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Genome wide association studies (GWAS) for type 2 diabetes (T2D) undertaken in

European and Asian ancestry populations have yielded dozens of robustly associated

loci. However, the genomics of T2D remains largely understudied in sub-Saharan Africa

(SSA), where rates of T2D are increasing dramatically and where the environmental

background is quite different than in these previous studies. Here, we evaluate 106

reported T2D GWAS loci in continental Africans. We tested each of these SNPs, and

SNPs in linkage disequilibrium (LD) with these index SNPs, for an association with T2D in

order to assess transferability and to finemap the loci leveraging the generally reduced LD

of African genomes. The study included 1775 unrelated Africans (1035 T2D cases, 740

controls; mean age 54 years; 59% female) enrolled in Nigeria, Ghana, and Kenya as part

of the Africa America Diabetes Mellitus (AADM) study. All samples were genotyped on the

Affymetrix Axiom PanAFR SNP array. Forty-one of the tested loci showed transferability

to this African sample (p < 0.05, same direction of effect), 11 at the exact reported

SNP and 30 others at SNPs in LD with the reported SNP (after adjustment for the

number of tested SNPs). TCF7L2 SNP rs7903146 was the most significant locus in this

study (p = 1.61 × 10−8). Most of the loci that showed transferability were successfully

fine-mapped, i.e., localized to smaller haplotypes than in the original reports. The findings

indicate that the genetic architecture of T2D in SSA is characterized by several risk loci

shared with non-African ancestral populations and that data from African populations

may facilitate fine mapping of risk loci. The study provides an important resource for

meta-analysis of African ancestry populations and transferability of novel loci.
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INTRODUCTION

Sub-Saharan Africa (SSA) is one of the regions with the fastest
growth in type 2 diabetes (T2D) worldwide (Wild et al., 2004).
There are an estimated 19.8 million people with type 2 diabetes
in SSA in 2013 and this number is projected to increase
to 41.5 million by the year 2035 (IDF, 2013). Genome-wide
association studies (GWAS) have been particularly productive
for understanding the genetic basis of T2D, with over 100
associated susceptibility loci reported, including a recent large
meta-analysis (n ∼150,000) yielding 65 loci (Morris et al., 2012)
in European ancestry populations alone. However, most of these
success stories have come from European and Asian ancestry
populations. A few GWAS for T2D have been done in African
Americans, including a meta-analysis (Ng et al., 2014), but there
is currently no similar study of indigenous Africans. To date,
only one genome-wide linkage study of T2D in an African
population has been published (Rotimi et al., 2004) and a GWAS
of T2D in a SSA population has not yet been done. Here,
we report a replication and fine mapping analysis of T2D in
SSA with 1775 subjects (1035 cases, 740 controls) genotyped
on the Affymetrix Axiom R© PanAFR array (imputed into the
1000 Genomes phase 1 v3 reference panel). Given the relatively
modest sample size and limited power for novel discovery, we
focus on evaluation of previously reported T2D GWAS loci
in this study of indigenous Africans, including looking for
evidence of replication or transferability and conducting fine
mapping studies to test whether the relatively weaker linkage
disequilibrium (LD) and smaller haplotypes in this African
sample could improve the resolution of previously reported loci.

MATERIALS AND METHODS

Ethics Statement
Ethical approval for the study was obtained from the Institutional
Review Board (IRB) of each participating institution. All
subjects provided written informed consent for the collection of
samples and subsequent analysis. This study was conducted in
accordance with the principles expressed in the Declaration of
Helsinki.

Study Participants
The initial study sample consisted of 1822 unrelated subjects
from the Africa America Diabetes Mellitus (AADM) study
(Rotimi et al., 2001, 2004), a genetic epidemiology study of T2D
in SSA. All subjects were SSA, enrolled from university medical
centers in Nigeria, Ghana, and Kenya. Patients attending medical
clinics at these medical centers or patients referred for clinical
suspicion of diabetes were evaluated for potential inclusion in
the study as described below. After providing informed consent,
all participants underwent a clinical examination that included
a medical history, clinical anthropometry, blood pressure
measurements and blood sampling. Weight was measured in
light clothes on an electronic scale to the nearest 0.1 kg, and
height was measured with a stadiometer to the nearest 0.1 cm.
Body mass index (BMI) was computed as weight in kg divided
by the square of the height in meters. The other clinical

measurements have been described elsewhere (Rotimi et al.,
2001, 2004). The definition of T2D was based on the American
Diabetes Association (ADA) criteria: a fasting plasma glucose
concentration (FPG) ≥ 126mg/dl (7.0mmol/l) or a 2-h postload
value in the oral glucose tolerance test≥ 200mg/dl (11.1mmol/l)
on more than one occasion. Alternatively, a diagnosis of T2D
was accepted if an individual was on pharmacological treatment
for T2D and review of clinical records indicated adequate
justification for that therapy. The detection of autoantibodies to
glutamic acid decarboxylase (GAD) and/or a fasting C-peptide≤
0.03 nmol/l was used to exclude probable cases of type 1 diabetes.
Controls were required to have FPG < 110mg/dl or 2-h postload
of < 140mg/dl and no symptoms suggestive of diabetes (the
classical symptoms being polyuria, polydipsia, and unexplained
weight loss).

Genotyping
Samples were genotyped on the Affymetrix Axiom R© PANAFR
SNP array. This array of∼2.1 million SNPs is one of Affymetrix’s
Axiom R© Genome-Wide Population-Optimized Human Arrays
and is optimized for African ancestry populations. The array
offers pan-African genomic coverage, with ≥90% genetic
coverage of common and rare variants (MAF>2%) of the Yoruba
(West African) genome and>85% coverage of common and rare
variants (MAF >2%) of the Luhya and Maasai (East African)
genomes. Starting from 1822 subjects, 14 (one duplicated and
13 sex-discordant) samples were excluded after initial quality
control and 33 subjects were excluded because they showed
cryptic relatedness with other subjects (IBD Pi∧Hat > 0.125
indicating more than 3rd degree relatedness). The remaining
1775 subjects (1035 T2D cases, 740 controls) formed the basis
of this analysis. The sample-level genotype call rate was at least
0.95 for all subjects. The 1775 subjects included 1598 (90%)West
Africans enrolled from Nigeria and Ghana (Rotimi et al., 2001,
2004) and 177 (10%) East Africans enrolled from Kenya. The
most common ethnic groups represented were: Yoruba (31.2%),
Igbo (23.5%), Akan (20.5%), Gaa-Adangbe (8.6%), and Kalenjin
(5.6%).

The initial set of 2,217,748 SNPs was filtered for missingness,
Hardy-Weinberg equilibrium (HWE) and allele frequency as
described in Supplementary Table 1. SNP level filters that were
applied included: missingness > 0.05 (n = 94, 438), HWE
p < 1 × 10−6 (n = 20, 472) and minor allele frequency <

0.01 (n = 45, 759). The allele frequency spectrum of the SNPs
that passed QC is shown in Supplementary Figure 1. SNPs that
passed quality control were used as the basis for imputation.
The samples clustered as expected (Supplementary Figure
2) based on principal components (PCs) of the genotypes
computed using an LD-pruned subset of 140,000 autosomal
SNPs. Imputation was done with the MaCH - http://www.
sph.umich.edu/csg/abecasis/MACH/index.html (Li et al.,
2010)/MaCH-ADMIX—http://www.unc.edu/~yunmli/MaCH-
Admix/ (Liu et al., 2013) programs using the 1000 Genomes
Consortium phase 1, version 3 cosmopolitan reference filtered
for monomorphic and singleton sites (ftp://share.sph.umich.edu/
1000genomes/fullProject/2012.03.14/GIANT.phase1_release_
v3.20101123.snps_indels_svs.genotypes.refpanel.ALL.vcf.gz.tgz).
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The resulting imputed dosage data were filtered for imputed
allelic dosage frequency < 0.01 and r2 < 0.3, yielding ∼15M
SNPs for analysis.

Statistical Analysis
Association analysis was done with mach2dat using the imputed
SNP dosage data within a logistic regression framework. Use of
the allelic dosages is preferable to using the best guess genotypes
because it accounts for the uncertainty in imputation. Covariates
included were age, sex, BMI and the first three PCs of the
genotypes. Residual population stratification was low (genomic
inflation factor, λ = 1.016) after adjusting for the first three
PCs of the genotypes (Supplementary Figure 3). Top association
hits with a p ≤ 5 × 10−7 can be found in the Supplementary
Tables.

We looked for evidence of transferability of established T2D
susceptibility loci reported in the literature from GWAS and
meta-analysis of GWAS (n = 106 loci—Supplementary Table
2). More than half of these susceptibility loci (n = 65) were
reported in the largest meta-analysis of T2D in populations of
European ancestry (DIAGRAM+) (Morris et al., 2012). We first
examined the p-value at each reported SNP in our study (exact
transferability or replication) and considered a p < 0.05 and
consistency of direction of effect for the same allele as evidence
for significant transferability. Next, we examined all the SNPs
in the LD block (as determined by the method of Gabriel et al.,
2002) containing the index SNP in the 1000 Genomes EUR or
CHB population reference (as appropriate for the discovery hit)
for evidence of local transferability. P-values were adjusted for the
number of SNPs tested around each index SNP. The number of
independent SNPs was determined and correction for multiple
testing was done using the method of the effective degrees of
freedom for the spectrally decomposed covariance matrix for the
block of SNPs (Bretherton et al., 1999; Ramos et al., 2011). Briefly,
we estimate the covariance matrix for the block of SNPs using
the genotype data. Then, the covariance matrix was spectrally
decomposed and the effective degrees of freedom (Neff ) estimated

using the relationship, Neff =

(

K
∑

K=1
λk

)2 / (

K
∑

K=1
λ2
k

)

, in which

λk is the kth eigenvalue of the K × K covariance matrix for
the K SNPs. Finally, the nominal significance threshold α =

0.05 was divided by Neff . We consider the “best SNP” in the
haplotype block as the SNP showing the smallest p-value and
that is in LD with the reported SNP. Using data from our study
sample and from the 1000 Genomes YRI, haplotype blocks were
constructed around each locus that showed transferability to
determine if African ancestry samples helped to fine-map the
locus.

The original reports of the loci studied presented effect sizes
ranging from an OR of 1.01–1.6 in most studies and the minor
allele frequencies at the risk loci ranged from 0.02 to 0.49 in our
dataset. We estimated power for replication of a reported SNP
at a one-sided α of 0.05 (i.e., same direction of effect) for OR
ranging from 1.10 to 1.50 and for a range of allele frequencies
in our data set (Supplementary Figure 4). For example, power
for replication was 83% for a locus with OR 1.2 at a risk allele

TABLE 1 | Characteristics of subjects.

Characteristic Type 2 diabetes cases Controls

N 1035 740

Sex (% Female) 57.6 61.0

Age (years) 55.4 (0.3) 52.0 (0.4)

Body mass index (BMI) kg/m2 26.6 (0.2) 26.1 (0.2)

Waist circumference (cm) 93.9 (0.4) 90.0 (0.4)

Hypertension (%) 61.9 51.6

Fasting glucose (mg/dl) 178.8 (2.9) 87.4 (0.4)

Fasting cholesterol (mg/dl) 208.3 (1.9) 204.2 (2.1)

Fasting triglycerides (mg/dl) 121.7 (2.2) 100.3 (1.8)

All figures are mean (SE) except where otherwise indicated.

frequency of 0.2 and 84% for a locus with OR 1.3 at a risk
allele frequency of 0.1. In contrast, at a risk allele frequency of
0.02, our power for replication exceeded 70% only for loci with
OR= 1.6.

RESULTS

The characteristics of the study participants are shown inTable 1.
The mean age was 53.8 years and mean BMI was 26.3 kg/m2.
Participants with T2D had a mean waist circumference that was
∼4 cm larger than that of controls (Table 1). The mean fasting
glucose of the subjects with T2D [178.8 (SE 2.9) mg/dl] indicates
that most subjects had poorly controlled glycemic status on
enrollment.

Transferability of Reported GWAS Type 2
Diabetes Susceptibility Loci
From our association tests, we looked for evidence of
transferability of 106 established T2D SNPs. We had data on
103 of the 106 SNPs in our dataset. We found exact replication
with the index SNP (same allele, consistent direction of effect,
p < 0.05) with 11 loci (Table 2). Using a local replication strategy
in which we examined SNPs in LD with the reported index SNP,
we found an additional 30 SNPs showing significant association
with T2D in this dataset (Table 3). In sum, we found significant
association with T2D for 41 of the 103 GWAS established T2D
loci we examined in this study. Overall, 76 of the 103 tested SNPs
are directionally consistent with the initial report (p = 1× 10−6,
binomial test). The TCF7L2 SNP rs7903146 showed the strongest
associationwith T2D in this study (p = 1.61×10−8, OR 1.50, 95%
CI 1.26–2.15)—Supplementary Table 5. It should be noted that
this SNP shows the strongest evidence of association with T2D in
most GWAS and remains the most consistently associated locus
in most populations studied so far.

Two of the 106 loci, INS-IGF2 rs3842770, and HLA-B
rs2244020, were reported by the only meta-analysis GWAS in
an African ancestry population [the MEta-analysis of T2D in
African Americans (MEDIA) Consortium, Ng et al., 2014]. In our
sample of SSA, we found suggestive evidence of association for
INS-IGF2 rs3842770 (p = 0.067) and no significant association
for HLA-B rs2244020 (merged into rs74995800, p = 0.878).
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TABLE 2 | Reported GWAS associated SNPs showing exact transferability in the AADM Study.

SNP Chr BP Gene A1/A2 A1 Freq β SE(β) P

rs7903146 10 114758349 TCF7L2 C/T 0.672 −0.466 0.083 1.52E−08

rs1470579 3 185529080 IGF2BP2 A/C 0.132 −0.349 0.101 5.09E−04

rs3786897 19 33893008 PEPD A/G 0.392 0.238 0.073 1.15E−03

rs3802177 8 118185025 SLC30A8 G/A 0.961 0.582 0.195 2.77E−03

rs4457053 5 76424949 ZBED3 G/A 0.162 0.276 0.101 6.03E−03

rs12304921 12 51357542 HIGD1C A/G 0.830 −0.247 0.096 0.010

rs13389219 2 165528876 GRB14 C/T 0.216 0.221 0.094 0.019

rs11642841 16 53845487 FTO C/A 0.945 −0.413 0.184 0.023

rs7177055 15 77832762 HMG20A G/A 0.728 −0.174 0.080 0.029

rs972283 7 130466854 KLF14 A/G 0.087 −0.274 0.131 0.037

rs10440833 6 20688121 CDKAL1 T/A 0.772 −0.178 0.088 0.042

Base-pair positions are in NCBI build 37 coordinates.

Fine Mapping
For the 11 loci that showed exact transferability, we examined
the LD structure around the index SNP to see if the locus could
be fine-mapped. In 9 of the 11 loci, we found smaller haplotype
block sizes around the lead SNPs in this study when compared
to the original discovery population (Figure 1). Two examples,
SLC30A8 and CDKAL1, are shown in Figure 2. Notably, 9 of
the 11 SNPs that showed exact transferability had another SNP
in LD that showed stronger evidence of association (i.e., smaller
p-values) than the reported index SNP (Supplementary Figure
5). The two exceptions in which the reported SNP also had the
smallest p-value in the haplotype block were TCF7L2 and ZBED3.

DISCUSSION

The field of T2D genetics has been remarkably successful
in identifying risk loci using the GWAS approach, especially
when multiple studies are combined in meta-analyses. Such
studies of T2D (and other cardiovascular and metabolic diseases)
remain rare in SSA. This study, evaluating for the first time a
large number of reported T2D loci in individuals of African
ancestry living on the continent, provides insight into the genetic
architecture of T2D in SSA and promises to be a valuable
resource for replication and meta-analysis as more GWAS are
conducted in Africans. We focused on transferability of GWAS
established T2D loci rather than discovery, given our limited
sample size in the context of the knownmodest effect sizes of risk
variants. We also conducted fine mapping studies, capitalizing
on the lower LD and shorter haplotypes in populations of
African ancestry. The low LD in African populations compared
to European and Asian populations should make association
studies in African ancestry populations a good way to fine map
risk loci reported from large studies in these other populations.
In addition, differences in diet, physical activity and other
environmental factors could have an impact on association
results, potentially improving the utility of African ancestry
populations in genetic association studies.

We found evidence of transferability for 41 of 103 reported
T2D loci tested in this study using both exact and local replication

strategies. Our transferability rate for exact replication (11/103
or 10%) is somewhat lower than in earlier studies of African
Americans. For example, Long et al. (2012) replicated 7 of 29
(24%) T2D associated SNPs while Ng et al. (2013) replicated
7 of 40 (18%) loci in their study of African Americans in the
Candidate Gene Association Resources Plus Study. It is also
lower than the 18% (19/104) transferability reported by a meta-
analysis of African Americans (Ng et al., 2014). This is probably
a reflection of sample size differences between the studies, since
larger sample sizes have greater power to detect associations of
a given effect size. Another factor that could account for these
differences is that this study analyzed SSA living in Africa while
the other studies were of African Americans: despite similar
genetic ancestry, the environmental background is dramatically
different, especially in terms of diet, physical activity, and obesity,
all relevant for T2D risk.

TCF7L2 rs7903146 showed the strongest association with T2D
in this study. This locus is one of the most consistently replicated
susceptibility loci for T2D in multiple populations. Notably, an
African sample from the AADM study was instrumental to the
refinement of the TCF7L2 locus after its initial discovery (Grant
et al., 2006; Helgason et al., 2007). Since then a number of
candidate gene studies in Africans have confirmed its association
with T2D in Ghana (Danquah et al., 2013), Cameroon (Guewo-
Fokeng et al., 2015; Nanfa et al., 2015) and various North
African groups (Bouhaha et al., 2010; Kifagi et al., 2011; Mtiraoui
et al., 2012; Ben-Salem et al., 2014; Turki et al., 2014). Most of
these studies have genotyped a few SNPs. A notable exception
is an evaluation study of 37 GWAS-associated T2D loci in
North African Arabs (Cauchi et al., 2012) which found nominal
evidence for 13 of the loci reported in Europeans. In a wider
context, the findings of this study are consistent with the
expectation of observing differential effects when replicating
tag SNPs found in European ancestry GWAS in non-European
ancestry populations. This observation is most pronounced
in African ancestry individuals with differential effects diluted
toward the null (Carlson et al., 2013).

An expectation of association studies of African ancestry
populations is that it would be possible to fine map or
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TABLE 3 | GWAS associated SNPs showing local transferability in the AADM Study.

SNP Genotyped (G)/ Imputation Gene Chr BP A1 A2 Freq β SE(β) *Padj Reported P-value **r2

Imputed (I) r2 A1 SNP

rs2493409 I 0.929 NOTCH2 1 120512104 T C 0.084 0.385 0.139 0.009 rs10923931 0.269 0.929

rs13424212 I 0.979 BCL11A 2 207643224 G A 0.943 −0.519 0.166 0.002 rs243088 0.826 0.979

rs726578 I 0.805 RND3 2 151644711 T G 0.643 −0.217 0.084 0.024 rs7560163 0.125 0.805

rs116553151 G NA ZPLD1 3 102225887 G A 0.978 0.631 0.242 0.019 rs2063640 0.842 0.98

rs143882978 I 0.958 ADCY5 3 123045588 C T 0.948 −0.462 0.166 0.019 rs11708067 0.098 0.958

rs77144727 I 0.776 WNT5A 3 55313616 C G 0.985 0.984 0.333 0.008 rs358806 0.588 0.776

rs76036930 I 0.915 WFS1 4 6300628 C A 0.926 −0.411 0.153 0.021 rs1801214 0.912 0.915

rs35201724 I 0.756 MAEA 4 1310717 C G 0.871 0.345 0.125 0.011 rs6815464 0.954 0.756

rs6856996 I 0.661 TMEM155 4 122671271 C T 0.974 −0.797 0.335 0.035 rs7659604 0.504 0.661

rs148880354 I 0.948 ANKRD55/

MAP3K1

5 55787227 G A 0.976 0.745 0.235 0.002 rs459193 0.274 0.948

rs141867077 I 0.661 ZFAND3 6 38107234 C T 0.988 −1.105 0.46 0.022 rs9470794 0.382 0.661

rs115694783 I 0.898 ANK1 8 41520264 G A 0.962 0.546 0.198 0.014 rs516946 0.423 0.898

rs1328406 I 0.871 TLE4 9 81957798 C T 0.661 0.231 0.081 0.014 rs13292136 0.154 0.871

rs34657422 G NA PTPRD 9 8902237 A C 0.517 0.221 0.072 0.006 rs17584499 0.943 0.998

rs12414068 I 0.964 TCERG1L 10 132945800 A G 0.908 −0.346 0.127 0.017 rs10741243 0.867 0.964

rs146170761 I 0.944 CDC123 10 12325422 C T 0.96 −0.666 0.2 0.002 rs12779790 0.52 0.944

rs7115640 I 0.913 TH/INS 11 2194914 A G 0.147 0.358 0.11 0.002 rs10770141 0.093 0.913

rs74728365 I 0.789 KCNJ11 11 17404846 A C 0.95 0.46 0.184 0.026 rs5215 0.192 0.789

rs149672621 I 0.417 MTNR1B 11 92691694 A G 0.984 −1.247 0.465 0.017 rs1387153 0.98 0.417

rs73419251 I 0.904 KCNQ1 11 17422709 A G 0.956 −0.481 0.192 0.026 rs163184 0.515 0.904

rs76971568 I 0.921 BARX2 11 129474931 T C 0.926 −0.451 0.148 0.004 rs7107217 0.122 0.921

rs149665582 I 0.943 LOC1005

07205

11 41920207 A T 0.984 −0.792 0.303 0.017 rs9300039 0.652 0.943

rs115005036 I 0.765 CCND2 12 4373837 T C 0.986 −1.214 0.402 0.003 rs11063069 0.754 0.765

rs75812308 I 0.932 HMGA2 12 66158505 A G 0.72 −0.225 0.084 0.014 rs1531343 0.156 0.932

rs74102135 I 0.534 TSPAN8 12 71640010 C G 0.986 −1.187 0.453 0.013 rs4760790 0.116 0.534

rs79164468 I 0.876 C2CD4A/

C2CD4B

15 62405462 C T 0.98 0.823 0.271 0.005 rs1436953 0.105 0.876

rs113762358 I 0.922 PRC1 15 91515135 G A 0.889 0.341 0.117 0.007 rs8042680 0.359 0.922

rs56240666 I 0.971 BCAR1 16 75246825 C G 0.381 −0.191 0.075 0.023 rs7202877 0.443 0.971

rs139888613 I 0.950 MC4R 18 57884481 G A 0.973 0.823 0.24 0.002 rs12970134 0.752 0.95

rs148535989 I 0.675 CILP2 19 19391742 G A 0.988 1.284 0.403 0.002 rs10401969 0.64 0.675

*P-value adjusted for the number of tested SNPs in the LD region.
**r2 between reported SNP and SNP with best association signal.

NA, not applicable. Base-pair positions are in NCBI build 37 coordinates.

refine disease-associated loci because of lower LD and smaller
haplotypes. The first demonstration of this principle for T2D
was for the TCF7L2 locus (Helgason et al., 2007). Several other
studies have demonstrated the same phenomenon for T2D (Ng
et al., 2013), as well as for glucose-related traits (Ramos et al.,
2011), uric acid (Charles et al., 2011), bilirubin levels (Chen
et al., 2012), and serum lipids (Adeyemo et al., 2012) in African
Americans. In the present study, the majority of loci that showed
transferability were fine-mapped with neighboring SNPs showing
stronger association with T2D than the reported index SNP.
Together, these findings provide compelling evidence that the
reduced and different LD patterns present in African populations
can facilitate trans-ethnic fine mapping of disease loci. It is
therefore expected that the number of loci that can be fine

mapped will increase asmore studies are done in African ancestry
populations.

Other than for replication and fine mapping, discovery
studies in populations of different ancestries are needed as
they have the potential to find novel susceptibility loci which
could be population-specific or cosmopolitan yet more easily
discovered in a specific population (McCarthy, 2008). Notable
examples include the discovery of the T2D associated genes
KCNQ1 in East Asians (Yasuda et al., 2008; Unoki et al.,
2008), SGCG in Punjabi Sikhs (Saxena et al., 2013) and of
SLC6A11 in Mexicans (SIGMA Type 2 Diabetes Consortium
et al., 2014). Given the genetic and environmental diversity
represented on the African continent, doing such studies in
African populations has the potential to discover novel loci and
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FIGURE 1 | Fine mapping of loci showing exact transferability in the AADM study.

FIGURE 2 | Association plots and LD patterns at regions flanking SLC30A8 and CDKAL1. The “best SNP” in the haplotype block is the SNP showing the

smallest p-value that is in LD with the reported SNP.
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enrich our knowledge of the genetics of T2D on the continent.
In addition, similar to the European and Asian experiences, it is
expected that more shared T2D loci across global populations
will be discovered as additional studies are conducted
in Africans and larger sample sizes become available for
meta-analysis.

A potential limitation in the present study is the sample
size. Larger samples have the potential to identify and replicate
more T2D risk loci, especially those with smaller effect sizes or
with lower allele frequencies. Nonetheless, the study provides a
resource for future studies of T2D in Africans for purposes of
replication and meta-analysis.

In conclusion, this first large scale replication and fine
mapping analysis of reported T2D-associated risk loci in Africans
successfully demonstrated evidence of transferability and trans-
ethnic fine mapping of several loci reported in European and
Asian ancestry populations. Notably, 41 reported GWAS loci for
T2D were found to be associated with disease risk in this study.
These findings indicate that the genetic architecture of T2D in
SSA is characterized by several risk loci shared with non-African
ancestral populations and that data from African populations
may facilitate fine mapping of risk loci.
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