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Abstract 
 
Profiling drug leads by means of in silico and in vitro assays as well as omics is widely 
used in drug discovery for safety and efficacy predictions. In this study, we evaluate the 
performance of machine learning models trained on data from gene expression and 
phenotypic profiling assays, with models trained on chemical structure descriptors, for 
prediction of various drug mechanisms of action and target proteins. Models for several 
hundred mechanisms of actions and targets were trained using data on 1484 
compounds characterized in both gene expression using L1000 profiles, and phenotypic 
profiling with cell painting assay. The results indicate that the accuracy of the three 
profiling technologies varies for different endpoints, and indicate a clear potential 
synergistic effect if these methods are combined. We also study the effect of predictive 
accuracy of data from different cell lines for L1000 profiles, showing that the choice of 
cell line has a non-negligible effect on the predictive accuracy. The results strengthen 
the idea of integrated approaches for predicting drug targets and mechanisms of action 
in preclinical drug discovery. 
 
 
 
Introduction 
 
 
Over the past decade, methods have been developed to systematically determine 
cellular effects of chemical compounds with the aim to improve fields such as drug 
screening and safety profiling.1-3 Important objectives include to predict off-target effects 
and adverse drug reactions but also to offer insights into compound’s mode of action 
and the establishment of adverse outcome pathways. 
 
Pharmaceutical profiling using ligand binding or enzyme assays is the most widely used 
in vitro methodology, and it is widely implemented in drug discovery safety platforms. 
Profiling using gene expression is relatively recent, and pioneering work includes 
Connectivity Map4 that has been widely used and built upon.5,6 
 
L1000 is a high throughput and low cost gene expression profiling method, based on 
representation of transcriptome by 978 “landmark genes”. Recently, datasets with L1000 
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profiles were made available in Broad LINCS L1000 Connectivity Map project, including 
profiles for a total of 20K small molecule compounds, of which over 2K compounds were 
studied systematically in nine human cancer cell lines.6,7 
 
Multiparametric high-content imaging has also proven to be a highly useful and 
successful technique for understanding biological activity in response to chemical and 
genetic perturbations. The Broad Bioimage Benchmark Collection (BBBC) is an 
important publicly available collection of microscopy images. Some of the largest image 
sets obtained by Cell Painting assay comprise osteosarcoma cells treated by 1.6K 
known bioactive compounds8 and by 30K compounds, most of which being derived from 
diversity-oriented synthesis.9 
 
It is hypothesized that chemical compounds with a similar mechanism of action (MoA), 
which act upon the same signaling pathways, will produce comparable phenotypes, and 
that analysis of phenotyping profiling data can predict compound mechanism of action.10 
Successful prediction examples include a study by Ljosa et al.11 where 37 compounds 
are classified to 12 MoA’s with 94% prediction accuracy, and a study by Warchal et al. 
where 24 compounds are classified to eight MoA’s with over 80% accuracy in several 
cell lines.10 On a large scale, predicting of results of particular biological assays on the 
basis of phenotyping profiling data have been recently undertaken.12,13 In particular, in a 
study by Simm et al. information extracted from microscopy-based screen for 
glucocorticoid receptor translocation was able to predict assay-specific biological activity 
in two ongoing drug discovery projects, leading to a tremendous 60-fold and 250-fold 
increase of hit rates. 
 
For transcriptomic data, models are reported by Aliper et al.14 where several hundred 
compounds selected from Broad LINCS database are linked to 12 therapeutic use 
categories in breast cancer (MCF7), prostate cancer (PC3), and lung cancer cells 
(A549). 
 
The aim of the current study was to compare the performances of features derived from 
gene expression and phenotypic profiling assays with the performance of chemical 
structure based descriptors, for prediction of various drug mechanisms of action and 
target proteins. To this end, models for several hundred mechanism(s) of actions and/or 
target(s) (MoA/Ts) were created using data for 1484 compounds characterized in both 
gene expression and phenotypic profiling assays. As L1000 gene expression profiles 
have been collected systematically in several cell lines, we also aimed to investigate 
cell-context specificity of transcriptomic data for predicting MoA/Ts. 
 
In phenotyping profiling, each compound is typically tested in quadruplicates or 
octaplicates on different plates and thus four or eight profiles per compound are 
obtained. The overall profile thus depends on the way the data are aggregated. In this 
study we therefore also investigated the effects of data pre-processing on the prediction 
accuracy. 
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Materials and Methods 
 
 
Datasets 
 
 
Gene expression profiling (Connectivity Map) 
 
 
The Connectivity Map (CMap) dataset built using L1000 high-throughput gene-
expression assay was downloaded from Gene Expression Omnibus (ascension: 
GSE92742).7 The dataset comprises transcriptional responses (expression of 978 
landmark genes) to perturbations of various cells by 19,811 small molecule compounds. 
2,429 of the compounds are profiled systematically across nine human cancer cell lines. 
Most of the profiles are obtained with 10 µM dose and 24 hour treatment time. 
 
 
Phenotypic profiling (Cell Painting) 
 
 
Dataset of images and morphological profiles of 30,616 small molecule treatments 
obtained by Cell Painting assay was downloaded from GigaDB, 
http://gigadb.org/dataset/100351. In this assay, human U2OS (human osteosarcoma) 
cells are stained for eight major organelles and sub-compartments, using a mixture of 
six fluorescent dyes.15 From five channel microscopy images, 1783 morphological 
features are generated by CellProfiler software.16 
 
 
Compound annotation with protein targets and/or mechanism of 
action 
 
 
We used Touchstone data base (https://clue.io/touchstone)6 and Drug Repurposing Hub 
(https://clue.io/repurposing)17 to associate compounds to their mechanism(s) of actions 
and/or protein target(s) (MoA/Ts). From annotations to individual targets, we also 
derived labels for protein kinase groups. 
 
For Cell Painting dataset, we obtained annotations for 1759 compounds, where 262 
MoA/Ts were shared by at least five compounds. In CMap dataset, the three cell lines 
with the highest number of annotated compounds were MCF7 (breast cancer, 2801 
annotated compounds, 444 MoA/Ts shared by at least five compounds), PC3 (prostate 
cancer, 2775 annotated compounds, 435 MoA/Ts), and A549 (lung cancer, 2319 
annotated compounds, 380 MoA/Ts). The intersection of Cell Painting dataset and the 
largest of CMap datasets (MCF7) contained 1484 compounds and 234 MoA/Ts. 
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Data pre-processing 
 
 
In Cell Painting dataset, most of the compounds have been used to treat cells eight 
times on different plates, thus giving eight sets of morphological features for each 
compound. In data pre-processing, we first centered and (optionally) normalized the 
features on plate-to-plate basis, by subtracting the mean value and (optionally) dividing 
by the standard deviation for the control samples on this plate. Thereafter we calculated 
the mean or the median values of each feature from the eight sets, and used them as 
descriptors for the compounds. Some of the 1783 features were invariant in the present 
dataset, and were removed before the modelling. 
 
 
Random Forest 
 
 
Random Forest (RF) is a classifier that consists of multiple decision trees. A decision 
tree is made up of nodes and branches. At each node the dataset is split based on the 
value of some attribute that is selected so that the instances of different classes are 
predominantly moved to different branches. Classification starts at the root node and is 
performed by passing the instances along the tree to leaf nodes. To introduce diversity 
between the trees of a random forest, a subset of all attributes is randomly selected to 
take decisions at each node of each tree. The class probability of an instance is 
estimated considering results of all trees. We here developed RF models with 500 trees 
using the randomForest package of R. Thus, for a test set instance the class probability 
was one of 500 numerical values in the range from 0 to 1. 
 
 
Model evaluation 
 
 
For every MoA/T, 25 RF models were created, assigning 80% of compounds to the 
training set and 20% of compounds to the test set. In each model, the seed for random 
number generator for training/test split corresponded to the model number to ensure 
reproducibility of modeling. The predictions from all models were aggregated to calculate 
Receiver Operating Characteristic (ROC) curve, which is plotted as the true positive rate 
versus the false positive rate at various discrimination threshold values. The area under 
the ROC curve (AUC) is a measure of the discriminatory power of a classifier, which is 
insensitive to class distributions and the costs of misclassifications; AUC = 1 indicates 
perfect classification, while AUC = 0.5 means that the classifier does not perform better 
than random guessing. 
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Variable Importance in Random Forest models 
 
 
In RF, each tree has an out-of-bag sample of data that is not used during construction of 
the tree. The prediction error on the out-of-bag portion of the data is calculated. Then, 
the values of the variables in the out-of-bag-sample are randomly shuffled, for one 
variable at a time, and predictions recalculated. The difference between the two values 
is used as a measure of importance of the variable in the given tree. Finally, the 
importance in the whole RF is calculated as the average over all trees. 
 
 
Results and Discussion 
 
 
Models for CMap datasets in three cell lines 
 
 
In CMap dataset, the three cell lines with the highest number of annotated compounds 
were MCF7 (breast cancer, 2801 annotated compounds, PC3 (prostate cancer, 2775 
annotated compounds), and A549 (lung cancer, 2319 annotated compounds). We 
developed Random Forest models for mechanisms of action and targets (MoA/Ts) 
shared by at least five compounds, which gave 444, 435, and 380 models for MCF7, 
PC3, and A549, respectively. In models for 17 MoA/Ts, the area under the ROC curve 
(AUC) exceeded 0.90, for 59 MoA/Ts the AUC exceeded 0.80, and for 121 MoA/Ts the 
AUC exceeded 0.70. The results for the best-predicted MoA/Ts are presented 
graphically in Figure 1 (for full results with number of active compounds in each model, 
AUC, and confidence intervals see Supplemental Table S1.) 
 
In the presentation of CMap dataset, the authors noted that only 15% of compounds 
produced highly similar transcriptional profiles across the entire panel of cell-lines 
suggesting that transcriptional response is cell dependent.7 For instance, it was found 
that glucocorticoid receptor antagonists shared similar profiles only in cell lines where 
the glucocorticoid receptor NR3C1 was highly expressed (i.e. A549, but not PC3 and 
MCF7). Our results confirm this finding for glucocorticoid receptor agonists, where the 
models for A549 and PC3 cell lines show much better predictive performance than the 
model for MCF7. Similarly, for glycogen synthase kinase inhibitors good models are 
obtained in MCF7 and PC3, but not in A549 cell line, but for estrogen receptor 
antagonists and agonists only in A549. For the three retinoid acid receptors RARA, 
RARB, and RARG, predictive models are obtained only in MCF7 cell line. 
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Figure 1. The areas under the ROC curve (AUC) for predicting MoA/Ts in cell lines 
MCF7, PC3, and A549. AUC is a measure of the discriminatory power of a model. 
AUC=1 indicates perfect predictions, i.e. complete separation of all class members from 
all non-members, whereas AUC=0.5 indicates predictions not better than random.
 
 
An overall comparison of the models also reveals some differences between the 
lines, the average AUC for the top
line 0.83 and in A549 cell line 0.80. An overview of results for the broadest drug classes 
indicates that gene expression data is not suited for modeling of GPCR
(such as agonists and antagonists of dopamine, histamine, serotonin, and acetylcholine 
receptors). For these mechanisms of action, the models show AUC around 0.50, i.e., 
they do not perform better than random guesses. In contrast, an overall m
inhibitors (that constitute about 10% of all dataset compounds) possesses predictive 
performance of AUC = 0.70 in MCF7 cell line and 0.71 in PC3.
 
 
Models for CMap dataset in MCF7 cell line with gene expression 
profiles generated after diff
 
 
In the above presented models we used compound profiles generated after 24 hours of 
treatment. However, for MCF7 cell line, for 2787 of 2801 compounds profiles were 
available also for 6-hour treatment. In a preliminary analysis, 
sets of profiles, and found that only for 56% of landmark genes the variance in 
expression levels was higher in 24
observation suggested that the effects of perturbations could not neces
manifested best in 24-hour profiles for all MoA/Ts.

The areas under the ROC curve (AUC) for predicting MoA/Ts in cell lines 
MCF7, PC3, and A549. AUC is a measure of the discriminatory power of a model. 
AUC=1 indicates perfect predictions, i.e. complete separation of all class members from 

hereas AUC=0.5 indicates predictions not better than random.

An overall comparison of the models also reveals some differences between the 
lines, the average AUC for the top-50 models in MCF7 cell line being 0.86, in PC3 cell 
line 0.83 and in A549 cell line 0.80. An overview of results for the broadest drug classes 
indicates that gene expression data is not suited for modeling of GPCR
(such as agonists and antagonists of dopamine, histamine, serotonin, and acetylcholine 
receptors). For these mechanisms of action, the models show AUC around 0.50, i.e., 
they do not perform better than random guesses. In contrast, an overall m
inhibitors (that constitute about 10% of all dataset compounds) possesses predictive 
performance of AUC = 0.70 in MCF7 cell line and 0.71 in PC3. 

Models for CMap dataset in MCF7 cell line with gene expression 
profiles generated after different perturbation times 

In the above presented models we used compound profiles generated after 24 hours of 
treatment. However, for MCF7 cell line, for 2787 of 2801 compounds profiles were 

treatment. In a preliminary analysis, we compared these two 
sets of profiles, and found that only for 56% of landmark genes the variance in 
expression levels was higher in 24-hour profiles compared to 6
observation suggested that the effects of perturbations could not neces

hour profiles for all MoA/Ts. 

 

The areas under the ROC curve (AUC) for predicting MoA/Ts in cell lines 
MCF7, PC3, and A549. AUC is a measure of the discriminatory power of a model. 
AUC=1 indicates perfect predictions, i.e. complete separation of all class members from 

hereas AUC=0.5 indicates predictions not better than random. 

An overall comparison of the models also reveals some differences between the cell 
50 models in MCF7 cell line being 0.86, in PC3 cell 

line 0.83 and in A549 cell line 0.80. An overview of results for the broadest drug classes 
indicates that gene expression data is not suited for modeling of GPCR-targeted drugs 
(such as agonists and antagonists of dopamine, histamine, serotonin, and acetylcholine 
receptors). For these mechanisms of action, the models show AUC around 0.50, i.e., 
they do not perform better than random guesses. In contrast, an overall model for kinase 
inhibitors (that constitute about 10% of all dataset compounds) possesses predictive 

Models for CMap dataset in MCF7 cell line with gene expression 
 

In the above presented models we used compound profiles generated after 24 hours of 
treatment. However, for MCF7 cell line, for 2787 of 2801 compounds profiles were 

we compared these two 
sets of profiles, and found that only for 56% of landmark genes the variance in 

hour profiles compared to 6-hour profiles. This 
observation suggested that the effects of perturbations could not necessarily be 
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Hence, to identify eventual time
profiles and models where both profiles were concatenated, thus giving 2×978 features 
per compound. The results
AUC > 0.8 are presented graphically in Figure 2. Notably, for some MoAs, such as 
tubulin polymerization inhibitor, microtubule inhibitor, and thymidylate synthase inhibitor, 
AUCs are low in models us
performances are, however, comparable, and in some cases combining of the two 
profiles has further improved the performance. Among the 51 MoAs/Ts, the highest AUC 
is achieved in 10 models built on 6
and 15 models that include both profiles.
 
 

Figure 2. The areas under the ROC curve (AUC) in models for predicting MoA/Ts in 
MCF7 cell line using gene expression profiles generated after 6 hours and 24 hours of 
treatment, and a concatenation of the two profiles.
 
 
 
Models for CMap/Cell Painting dataset
 
 
In the next step of the study we created models for a set of 1484 compounds that have 
been characterized in both gene expressio
sake of comparison, we also created models using structural descriptors of molecules, 
calculated by Chemistry Development Kit package of R (rcdk). These descriptors include 
a variety of topological, geometrical, c
 

Hence, to identify eventual time-dependencies, we created models also with 6
profiles and models where both profiles were concatenated, thus giving 2×978 features 
per compound. The results for 51 MoA/Ts where at least one of three models showed 
AUC > 0.8 are presented graphically in Figure 2. Notably, for some MoAs, such as 
tubulin polymerization inhibitor, microtubule inhibitor, and thymidylate synthase inhibitor, 
AUCs are low in models using 6-hour profiles. For most of MoA/Ts the model 
performances are, however, comparable, and in some cases combining of the two 
profiles has further improved the performance. Among the 51 MoAs/Ts, the highest AUC 
is achieved in 10 models built on 6-hour profiles, 26 models built on 24
and 15 models that include both profiles. 

The areas under the ROC curve (AUC) in models for predicting MoA/Ts in 
MCF7 cell line using gene expression profiles generated after 6 hours and 24 hours of 

concatenation of the two profiles. 

Models for CMap/Cell Painting dataset 

In the next step of the study we created models for a set of 1484 compounds that have 
been characterized in both gene expression and phenotypic profiling assays. For the 
sake of comparison, we also created models using structural descriptors of molecules, 
calculated by Chemistry Development Kit package of R (rcdk). These descriptors include 
a variety of topological, geometrical, charge based and constitutional descriptors.

dependencies, we created models also with 6-hour 
profiles and models where both profiles were concatenated, thus giving 2×978 features 

for 51 MoA/Ts where at least one of three models showed 
AUC > 0.8 are presented graphically in Figure 2. Notably, for some MoAs, such as 
tubulin polymerization inhibitor, microtubule inhibitor, and thymidylate synthase inhibitor, 
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ofiles, 26 models built on 24-hour profiles, 

 
The areas under the ROC curve (AUC) in models for predicting MoA/Ts in 

MCF7 cell line using gene expression profiles generated after 6 hours and 24 hours of 

In the next step of the study we created models for a set of 1484 compounds that have 
n and phenotypic profiling assays. For the 

sake of comparison, we also created models using structural descriptors of molecules, 
calculated by Chemistry Development Kit package of R (rcdk). These descriptors include 

harge based and constitutional descriptors.18 
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The results for MoA/Ts where AUC for either gene expression or phenotypic profiling 
based model exceeded 0.70 are presented in Figure 3 and Supplemental Table S2. In 
many cases, gene expression or phenotypic 
predictive performance. For some of the targets, however, only one of the two 
descriptions has produced a predictive model, suggesting that the two profiling 
approaches capture distinct aspects of cell response.
 

Figure 3. The areas under the ROC curve (AUC) for predicting MoA/Ts for models 
based on gene expression data, cell morphology data, and structural description of 
chemical compounds. 
 
 
Comparisons of results for gene expression 
results of the corresponding models in Figures 1 and 2 reveal that for some MoA/Ts the 
modeling performance is inferior. This can be explained by a lower number of active 
compounds for these MoA/Ts in the intersection of CMap and Cell Painting datasets 
compared to CMap alone. For instance, the number of MTOR inhibitors has decreased 
from 18 to 5, resulting in decrease of AUC from 0.92 to 0.87. Similarly, the number of 
topoisomerase inhibitors has decreased from 21 to 7, resulting in change of AUC from 
0.84 to 0.75.  
 
Similarly as with gene expression data, phenotypic profiling data has not given any 
predictive models for agonists/antagonists of most GPCR classes. This is in con
models for several protein kinases and protein kinase groups (such as Non
tyrosine kinases with AUC = 0.84 and Src family tyrosine kinases with AUC = 0.81) and 
nuclear receptors (e.g. glucocorticoid receptor NR3C1 with AUC = 0.83).
 
Our negative results for GPCRs are in agreement with findings of Rohban et. al.
estimated similarities of morphological profiles of pairs of compounds sharing the same 
MoA. For GPCR agonists/antagonists it was found that a very low fraction of the top 

The results for MoA/Ts where AUC for either gene expression or phenotypic profiling 
based model exceeded 0.70 are presented in Figure 3 and Supplemental Table S2. In 
many cases, gene expression or phenotypic profiling models show comparable 
predictive performance. For some of the targets, however, only one of the two 
descriptions has produced a predictive model, suggesting that the two profiling 
approaches capture distinct aspects of cell response. 
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based on gene expression data, cell morphology data, and structural description of 

Comparisons of results for gene expression data based models in Figure 3 with the 
results of the corresponding models in Figures 1 and 2 reveal that for some MoA/Ts the 
modeling performance is inferior. This can be explained by a lower number of active 
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from 18 to 5, resulting in decrease of AUC from 0.92 to 0.87. Similarly, the number of 

erase inhibitors has decreased from 21 to 7, resulting in change of AUC from 

Similarly as with gene expression data, phenotypic profiling data has not given any 
predictive models for agonists/antagonists of most GPCR classes. This is in con
models for several protein kinases and protein kinase groups (such as Non
tyrosine kinases with AUC = 0.84 and Src family tyrosine kinases with AUC = 0.81) and 
nuclear receptors (e.g. glucocorticoid receptor NR3C1 with AUC = 0.83).
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estimated similarities of morphological profiles of pairs of compounds sharing the same 
MoA. For GPCR agonists/antagonists it was found that a very low fraction of the top 

The results for MoA/Ts where AUC for either gene expression or phenotypic profiling 
based model exceeded 0.70 are presented in Figure 3 and Supplemental Table S2. In 

profiling models show comparable 
predictive performance. For some of the targets, however, only one of the two 
descriptions has produced a predictive model, suggesting that the two profiling 

 
The areas under the ROC curve (AUC) for predicting MoA/Ts for models 

based on gene expression data, cell morphology data, and structural description of 

based models in Figure 3 with the 
results of the corresponding models in Figures 1 and 2 reveal that for some MoA/Ts the 
modeling performance is inferior. This can be explained by a lower number of active 

pounds for these MoA/Ts in the intersection of CMap and Cell Painting datasets 
compared to CMap alone. For instance, the number of MTOR inhibitors has decreased 
from 18 to 5, resulting in decrease of AUC from 0.92 to 0.87. Similarly, the number of 

erase inhibitors has decreased from 21 to 7, resulting in change of AUC from 

Similarly as with gene expression data, phenotypic profiling data has not given any 
predictive models for agonists/antagonists of most GPCR classes. This is in contrast to 
models for several protein kinases and protein kinase groups (such as Non-receptor 
tyrosine kinases with AUC = 0.84 and Src family tyrosine kinases with AUC = 0.81) and 
nuclear receptors (e.g. glucocorticoid receptor NR3C1 with AUC = 0.83). 

egative results for GPCRs are in agreement with findings of Rohban et. al.19 who 
estimated similarities of morphological profiles of pairs of compounds sharing the same 
MoA. For GPCR agonists/antagonists it was found that a very low fraction of the top 
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most-similar profiles were profiles of compounds with the same MoA. Thus, for the four 
largest groups of compounds in the dataset, agonists and antagonists of dopamine and 
serotonin receptor, only 0 - 1% of top most-similar profiles belonged to another member 
of this group. (This can be compared to 2% for EGFR inhibitors, where we have 
obtained a predictive model with AUC = 0.77, 6% for PI3K inhibitors, where our model 
shows AUC = 0.79, and 18% for glucocorticoid receptor agonists, where our model 
shows AUC = 0.81). 
 
In fact, for a multitude of MoA/Ts, the drug effect need not lead to profound 
morphological or transcriptional changes of cells. In profiling of 1600 known bioactive 
compounds by Cell Painting assay, Gustafsdottir et al. observed that only 13% of them 
could be deemed active, i.e. their profiles could be distinguished from the natural 
variation of profiles of untreated cells.8 
 
 
Interpretation of RF models 
 
 
For RF models that use gene expression data, it is natural to ask if predictions are 
largely based on up/downregulation of a few key genes, or the whole panel of 978 
landmark genes has been important for the modeling. Similarly, when models are built 
using cell morphology data, we can delve into which of the cell compartments, image 
channels, and Cell Painting feature groups have had the largest contributions. 
 
Variable Importance (VI) for gene expression features in six of the models for drug 
targets are presented graphically in the left panel of Figure 4. In four of these models 
(TUBB, CDK1, HDAC1, and MAPK8) the five most important features accumulate 12% 
to 17% of the total sum of VI, whereas in two models (GSK3B and TOP2A) the fraction 
of VI accumulated by the five most important features is 10% and 6%, respectively. 
Notably, that for the former four models also the predictive performance is higher than 
for the latter two (cf. Supplemental Table S2). In all these models 50% of the sum of VI 
is accumulated by between 50 to 100 features. It can also be noted that many of the 
features have received VI values close to zero or negative values, which indicates that 
re-fitting of models after excluding these features would likely increase their predictive 
performances. 
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Figure 4. Variable Importances in mod
and cell morphology data (right panel). In the left panel, genes with highest VI are 
labeled by their NCBI Gene ID. In the right panel, indicated are eight CellProfiler feature 
groups: 1) AreaShape, 2) Corr
Neighbors, 7) RadialDistribution, and 8) Texture.
 
 
Some of the most important features in each model are labeled by their NCBI Gene ID.
Inspection of data reveals that gene 6790 (AURKA), which appears to be among the 
most important in model for TUBB, is strongly upregulated in presence of all compounds 
that are associated with this target. This gene encodes for Aurora kinase A, which is 
involved in microtubule formation and stabilization. In contrast, gene 3033 (HADH) is 
strongly downregulated for all compounds and gene 55837 (EAPP) is downregulated for 
all compounds but one (mebendazole). Similar analysis can be performed for other 
models. 
 
Variable Importances in corresponding models created with cell morphology features are 
presented in the right panel of Figure 4. The features are ordered according to Cell 
Painting feature groups (see Figure legend), and the pattern indicates that the m
important features are distributed among all eight groups, although not evenly. Thus, 
models for TUBB and HDAC1 have not made much use of Location and Neighbors 
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features, the VI values being close to 0. In contrast, these feature groups are important 
in models for MAPK8, GSK3B, and TOP2A, here less important being Correlation 
features. Interpreting the plot, one should take into account that the number of features 
in groups range from 21 (Neighbors) to 630 (Texture). Hence, even that the VI for 
individual Texture features in some of the models do not appear among the highest, the 
group as a whole accounts for 22% (for MAPK8) to 46% (for TUBB) of the sum of all VI. 
 
 
Models for Cell Painting dataset with different data pre-processing 
methods 
 
 
In Cell Painting dataset, the majority of compounds are applied to cells eight times on 
different plates and locations on the plate and in this way eight morphological profiles 
per compound are obtained. The predominant concern is that phenotypic effects may be 
subtle and masked by systematic errors. Hence, a fraction of wells of each plate 
(typically, 1/6th) contains mock-treated (control) samples, which allows to reveal and 
compensate for the plate-to-plate variation and for the illumination heterogeneities at 
different locations on the plate. 
 
In a preliminary study, we performed principal component analysis of morphological 
profiles of all control samples from 406 plates. The first principal component explained 
25.6% of all variance and reflected primarily plate-wise deviations from the mean rather 
than intra-plate variation among the control samples (see Supplemental Figure S1). 
 
To account for this, we attempted two pre-processing approaches: 1) centering of 
features on plate-to-plate basis by subtracting the mean value for the control samples on 
this plate and 2) centering and normalization by subtracting the mean and dividing by 
the standard deviation for the control samples. In the latter case, use of some features 
was problematic because the values for control samples were invariant or showed 
variance close to 0 for part of the plates.  
 
Thereafter we described the compounds by either the mean values or the median values 
from the eight feature sets. In the latter case, the three “weakest” and the three 
“strongest” changes in cell morphology are not considered (note that some features 
became invariant when the median was selected instead of the mean). 
 
Thus, four models could be built for each of the 262 MoA/Ts. Overall, the predictive 
performances of models were quite similar for most of MoA/Ts, the standard deviation 
calculated from the four AUC values being 0.033. However, larger deviations were 
observed for MoA/Ts with few active compounds. The dependency of modeling 
robustness on the number of active compounds is displayed graphically in Supplemental 
Figure S2. 
 
The average AUC for top-50 best predicted MoA/Ts ranged from 0.748 (in models using 
mean values of centered data) to 0.760 (in models using mean values of centered and 
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normalized data). From these consistent results we may conclude that modeling 
performance is not sensitive to the systematic errors that may occur during assaying 
large-scale datasets, provided that the compounds are applied to cells multiple times. 
Further studies are required to investigate if several Cell Painting datasets generated by 
different research groups and/or using several cell lines can be merged together to 
obtain a universal morphological description for any number of assayed compounds. 
 
To complete the discussion, it should be noted that calculation of morphological features 
by CellProfiler is not mandatory for analysis of cell imaging data. Use of raw images as 
inputs to pre-trained convolutional neural networks has in fact shown to give better 
predictions in some studies.13,20 
 
 
Conclusion 
 
 
Gene expression and phenotypic profiling of chemical compounds yield thousands of 
features that capture broad ranges of cellular responses to perturbation. These features 
can be considered as an alternative to structural descriptors of compounds in QSAR-like 
modeling. In this study we compared performances of gene expression profiles and 
phenotypic profiles in predicting compound mechanisms of action and targets (MoA/Ts). 
We identified MoA/Ts, for which both profiles gave predictive models, comparable to or 
better than structural descriptor based model. We also identified MoA/Ts, for which the 
performances of the two models were notably different, indicating that the two profiles 
have distinct information contents. This finding supports the idea of integrated 
approaches for predicting drug efficacy and safety in preclinical drug discovery. 
  
For many MoA/Ts, the best model was obtained using structural descriptors. Interpreting 
this, one should take into account that any QSAR model has an applicability domain, 
limited by the structural diversity of the active compounds. For MoA/Ts with few active 
compounds, the model predictions cannot be extrapolated for the whole drug-like 
structure space. In contrast, the applicability domain of profiling-based description is 
limited by requirement for detectable cellular response but not by structural properties of 
the assayed compounds. 
 
We also found that the prediction accuracy using gene expression features can be cell 
line specific, influenced by perturbation time, and proportional to the size of the dataset. 
Similar findings can be expected for phenotyping profiling data. 
 
To our knowledge, our modeled gene expression and phenotypic profiling datasets from 
Broad Institute with 20K and 30K assayed compounds, respectively, are the largest 
publicly available at the present time. Further studies are warranted to confirm 
reproducibility of profiling methods and investigate if datasets generated by different 
research groups and/or using several cell lines can be merged together to obtain 
comparable quantitative descriptions for any number of assayed compounds. 
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