the numerical results. 

 

 
Table 3 – Ranking FOM Results 

 

The rank-based approach tended to produce poor results, 

probably because of coarse resolution provided by the 

ranking. The probability-based approach, while producing 

reasonable results, was somewhat disappointing. Possibly, 

this was because the matchers tended to assign zeros to 

lower ranked candidates, and a zero value cannot elevate a 

candidate. 

It was originally thought that local normalization would 

be superior to global, because it uses information more 

specific to a particular search. However, this was not 

demonstrated. 

The value for B_E of 6.5% appears to be a good 

representative of the types of gains achievable with fusion 

using a single finger; though in a few instances higher 

values, around 8%, were observed. 

 

7.3 Unequal Weighting 
We evaluated the result of unequal weighting of the two 

component matcher, along the lines presented in Section 

Figure 4: Average Reduced Candidate List Length  

Figure 5: Average Performance Gain  

Figure 6: Average Performance 
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6.3. Figure 7 summarizes the result. (Lighter line is 

experimental data; darker is curve fit.) 

 
 

 

Note that when dr = 1 the weaker matcher “drags down” 

the stronger to a significant degree. On the other hand, when 

dr = 0 the influence of the second matcher is nullified, so 

that we are essentially dealing with matcher “a” only. An 

optimum point is reached around 0.27, at which point the 

performance delta is estimated to be +2% points.  To test 

whether this value is “robust” we tried substituting other 

matchers for the stronger matcher.  In all cases performance 

was improved over  dr = 1. In four out of five cases the result 

was a positive performance delta, while in the fifth case it 

was just slightly negative. (Of course for each of these cases 

the true optimal dr would be somewhat different; but the 

object was to test how sensitive the fused result is to dr.) 

7.4 Multi-finger Fusion 

So far the fusion was based upon one of the following 

modes: a) fusing the output of two different matchers 

employing the same input data; b) the same basic matcher 

operating on two different datasets; or c) both matchers and 

data are different. The important point is that in all cases the 

input/search data are derived from the same image.  

In this section we consider the case when the data are 

obtained from two different fingerprint images from the 

same subject. These fingerprints might originate from the 

same finger, or from different fingers (more common). In 

either case it is assumed the matcher does not “know” 

whether they are from the same finger.  This requires 

important changes in the fusion logic. Whereas in the 

previous cases scores were only combined if both the 

subject and the finger position were the same, in the present 

case only the subject need be the same.  

Multi-finger fusion has not received as much attention as 

other cases, so that Ref. [5] is of special interest. The 

following table summarizes results we obtained:  

 

 
 

Table 4 – Multi-finger Results 

 

 

It will be seen that achievable gains are significantly 

greater than in the other cases. For a single fingerprint gains 

beyond 6-8% were rare. For two fingers gains of over 15% 

can be achieved.  This is probably due to lower correlation 

in the data. 

It is interesting to see how far down a candidate can be 

reclaimed via fusion. In one case one of the candidates was 

ranked third and the other 21
st
 prior to fusion. Following 

fusion they became first and second. 

The most obvious approach is to use the best matcher and 

the best data type for both fingers. In our case this would be 

matcher A using dataset LE. This indeed produced the best 

overall results. For thoroughness we investigated other 

combinations. As the above table shows, using matcher B 

(the second best) for the second print resulted in a slight 

decrease in performance.  Also interesting to note is that 

even when the second matcher is the weakest (D) improved 

performance was obtained.  

 

8 Conclusions 

Relative simple and robust algorithms can be used to fuse 

two candidate lists. The first step is to merge and reduce the 

candidate list down to a small size, as described in 6.1. 

Typically two to six candidates are sufficient. In unusual 

cases, where the matchers appear to be highly correlated, 

longer lists are produced.  

The second step is to reorder the list based on all 

available information so that the best candidate will appear 

at the top. Performance increases of up to 6-9 

percentage-points were observed when fusing two matchers 

operating on a single finger. Using two fingers from the 

same subject produces significantly larger gains, of the 

order of 15 percentage-points. 

It is of interest to estimate how much information is 

added by the various fusion modes.  A “back of the 

envelope” calculation suggests that when using two 

different copies of the same finger, information is increased 

by about 41%. When using two different matchers on the 

same information, the increase is only 17% -- or less than 

half of the first mode. 

Figure 7: Performance vs. De-rating Factor (A & D) 
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In interpreting these results, it must be kept in mind that 

matcher accuracy also depends upon the quality of the 

file-side (background/foreground) feature extraction. 

Finally, the fusion of matchers could result in more close 

non-mates (impostors) being produced, possibly resulting in 

more Type I errors (false identifications).  
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