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Abstract Cloud Computing refers to the notion of outsourcing on-site available ser-
vices, computational facilities, or data storage to an off-site, location-transparent cen-
tralized facility or “Cloud.” Gang Scheduling is an efficient job scheduling algorithm
for time sharing, already applied in parallel and distributed systems. This paper stud-
ies the performance of a distributed Cloud Computing model, based on the Ama-
zon Elastic Compute Cloud (EC2) architecture that implements a Gang Scheduling
scheme. Our model utilizes the concept of Virtual Machines (or VMs) which act as
the computational units of the system. Initially, the system includes no VMs, but
depending on the computational needs of the jobs being serviced new VMs can be
leased and later released dynamically. A simulation of the aforementioned model is
used to study, analyze, and evaluate both the performance and the overall cost of
two major gang scheduling algorithms. Results reveal that Gang Scheduling can be
effectively applied in a Cloud Computing environment both performance-wise and
cost-wise.

Keywords Cloud computing · Gang scheduling · HPC · Virtual machines

1 Introduction

Cloud Computing is a revolutionary way of providing shared resources over the Inter-
net. Through the use of low level virtualization software, such as Xen [6], the Cloud
provides virtualized computing hardware infrastructure in a manner similar to the
public utilities, thus it is also termed as Infrastructure-as-a-Service (IaaS) or Utility
Computing. Since all hardware is virtualized, the Cloud gives the illusion of limitless
resources which can be made available to the user on-demand and can be dynamically
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scaled up or down. On the other hand Computing refers to the applications and soft-
ware platforms being offered through the Cloud usually under the notion of a service
model, hence called Software-as-a-Service (SaaS) [2].

The importance of Cloud Computing arises in the opportunity that it provides for
the development of application services without the requirement of a prior to de-
ployment Capital Expenditure (CapEx). This allows for startup Internet companies
with tight budgets to use their profits for Operational Expenditure (OpEx) alone.
Furthermore, in the scientific field of study, CC presents us with the ability to lease
computational resources from its virtually infinite pool for use in High Performance
Computing (HPC). In this way, even small institutions or individuals can have access
to a large number of computational resources at a fraction of the cost of maintain-
ing a supercomputer center. Since the Cloud is cost-associative, we pay only for the
computing time that we spent running each VM and for data transfers in and out of
the Cloud. One, of course, could argue that this problem is already addressed by the
Grid, but the Grid posses certain restrictions on the availability of software while
Cloud VMs can be custom built with virtually any software a user needs.

In order to take advantage of computational resources that span one server, or
in our case a virtual machine a parallel or distributed computing scheme must be
applied. Although Cloud Computing infrastructure is virtualized, and thus provides
no direct access to the underlying hardware, the Amazon EC2 specification provides
multicore VMs, hence parallelization even on a single VM is possible. Moreover, one
of the main features of Cloud Computing is its ability to adapt, so a user can expand
or contract his system dynamically. Conclusively, if CC is going to be used for HPC,
whose market share comprises a third of the server market [2, 5], appropriate methods
must be considered for both parallel job scheduling and VM scalability.

The importance of scheduling methods is apparent in every distributed system.
The scheduling algorithm must seek a way to maximize the performance of the sys-
tem by avoiding unnecessary delays [18] and also in our case maintain a good re-
sponse time to leasing cost ratio. The main task of the scheduler is to allocate proces-
sors to parallel jobs that have entered the system [25]. In the system modeled, parallel
jobs consist of tasks that are in very frequent communication and, therefore, must ex-
ecute both simultaneously and concurrently. Gang scheduling is a special case of job
scheduling that allows the scheduling of such jobs. A system that applies this kind
of scheduling must guarantee that every task of a given job will be allocated on a
different processor so that it will begin and finish its execution at the same time as
the other tasks. In this way, the system can avoid cases where a task is blocked while
waiting for input from another task that is not currently executing.

This type of scheduling has been extensively studied in the past in the area of dis-
tributed and Grid systems [9, 11, 13, 23, 24]. In [11–14] Karatza has studied the per-
formance of Adaptive First Come First Serve (AFCFS) and Largest Job First Served
(LJFS) gang scheduling policies. Gang Scheduling has also been examined in situa-
tions involving more than one clusters of processors [7, 18, 19]. Also, [18] considers
task migration strategies with the inclusion of high priority jobs in the process. In the
aforementioned publications, the number of processors available to the system was
always static during the simulation and the workload consisted of jobs with a degree
of parallelism in the range [1..P ], P being the total number of available processors,
regardless of distribution.
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Scheduling strategies have been studied before under the notion of Cloud Comput-
ing. In [3], Assunção et al. studied the use of CC as an extension to private clusters.
In their model, tasks were separate from each other and did not communicate. Vir-
tual Machine usage and leasing has also been studied in [21, 22] through the use of
Haizea1 VM-based lease management architecture.

In this paper, the simulation model consists of one distributed and dynamically
scaling Cloud Computing cluster of VMs. The workload consists of parallel jobs
(gangs) that are either small or large based on a pre-simulation specified job size
coefficient. We compare AFCFS and LJFS under this model in order to study their
performance and cost efficiency in a Cloud Computing environment. Additionally,
we implement a complex system for adding and removing virtual machines from the
system depending on the system’s load at any specific time. To the best of our knowl-
edge, there have not been any other publications that have addressed this specific
subject.

The structure of this paper is as follows. Section 2 presents an in-depth descrip-
tion of the system and workload models. Section 3 describes the Dispatching and the
Scheduling strategies utilized in the simulation. In Sect. 4, we discuss the VM han-
dling system that we have implemented. Section 5 presents the metrics used to mea-
sure performance and cost, the parameters of the simulation, and the results along
with an analysis of them. Finally, Sect. 6 provides some conclusive remarks along
with our thoughts about future work on the subject.

2 System and workload models

The simulation model consists of a single cluster of Virtual Machines connected with
a Dispatcher Virtual Machine (DVM). Initially, the system leases no VMs so the
cluster is empty. Depending on the workload at any specific moment, the system has
the ability to lease new VMs up to a total number of Pmax = 120. This is a limitation
posed by Amazon EC2 which allows up to 20 “Regular” and up to 100 “Spot” VMs
which can be leased under certain conditions [1], hence virtually up to 120 VMs.
The user can request even more VMs through electronic request, but the approval of
the request is not certain nor an answer is guaranteed within a specified time limit.
Therefore, for the time being, such a feature is excluded from the model.

Each Virtual Machine incorporates its own task waiting queue where the tasks of
parallel jobs are dispatched by the Dispatcher Virtual Machine (DVM). The DVM
also includes a waiting queue for jobs that where unable to be dispatched at the
moment of their arrival due to either inadequacy of VMs at that moment or due to
overloaded VMs. For the sake of simplicity DVM is not counted within the overall
limit of VMs, Pmax.

In this paper, we assume that the communication between the virtual machines
is contention-free. Therefore, we consider that the communication latencies are in-
cluded implicitly in the jobs’ execution time. However, we do consider explicit delays

1Haizea: http://haizea.cs.uchicago.edu/.

http://haizea.cs.uchicago.edu/
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Fig. 1 The system model

when jobs are not immediately dispatched for the reasons discussed in the previous
paragraph.

We also assume that all virtual machines are identical, that is, they all belong to the
same class of EC2 virtual machines. As is true with nonvirtualized systems, VMs can
suffer from inequalities in their performance depending on the state of the underlying
hardware at any specific moment. However, studies [2, 16, 17] have shown that VMs
are able to provide near homogeneous performance as long as no I/O takes place.
Even this problem is expected to be resolved in the near future through the use of
newer types of flash memory such as solid state drives (SSD). For these reasons, we
consider that any overhead that may exist due to temporal performance difference
between VMs is implicitly included in the execution time of jobs.

Gang scheduling is a special case of scheduling parallel jobs in which tasks of
jobs need to communicate very frequently [18]. Thus, each job requires a number of
processors equal to its degree of parallelism, the number of tasks that it consists of, in
order to be dispatched and executed. In the model under study, degrees of parallelism
are random numbers following the discrete uniform distribution. Furthermore, jobs
fall in two different categories of size:

– Lowly Parallel Jobs, that have job sizes in the range [1..16] with a probability
of q .
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– Highly Parallel Jobs, that have job sizes in the range [17..32] with a probability
of 1 − q .

where q is the job size coefficient which determines the amount of jobs that belong
to the first or the second category.

So we can compute the average number of tasks per job or Average Job Size (AJS)
in the following way:

AJS = q
1 + 16

2
+ (1 − q)

17 + 32

2
. (1)

The mean interarrival time of jobs is exponentially distributed with a mean of
1/λ. The mean task service time is exponentially distributed with a mean of 1/μ.
There exists no correlation between service times and job size, for example, it is not
necessary for a large job to have a long service time.

We must emphasize here that jobs always execute to completion and that no pre-
emption takes place. This happens because context switching in the case of Gang
Scheduling involves high overhead since network status must be saved and then be
restored when switching between tasks [10]. Also, as noted in the same reference,
there is a possibility that some messages that should have been received by a process
before it was switched may be received by another process after the context switch.
For this reason, it is impractical and possibly dangerous to either preempt or migrate
gang tasks when they are already running.

3 Dispatching and scheduling strategies

3.1 Job routing

The job entry point for the system is the Dispatcher VM. If the degree of parallelism
of any arriving job is less than or equal to the number of the available VMs, the job
is immediately dispatched. The allocation of VMs to tasks is handled by the DVM
which employs the Shortest Queue First (SQF) algorithm for this. SQF dispatches
tasks to VMs with the shortest, least loaded, queues. Tasks that belong to the same
job, also called sibling tasks, cannot occupy the same queue since gang scheduling
requires that there exists a one-to-one mapping of tasks to server VMs. An abstracted
view of SQF is provided by the following listing 1.

Algorithm 1 Shortest Queue First
vmsByQueueLength := getVMsByQueueLengthIncremental();
for i = 0 to numberOfTasks do

vmsByQueueLength[i].InsertInQueue(Task[i]);
end for
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3.2 Job scheduling

Two of the most commonly used strategies in the bibliography around gang schedul-
ing are applied. Both Adaptive First Come Fist Served (AFCFS) and Largest Job Fist
Served (LJFS) have been extensively studied in the past in the area of Grid Com-
puting. Our system studies their application under the notion of Cloud Computing.
It must be noted that both algorithms are called repetitively each time a job departs
since a large job may leave enough VMs idle to fit more than one smaller jobs. In this
way, job scheduling is more efficient.

3.2.1 Adaptive first come first serve

The AFCFS algorithm tries to schedule a job every time a server VM becomes idle
following a departure. If there is a job whose tasks are in front of their respective
queues and all server VMs for those tasks are idle, then that job is scheduled for
execution. Should there not be such a job AFCFS tries to schedule jobs whose tasks
are further back in their queues in the same manner until it finds such a job or not.
Due to this way of scheduling jobs, AFCFS tends to favor jobs that require a smaller
number of server VMs. Naturally this usually results at an increase of the response
time of larger jobs. In Algorithm 2, we provide a brief view of the implementation of
AFCFS.

Algorithm 2 Adaptive First Come First Serve
freeVMs := getFreeVMs();
for each vm in freeVMs do

tasksWaiting := vm.getWaitingTasks();
for each task in tasksWaiting do

job := task.belongsToJob();
check := checkIfJobCanBeExecuted(job);
if check == true then

return job;
else

continue;
end if

end for
end for

3.2.2 Largest job first serve

With LJFS jobs are scheduled depending on their size, with priority given to the jobs
with larger sizes. Every time the system tries to schedule a job it searches all jobs or-
dered by size and the first whose tasks are allocated to server VMs that are available
is scheduled for execution. This method improves the response time of highly paral-
lel jobs at the expense of smaller jobs taking longer to be scheduled for execution. In
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the real world, this does not necessarily constitute a problem since such a discrimi-
nation is acceptable for large computer centers whose job is to handle parallel jobs
that cannot be executed elsewhere. In Algorithm 3, an abstracted view of LJFS is
provided.

Algorithm 3 Largest Job First Served
jobsBySize := getJobsBySizeDecremental();
for each job in jobsBySize do

check := checkIfJobCanBeExecuted(job);
if check == true then

return job;
else

continue;
end if

end for

In Sect. 5.4, we also provide results for the First-Come-First-Serve algorithm,
which is the nonadaptive version of AFCFS.

4 Virtual machine handling

This section provides a thorough description of the VMs lease/release system. The
Cloud provides users with the ability to quickly up-scale or sub-scale their available
resources. Particularly EC2 provides service calls that request more instances of a
VM. The addition of more VMs is accomplished through a virtual machine cloning
process which involves the replication of a single initial state that all new virtual
machines share [15]. This initial state is stored in a VM image file which contains a
pre-configured system ready to be booted in a new VM instance [1].

As previously stated in Sect. 2 our system introduces a delay when a job’s dispatch
is delayed for the reasons previously mentioned. This delay refers to the time that the
VM cloning process will take to create a stated number of new VMs. Under Amazon
EC2, this delay is usually less than 10 minutes [1, 15]. In our simulation model,
provisioning and release delays are random numbers following a continuous uniform
distribution with a mean delay of 0.1, which is comparable to one-tenth of our mean
service time of job tasks (1/μ), which is 1.

4.1 Provisioning for additional virtual machines

The system implements a complex system for the lease/release cycle of VMs which
happens dynamically while the system is in operation. In order for the system to lease
new VMs, certain conditions must first be met:

– Inadequate VMs, This condition happens when a large job arrives and the system
has an inadequate amount of VMs, at that time, to serve the job. If this happens,
the newly arrived job enters the waiting queue of the DVM and waits there while
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the system provisions for new virtual machines. This procedure obviously involves
a certain delay that refers to the real world delay of cloning a virtual machine and
inserting it in the VM cluster. The subject of cloning VMs under Amazon EC2 has
been studied in [15]. In this case, the system only provisions for enough VMs in
order to serve the job.

– Overloaded VMs, Every time a new job arrives the system checks the Average
Load Factor (ALF) of the available VMs which is equal to

ALF =
∑Pl

i=1 ti

Pl

, (2)

where ti is the number of tasks currently assigned to VM i and Pl is the number
of VMs leased by the system at that moment. The ALF threshold is set to 10 tasks
per VM in our model. Should ALF surpass this threshold, the system provisions
for new VMs equal to the degree of parallelism of the arriving job putting it on
hold until they are available. After this type of VM provisioning takes place, the
release mechanism is paused for 10 arrival cycles allowing the waiting queues of
new VMs to fill up. While already dispatched tasks do not migrate to the new VMs
the Shortest Queue First (SQF) dispatching strategy that is applied guarantees that
new VMs will be prioritized for the next dispatches.

In any case, the system will never lease more than the aforementioned limit of Pmax =
120 VMs.

4.2 Releasing existing virtual machines

Server VMs can also be released when they are not needed. This operation is quite
important since idle servers in the Cloud are costly for the user. The process of re-
leasing a VM involves a certain delay and is considered irreversible in our model. For
this reason, VMs are released only if certain criteria are met:

– The VM is currently idle, meaning that it is not servicing any task.
– The VM’s task waiting queue must also be empty.
– The removal of the VM from the system will not cause a new shortage, of VMs,

for jobs that are waiting in the DVM’s queue for new VMs to be leased, and thus
introducing further delays for those jobs.

5 Simulation metrics & results

As we have previously mentioned, the use of the Cloud is “cost- associative,” hence
one pays only for the computing time which is equivalent to the total lease time of
virtual machines. Therefore, this study evaluates the proposed model not only from
the performance perspective but also from a cost to performance efficiency view.
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Table 1 Notations used in performance metrics

N The total number of jobs served

q The percentage of jobs that belong in the first size group [1..16]
1 − q The percentage of jobs that belong in the second size group [17..32]
μ Mean service rate of job tasks

1/μ Mean service time of job tasks

λ Mean arrival rate of jobs

1/λ Mean inter-arrival time of jobs

ART Average Response Time

AWRT Average Weighted Response Time

AWT Average Waiting Time

AWWT Average Weighted Waiting Time

ABSLD Average Bounded Slowdown

APPSLD Average Per-Processor Slowdown

5.1 Performance metrics

In order to evaluate the system’s performance, we apply the following performance
metrics, summarized in Table 1:

Reponse Time rj of a parallel job j refers to the time that it takes for the job to be
processed by the system from the moment that the job arrives to the dispatcher VM to
the time of the job’s service completion. This metric also includes any delay that the
job may suffer while waiting at the DVM’s queue for new server VMs to be added to
the system. The Average Response Time (ART) is defined as follows [13]:

ART =
∑N

j=1 rj

N
. (3)

We also include Weighted Response Time which takes into account the size of each
job which represents an important factor since highly parallel jobs are the prime
clients of HPC implementations. The response time of each job rj is weighted to
its number of tasks p(xj ) so Average Weighted Response Time (AWRT) is defined as
follows:

AWRT =
∑N

j=1 p(xj )rj
∑N

j=1 p(xj )
. (4)

Waiting Time wj of a parallel job j refers to time that passes between the dis-
patching of the job’s tasks to the queues of the server VMs and the job’s scheduling
for execution. The Average Waiting Time (AWT) and Average Weighted Waiting Time
(AWWT) are defined accordingly:

AWT =
∑N

j=1 wj

N
, (5)

AWWT =
∑N

j=1 p(xj )wj
∑N

j=1 p(xj )
. (6)
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Table 2 Notations used in cost metrics

Tlease(i) Lease Time of VM i

Ptot Total number of VMs leased

LT Total Lease Time of VMs

CPE Relative (%) increase in Cost-Performance when LJFS is applied instead of AFCFS

DLT Relative (%) decrease in LT when LJFS is applied instead of AFCFS

DART Relative (%) decrease in ART when LJFS is applied instead of AFCFS

Slowdown sj of a job j is the response time of the job divided by its service time.
This metric is used to measure the delay suffered by a job against its actual run-time.
If ej is the execution time of job j . then slowdown is defined as follows:

Sj = rj

ej

. (7)

This metric overemphasizes the importance of very short jobs since an extremely
small time at the denominator can have an immediate effect at the average slowdown
of the entire system. For this reason we apply the “Bounded-Slowdown” metric [8]:

Sbounded
j = max

{
rj

max{ej , τ } ,1

}

. (8)

For Average Bounded Slowdown (ABSLD):

ABSLD =
∑N

j=1 Sbounded
j

N
. (9)

And the “Per-Processor Slowdown” metric [26]:

S
pp
j = max

{
rj

p(xj )max{ej , τ } ,1

}

. (10)

For the Average Per-Processor Slowdown (APPSLD):

APPSLD =
∑N

j=1 S
pp
j

N
, (11)

where τ is the threshold we set so that low execution times do not affect slowdown
significantly. During the simulation of this model, this threshold was set to τ = 0.001.

5.2 Cost metrics

Cost metrics, as summarized in Table 2, are considered in this study since the use
of the EC2 Cloud is not free. The cost of Cloud usage derives from the lease time
of VMs. Therefore, when evaluating the performance of a scheduling algorithm, we
must also take into account the total lease time (LT) of virtual machines while the
system is in operation:

LT =
Ptot∑

i=1

Tlease(i), (12)
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where Tlease(i) is the lease time of VM i and Ptot is the total number VMs leased by
the system.

Thus, in order to compare LJFS and AFCFS cost-performance wise, we devise the
following metric:

Cost-Performance Efficiency (CPE) which is evaluated by combining LT with the
ART performance metric. CPE provides the relative increase in cost-performance
when LJFS is applied instead of AFCFS and is defined as follows:

CPE = (−DLT) + (−DART), (13)

where DLT is the relative decrease in lease time when LJFS is applied instead of
AFCFS and DART is the relative decrease in ART when LJFS is applied instead of
AFCFS. DLT & DART are computed as such:

DLT = LTLJFS − LTAFCFS

LTAFCFS
, (14)

DART = ARTLJFS − ARTAFCFS

ARTAFCFS
. (15)

It must be made clear that a negative value in DLT means that LJFS acts better
than AFCFS. The same is true for DART , hence CPE is the computed by summing
the negated values of both DLT and DART . For this reason, a positive CPE denotes
that LJFS is better than AFCFS in terms of cost-performance while a negative CPE
denotes that AFCFS is better.

5.3 Simulation parameters

The queuing network model previously described was implemented using discrete
event system simulation [4]. Each result presented here is the average of 30 differently
instantiated replications of the simulation experiment for each arrival rate (λ) and
each algorithm per job size coefficient. Each simulation run was terminated upon
successful completion of 64,000 jobs.

Three different job size coefficients where applied in order to study their effects
on performance while maintaining the same workload:

– q = 0.25, in order to study how the system behaves when larger jobs are signifi-
cantly more than smaller ones.

– q = 0.5, in order to study a balanced system.
– q = 0.75, in order to study the behavior of the system under a multitude of smaller

jobs as workload.

According to (1):

– For q = 0.25 jobs require 20.5 VMs on average.
– For q = 0.50 jobs require 16.5 VMs on average.
– For q = 0.75 jobs require 12.5 VMs on average.

The simulation model is bounded at 120 VMs which means that for q = 0.75, λ <
120
12.5 = 9.6, for q = 0.50, λ < 120

16.5 ≈ 7.27 and for q = 0.25, λ < 120
20.5 ≈ 5.85. Since the
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system uses gang scheduling, where in many occasions jobs are not executed while
idle VMs are available, the arrival rates should be much smaller than those computed
above. Furthermore, this paper aims to study a dynamically scalable system, thus
through empirical study we have chosen arrival rates that do not lead to a degenerate
system. The term “degenerate” refers to a system where almost no releases take place
so the system ends up having close to 120 VMs permanently leased throughout its
operation.

In order to further clarify our choice of arrival rates, we should note that for each
simulation experiment we computed Pavg which is the average number of processors
in the system for each experiment and is given by the following formula:

Pavg = LT

T
, (16)

where LT is, as stated above, the total lease time of VMs and T is the total simulation
time.

This number reveals if the arrival rate used at the experiment led to system degen-
eration. If Pavg � Pmax the system is considered “degenerate.” Consequently, arrival
rates that led to system degeneration where excluded from experimentation. Differ-
ent arrival rates were evaluated for each q since the differentiation in job sizes greatly
affects the system’s performance and its ability to scale.

The following arrival rates were used in our experiments:

– For q = 0.25, λ = 1.75,2.0,2.25,2.5,2.75.
– For q = 0.50, λ = 2.25,2.5,2.75,3.0,3.25.
– For q = 0.75, λ = 2.5,3.0,3.5,4.0,4.5.

As previously mentioned, the mean service time of job tasks (1/μ) used in all
experiments was 1.

For every mean value, a 95% confidence interval was evaluated. The half-widths
of all confidence intervals were less than 5% of their respective mean values.

5.4 Results

The following results depict the difference between both the performance and the
cost of the two aforementioned algorithms under various workloads and different job
size coefficients. Performance results regarding time, ergo ART, AWRT, AWT, and
AWWT, are counted in theoretical generic Time Units (TUs) since the model was
simulated with discrete event simulation.

Figure 2a–f depicts the Average Response Time and Average Weighted Response
Time versus λ. Figure 3a–f shows the Average Waiting Time and Average Weighted
Waiting Time versus λ. Figure 4a–f depicts the Average Bounded Slowdown and Aver-
age Per-Processor Slowdown versus λ. Finally, Table 3 lists the Cost-to-Performance-
Efficiency for all arrival rates and job size coefficients.

5.5 Average response time and average weighted response time

Figure 2a, c, e depicts the comparison of the response times given by AFCFS, LJFS,
and FCFS for q = 0.25, q = 0.5, and q = 0.75, respectively.
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Fig. 2 (a) ART vs λ q = 0.25, (b) AWRT vs λ q = 0.25, (c) ART vs λ q = 0.50, (d) AWRT vs λ q = 0.50,
(e) ART vs λ q = 0.75, (f) AWRT vs. λ q = 0.75

As is apparent throughout simulation results FCFS, as a nonadaptive method,
quickly degenerates the system under all situations. This happens because FCFS tries
to schedule jobs whose tasks are in the first slot of their waiting queues. If those tasks
cannot be scheduled at that time FCFS looks no further down the queues. As a result,
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Fig. 3 (a) AWT vs λ q = 0.25, (b) AWWT vs λ q = 0.25, (c) AWT vs λ q = 0.50, (d) AWWT vs λ

q = 0.50, (e) AWT vs λ q = 0.75, (f) AWWT vs. λ q = 0.75

on many occasions jobs that could have been scheduled, were not because of the way
FCFS works.

AFCFS seems to offer better results than LJFS while arrival rates are low regard-
less of the job size coefficient. When the workload gets heavier its performance drops
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Fig. 4 (a) ABSLD vs λ q = 0.25, (b) APPSLD vs λ q = 0.25, (c) ABSLD vs λ q = 0.50, (d) APPSLD vs
λ q = 0.50, (e) ABSLD vs λ q = 0.75, (f) APPSLD vs λ q = 0.75

to the same level as LJFS. High workloads which push the system close to the point
of degeneration show that LJFS is slightly more effective at handling them compared
to AFCFS. In fact for q = 0.25 AFCFS degrades quicker even at smaller workloads.
Such results are expected since AFCFS tends to favor smaller jobs.
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In Fig. 2b, d, f, the weighted response time of all algorithms is depicted. Again,
FCFS offers worse results as is expected. This metric takes into consideration job
sizes as shown in (4). Therefore, it illustrates even more the weakness of AFCFS
which has a tendency to over-schedule smaller jobs in the expense of postponing
execution of larger jobs, which are usually more important. This figure also depicts
that LJFS offers superior performance for larger jobs since they are given priority
over smaller ones. On the other hand, smaller jobs do not necessarily suffer starvation
since larger jobs often leave large enough numbers of VMs idle for smaller jobs to be
effectively scheduled.

5.6 Average waiting time & average weighted waiting time

Waiting Time and Weighted Waiting Time follow a similar pattern to that of the re-
sponse time. This is expected as there exists no correlation between size and execu-
tion times. As is depicted in Fig. 3a, c, e, AFCFS tends to offer smaller waiting times
than LJFS for low arrival rates. That changes though when the workloads get heav-
ier. Furthermore Fig. 3b, d, f show that waiting times of larger jobs are significantly
higher when AFCFS is applied.

5.7 Average bounded slowdown and average per-processor slowdown

Slowdown measures the delay that a job suffers in relation to its execution time.
Figure 4a, c, e illustrate again the Slowdown posed by AFCFS is larger for heavier
workloads. Figure 4b, d, f reveal that Per-Processor Slowdown of AFCFS is consis-
tently lower than that of LJFS by a small margin. This is not unexpected though since
Slowdown is a metric that is easily affected [8] by multiple factors. This is even more
true for Per-Processor Slowdown which adds the number of VMs required by each
job to the equation.

5.8 Cost-to-performance efficiency

Table 3 shows the CPE for all arrival rates and job size coefficients tested. As previ-
ously mentioned, positive values denote that LJFS is more efficient cost-performance
wise while negative values denote the opposite. As is depicted, LJFS steadily provides
better efficiency. Even at situations where AFCFS provides better response time, the
busy time to lease time ratio of LJFS is significantly better than that of AFCFS. Since
the usage of the “Cloud” is directly associated with lease time, it becomes obvious
that the use of LJFS can provide better overall performance at a significantly lower
cost even more so when workloads are heavier.

6 Conclusions and future work

This study explored the application of the two most commonly used Gang Scheduling
strategies AFCFS and LJFS under the notion of Cloud Computing. The simulation
model implemented was based on the already existing Amazon EC2 cloud computing
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Table 3 Cost-to-performance
efficiency AFCFS-LJFS λ q = 0.25 q = 0.5 q = 0.75

1.75 −10.1232 – –

2 1.3171 – –

2.25 4.2493 6.3589 –

2.5 14.8915 4.2130 0.1413

2.75 17.3365 2.2873 –

3 – 8.1537 0.4645

3.25 – 21.5644 –

3.5 – – 4.7581

4 – – 8.4878

4.5 – – 22.9386

implementation which to the best of our knowledge is the only currently available CC
infrastructure that can implement our model.2 Virtual machines were considered as
the computational unit of our distributed system instead of classic servers. Multiple
job sizes where studied in our implementation along with dynamic availability of
VMs which were leased and released by the system in real time. Experiments were
conducted through the use of a simulation model under various workloads and job
size characteristics. Apart from the performance metrics that are usually utilized in
bibliography new metrics were devised in order to assess the performance in relation
to the cost that the application of each algorithm imposed on the Cloud user.

Both algorithms proved that they can be efficiently applied in an environment with
a nonstatic number of VMs. While both algorithms provide similar performance for
medium workloads LJFS outperforms AFCFS when workloads get heavier. That is
even more apparent in weighted metrics which take into account job sizes. Cost-wise
LJFS provides superior cost-performance efficiency than AFCFS and is far-superior
in situations of heavy workload.

We must note here that as this field of study is relatively new and, though the
present model is complex, in the future different scenarios involving the use of job
migration along with variable workloads and job sizes and types must be considered
to better fit a real HPC cloud computing implementation. Furthermore, the introduc-
tion of classes of VMs can also be added to the model since CC can offer computation
units with nonuniform performance at will.
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