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ABSTRACT

Motivation: Genome-wide association (GWA) studies may identify
multiple variants that are associated with a disease or trait. To narrow
down candidates for further validation, quantitatively assessing how
identified genes relate to a phenotype of interest is important.
Results: We describe an approach to characterize genes or
biological concepts (phenotypes, pathways, diseases, etc.) by
ontology fingerprint—the set of Gene Ontology (GO) terms that are
overrepresented among the PubMed abstracts discussing the gene
or biological concept together with the enrichment p-value of these
terms generated from a hypergeometric enrichment test. We then
quantify the relevance of genes to the trait from a GWA study
by calculating similarity scores between their ontology fingerprints
using enrichment p-values. We validate this approach by correctly
identifying corresponding genes for biological pathways with a 90%
average area under the ROC curve (AUC). We applied this approach
to rank genes identified through a GWA study that are associated
with the lipid concentrations in plasma as well as to prioritize
genes within linkage disequilibrium (LD) block. We found that the
genes with highest scores were: ABCA1, lipoprotein lipase (LPL) and
cholesterol ester transfer protein, plasma for high-density lipoprotein;
low-density lipoprotein receptor, APOE and APOB for low-density
lipoprotein; and LPL, APOA1 and APOB for triglyceride. In addition,
we identified genes relevant to lipid metabolism from the literature
even in cases where such knowledge was not reflected in current
annotation of these genes. These results demonstrate that ontology
fingerprints can be used effectively to prioritize genes from GWA
studies for experimental validation.
Contact: zhengw@musc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genome-wide association (GWA) studies have become a feasible
and important method to identify loci that are associated with

∗To whom correspondence should be addressed.

a particular phenotype (Thomas, 2005). However, many variants
or genes could be identified to have significant association with
the diseases or traits studied, and the large amount of statistical
tests performed in these studies gives rise to numerous false
positive results (Pearson and Manolio, 2008). Therefore, assessing
quantitatively the likely importance of genes identified as significant
to disease risk based on biological facts is essential to proceed
efficiently toward experimental validation processes and, ultimately,
to define the causal relationships between genes and phenotypes. In
addition, the quantified correlation between genes and diseases also
has the potential to be used to increase the statistical power of GWA
studies through approaches such as weight adjustment (Roeder et al.,
2007), and to select candidate genes for candidate gene association
study of diseases (Barroso et al., 2003).

Combing through biological information embedded in PubMed
articles, various text-mining methods (Shatkay and Feldman, 2003)
have been developed to extract information from the biomedical
literature for gene annotation (Alako et al., 2005; Hoffmann and
Valencia, 2005; Jelier et al., 2005). In addition, several procedures
have been proposed to use ontologies and controlled vocabularies to
study the relationships between human diseases and genes (Ahmed,
2005; Baral et al., 2007; Cheng et al., 2008; Freudenberg and
Propping, 2002; Kelso et al., 2003; Perez-Iratxeta et al., 2002; Tiffin
et al., 2005; Turner et al., 2003). The rapidly developing Gene
Ontology (GO) provides a standardized characterization of gene
functions (The Gene Ontology Consortium, 2008). Despite the fact
that biomedical literatures were written without GO in mind, it has
been shown that GO terms that can be identified in PubMed abstracts
tend to occur frequently in the literature (Verspoor et al., 2003).
Therefore, GO as a standardized terminology provides a semantic
grounding to mine the PubMed literature.

In this article, we describe a comprehensive analysis combining
text mining of PubMed abstracts and GO with a quantitative measure
to assemble ontology fingerprints for genes and biological concepts,
and a method to calculate a similarity score between two ontology
fingerprints. We further describe how comparing the ontology
fingerprints of a phenotype with that of genes identified in a GWA
study can be used to prioritize genes for follow-up investigation,
including fine mapping and functional studies.
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2 METHODS

2.1 Data
We downloaded and processed the June 13, 2007 version of GO to extract
GO terms and their descriptions. The 2007 version of PubMed abstracts in
XML format was also downloaded and processed to extract the PubMed
ID and the text of each abstract. The links between PubMed abstracts
and genes were obtained from the NCBI ‘pubmed2gene’ file. Abstracts
that contained GO terms were identified by exact string match. We also
labeled the abstracts containing a GO term with all of its parent terms. In
addition, each abstract was labeled with a GO term only once regardless of
how many times the term occurred. Because we attempt to decipher human
gene–phenotype relationships, the ontology fingerprints were derived from
178 687 abstracts linked to human genes. In total, we constructed ontology
fingerprints for 25 357 human genes using 5001 ontology terms mapped to
PubMed abstracts linked to human genes. Biological concept terms used are
listed in the Supplementary Material.

2.2 Enrichment test
To test whether a GO term appeared more often in PubMed abstracts linked
to a gene than in the rest of the PubMed abstracts linked to other human
genes, we performed a hypergeometric test, resulting in a list of GO terms
with p-values for each gene. Due to the discreteness of the hypergeometric
distribution, the mid-p-value was used in the calculation (Agresti, 2002):

p-value=
1

2
P(Aobs =e)+P(Aobs >e) (1)

For each gene and ontology pair, AT is the total number of abstracts
considered, while AO and AG denotes the number of abstracts linked to the
ontology term and gene, respectively; the number of abstracts linked to both
the ontology term and the gene is labeled as e. Aobs is the random variable
of observing the number of abstracts linked to both the ontology term and
the gene. From the hypergeometric distribution, the probability of observing
exactly e abstracts is:

P(Aobs =e)=

(
A0

e

) (
AT − A0

AG − e

)
(

AT

AG

)

We also performed this same test on each biological concept (disease,
phenotype, pathway, etc.) ontology pair. While each gene or biological
concept has a set of ontology terms that serves as its ontology fingerprints
defined as ontology terms with p-value <1, collectively the terms and the
quantification reflect the characteristics of the gene or biological concept.

2.3 p-value adjustment
Performing hypergeometric tests on all GO terms for a gene or a concept may
lead to a situation in which large number of non-significant terms combined
may suggest significance. This situation is especially problematic for well
studied genes, for which the number of PubMed abstracts linked to these
genes is greater than that of rarely studied genes. As a result, the number of
GO terms that appear in these abstracts increases too (Supplementary Fig.
1a), resulting in the increased number of ontology terms linked to a gene.
This in turn will increase the likelihood that an ontology term links to a gene
by chance rather than by true biological relationship. This notion is supported
by the observation that the p-values of the ontology terms on average become
less significant as the number of abstracts associated with the gene increases
(Supplementary Fig. 1b).

To eliminate these noisy ontology terms with high p-values, we developed
a method to adjust the raw enrichment p-value. Let all the raw p-values be
represented as a O×G matrix, where i=1, 2, …, O represents the ontology

terms, while j=1, 2, …, G represents the genes. For each gene studied, we
calculated the adjusted p-value as:

adjustedpij =




1 pij =1

min


1,pij ×

O∑
k=1

I{pkj<1}
O∑

k=1
I{pij ≤pkj<1}


 pij <1

(2)

where pij is the raw p-value for the i-th ontology term of gene j,
and

∑O
k=1 I{pkj <1} is the number of term in the fingerprint of gene j.∑O

k=1 I{pij ≤ pkj <1} is the number of GO terms in the fingerprint of gene
j that has greater or equal raw p-value than ontology i. We adjusted the
raw p-value of each ontology term by comparing it with the other raw
p-values from the same ontology fingerprint. The adjusted p-value would
be much higher than that of the raw p-value if many of the other terms have
lower p-values. This process was particularly sensitive when many ontology
terms had high p-values linked to the gene—these terms were excluded
from the fingerprint since their adjusted p-value was 1. The average p-value
stayed relatively constant after adjustment (Supplementary Fig. 1c and d),
indicating the procedure preferably discarded those terms that did not indicate
biologically or experimentally justified associations. The adjustment was also
performed on the ontology fingerprints of the biological concepts.

2.4 Similarity score calculation
The ontology fingerprint characterizes the cellular component, molecular
function or biological process of a gene or a biological concept with a
quantitative measure. By comparing how similar the ontology fingerprints of
a gene and a concept are, we can infer to what extent a gene may be related
to the concept. The comparison can be performed by calculating a similarity
score using a modified version of the inner product:

Sj =

O∑
i=1

log(qi)log(rij)

max

{
1,

O∑
i=1

[
I(qi <1)I(rij =1)

]} (3)

where i=1, 2, …, O represents the ontology terms, and the rij and qi represent
the adjusted p-values of the i-th ontology term of the gene j and the concept
term, respectively. We took the logarithm of the probabilities to prevent
underflow. In the numerator, ontology terms that have adjusted p-values = 1.0
for either the gene or biological concept (i.e. not in either of the gene’s or
concept’s fingerprint) will have a score of zero for that ontology term i,
and thus make no contribution. Each similarity score was then normalized
by

∑O
i=1 I(qi <1)I(rij =1), which is the number of ontology terms in the

fingerprint of the concept but not in that of gene j. The normalization
gives more weight to a gene’s ontology fingerprint that has a higher degree
of overlapping terms with the biological concept’s ontology fingerprint. If
all of the ontology terms of a concept overlapped with those of a gene,
the denominator is 1. Note from Equation (3) that an ontology term with
low adjusted p-values for both the biological concept and the gene would
contribute significantly to the similarity score. Therefore, the equation takes
into consideration both the number of GO terms in the ontology fingerprints
and the significance level indicated by the p-value.

2.5 Selection of p-value threshold (λ)
While the aforementioned approach considers all the terms in a fingerprint
with p-value < 1, it is possible that the similarity score calculation may
accumulate contributions from many ontology terms with high p-values. The
cumulative effect of these non-significant ontology terms could decrease
the power to identify similar ontology fingerprints between genes and
biological concepts (Rosentha, 1978). To avoid this pitfall and improve
the power, cutoff values were suggested to truncate non-significant results
when combining outcomes from multiple tests (Zaykin et al., 2002). In our
study, we applied different cutoff values (λ) by modifying Equation (3).
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The modified method was evaluated by calculating the area under the receiver
operating characteristic curves (AUCs).

Sj =

O∑
i=1

log(qi)log(rij)I(qi <λ
∧

rij <λ)

max

{
1,

O∑
i=1

[
I(qi <λ)I(λ ≤ rij ≤ 1)

]} (4)

In Equation (4), we limited the contribution of ontology terms to those that
had adjusted p-value < λ. Note that if λ = 1, Equation (4) equals Equation (3).
We used different λ values (from 1 × 10−12 to 1) to optimize the performance
and λ = 0.1 gave the highest averaged AUC (0.90) among the biological
pathways used in the evaluation (see Section 3). This threshold also had the
smallest SD of AUC (0.07) among the tested cutoffs. Therefore, it was used
as the default value for all the analyses.

2.6 Significant genes identified from GWA study
We applied our approach to a GWA study that investigated the influences
of loci on the concentrations of high-density lipoprotein (HDL), low-density
lipoprotein (LDL) and triglycerides (TGs) (Willer et al., 2008). Genes within
or overlapping with the top linkage disequilibrium (LD) blocks of best single
nucleotide polymorphism (SNPs) for each trait were obtained as significantly
associated with the corresponding trait (top 199, 201 and 200 LD blocks for
LDL, HDL and TG, respectively). Independent loci were defined as having
low correlation (r2 < 0.2) with any other higher ranking SNP (Willer et al.,
2008). The p-value of the most significant SNP within each block was used.
Among these LD blocks, there were 37, 43 and 47 LD blocks for HDL,
LDL and TG that contained multiple genes respectively (HDL-139 genes,
LDL-108 genes, TG-130 genes).

3 RESULTS

3.1 Ontology fingerprints
An ontology fingerprint for a gene or a biological concept (a pathway,
a phenotype, a disease, etc.; any biological concept except gene) is
a set of ontology terms enriched in the PubMed abstracts linked
to that gene or biological concept, along with the adjusted p-value
reflecting the degree of enrichment of each term. Table 1 illustrates
a small portion of the ontology fingerprint for the gene VEGFA,
which encodes vascular endothelial growth factor A. Note that only
terms with adjusted p-values < 1.0 were used to define the ontology
fingerprints for the gene or concept. The ontology fingerprint serves
as a comprehensive, quantitative characterization of the gene or
biological concept using well-defined ontology terms.

3.2 Similarity scores between genes and phenotypes
We quantified the relevance of particular genes to a biological
concept by comparing the genes’and concepts’ontology fingerprints
and to calculate similarity scores. The relationship between the
similarity score and biological relevance was investigated using a
biological database. The KEGG database (Kanehisa and Goto, 2000)
provides extensive information linking biological pathways to genes
and therefore offers an independent source to validate our method.
We tested our approach by using 10 randomly selected KEGG
pathways as biological concept domains for evaluation: apoptosis,
biosynthesis of steroids, fatty acid metabolism, focal adhesion,
galactose metabolism, glycolysis, mitogen-activated protein kinase
(MAPK) signaling pathway, sphingolipid metabolism, prostate
cancer and renal cell carcinoma. We calculated the similarity
scores between these pathways and all human genes, assessing

Table 1. Eight out of the 279 GO terms in the ontology fingerprint for
Vascular endothelial growth factor A (VEGFA)

GO ID GO term Adjusted p-value

GO#GO_0008083 Growth factor 1.00 × 10−323

GO#GO_0001525 Angiogenesis 1.00 × 10−323

… … …
GO#GO_0008283 Cell proliferation 1.52 × 10−6

GO#GO_0006928 Cell motility 1.71 × 10−6

… … …
GO#GO_0004714 Transmembrane receptor 2.60 × 10−1

Protein tyrosine kinase
GO#GO_0002253 Activation of immune response 2.64 × 10−1

… … …
GO#GO_0042098 T cell proliferation 9.35 × 10−1

GO#GO_0003773 Heat shock protein 9.58 × 10−1

… … …

Full list is shown in Supplementary Table 1.

Table 2. The similarity scores between selected genes and prostate cancer
pathway calculated from their ontology fingerprints

Similarity score

KEGG genes
VEGFA 2341.19
Serum response factor (SRF) 260.07
MAPK1 481.80
Caspase 9, apoptosis-related cysteine peptidase

(CASP9)
370.94

BCL2-antagonist of cell death (BAD) 194.76

Non-KEGG genes
Splicing factor proline/glutamine-rich (SFPQ) 13.82
EP300 interacting inhibitor of differentiation 2B

(EID2B)
1.67

Stathmin-like 4 (STMN4) 0.72
Sperm flagellar 1 (SPEF1) 0.18
Ring finger and CCCH-type zinc finger domains

1 (RC3H2)
0.00

The five selected genes on top are annotated as prostate cancer genes in the KEGG
pathways; the five genes at the bottom are randomly picked negative genes from non-
annotated human genes.

whether such scores could be used to assign genes correctly to
their corresponding pathways. While these pathways’ genes acted
as positives in our evaluation, we sampled the same number of
human genes not annotated in the particular pathway as negatives
and calculated their similarity scores to the pathway. One thousand
samplings were performed on each pathway, and the corresponding
AUCs were calculated.

Table 2 shows an example of how the similarity scores between
selected genes and the prostate cancer pathway indicated that the
higher the score, the more pathway-relevant the gene was. The
AUCs for the 10 pathways are shown in Table 3 (column ‘Ontology
fingerprint AUC’). The ROC curves for selected four pathways
are shown in Supplementary Figure 2. The similarity scores of
genes belong to each of 10 KEGG pathways can be found in
Supplementary Table 2.

Recently, a similar text-mining approach was proposed which
uses ‘concept profiles’ to evaluate the association between different
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Table 3. Ontology fingerprints-derived similarity scores can correctly assign
genes to their corresponding pathways

Pathway Ontology
fingerprint AUC

Anni 2.0
AUC

p-value from
Wilcoxon test

Apoptosis 0.96 0.85a 5.56 × 10−19

Biosynthesis of steroids 0.75 0.73 6.6 × 10−1

Fatty acid metabolism 0.88 0.86 1.4 × 10−1

Focal adhesion 0.94 0.87a 4.06 × 10−11

Galactose metabolism 0.90 0.78a 7.64 × 10−9

Glycolysis 0.80 0.72a 1.86 × 10−6

MAP kinase signaling 0.90 0.78a 2.21 × 10−14

Prostate cancer 0.95 0.91a 3.80 × 10−8

Renal cell carcinoma 0.93 0.81a 1.65 × 10−12

Sphingolipid metabolism 0.89 0.72a 2.09 × 10−9

The AUCs for each of 10 KEGG pathways are shown. The middle column shows the
results from the ontology fingerprint method, while the right column is the result from
the Anni 2.0.
aThe difference between the two methods is significant at 0.0001 level by the Wilcoxon
rank-sum test.

biological concepts (Jelier et al., 2007; Jelier et al., 2008a, b).
The Anni 2.0 system employed a symmetric uncertainty coefficient
(i.e. the fraction of the entropy of one concept that is lost given that
the other concept is known) to capture the strength of association
between different concepts. Then, the inner product score was used
to calculate the similarity between concepts. While the approach is
similar, we concluded that performance is significantly different.
Table 3 shows how well the ontology fingerprint approach and
Anni 2.0 correctly associated genes with their corresponding KEGG
pathways. Specifically, our ontology fingerprint-based method
had higher AUCs for associating genes with their corresponding
pathways than Anni 2.0. We attribute such significant improvement
to the employment of GO, a well-developed controlled vocabulary
to characterize the biological features of genes and phenotypes,
the hypergeometric test, which highly increases the sensitivity for
detecting the associated ontology terms, and our scoring method,
which emphasizes the number of ontology terms characterizing both
the gene and the biological concepts. We also compared our method
with another newly developed natural language processing (NLP)
algorithm (Cheng et al., 2008) that could be used to evaluate the
significant genes from a GWA study. This PolySearch system also
employs a scoring system to rank the degree of association between
biological concepts and genes by capturing the co-occurrences of
different queries in the sentences/paragraphs of the abstracts. We
used the PolySearch system to evaluate the genes belonging to the 10
KEGG pathways. Only 29–68% of genes belonging to the pathways
obtained a relevancy score >0 (for details, see Supplementary
Table 3). Therefore, the utility of employing an ordinary text-mining
approach like PolySearch for evaluating genes is limited because
it is not sensitive enough to capture the functional links between
biological concepts and genes.

3.3 Using ontology fingerprints to prioritize genes
from GWA studies

Having established that the similarity scores between genes and
biological concepts could be used to assess the relevance of a gene
to a concept, we applied our method to evaluate the results from a

GWA analysis studying the genetic variants influencing plasma lipid
concentrations, including HDL, LDL and TG (Willer et al., 2008).
The top LD blocks as measured by smallest associated p-values
were retrieved for HDL, LDL and TG, respectively. From these
blocks, we identified 237 genes for HDL, 212 for LDL and 221
for TG. Despite their strong associations with lipid concentration,
many of these genes are not clearly identified in their annotations as
being relevant to lipid metabolism. Our goal was to assess how
relevant these genes are to HDL, LDL and TG based on their
ontology fingerprint-derived similarity scores. Supplementary Table
4 ranked these genes by their similarity scores to the corresponding
traits. Not surprisingly, most of these ontology terms describe lipid-
related cellular functions or components. Among the top-ranked
genes (Supplementary Table 5), cholesterol ester transfer protein,
plasma (CETP) is well-known to be involved in HDL metabolism
and independent studies have shown that the genetic polymorphism
of the CETP gene could result in changes in HDL concentration
(Freeman et al., 1994; Kuivenhoven et al., 1998); Kathiresan et al.
(2008) showed that the variants in low-density lipoprotein receptor
(LDLR) were highly correlated with the SNP of another gene, ATP-
dependent helicase (SMARCA4), which is associated with elevated
LDL; the mutation in the promoter region of lipoprotein lipase (LPL)
is also associated with elevated plasma TGs in men (Wittrup, 1999).
Simply based on the gene annotations alone, there are 10, 8 and
12 genes related to lipid metabolism among the top 20 genes with
highest similarity scores (Supplementary Table 6), indicating that
the ontology fingerprint method can identify genes relevant to the
traits studied. For the genes known to be related to lipids, our analysis
agreed well with Willer’s (Willer et al., 2008). Supplementary Table
7 shows that 16 out of 22 genes they listed ranked at over the 90-th
percentile by our similarity scores.

For the remaining genes that have no association with lipid in
Entrez Gene annotation, we found that there are an additional 4, 6
and 2 genes with evidence linked to lipids for HDL, LDL and TG,
respectively, by tracing back to the GO terms and the literatures that
contributed to the similarity scores. Table 4 listed these genes and
corresponding evidence. One example is transferrin (TF), which is
ranked by the similarity score among the top 20 genes for HDL.
While current annotation of TF does not show any relevance of this
gene to lipids, one of the top representative terms in the ontology
fingerprint of TF is apolipoprotein. By tracing back to a PubMed
abstract that is relevant to both TF and apolipoprotein, we found that
Cubilin (CUBN), an endocytic receptor, can act as a receptor for both
TF and apolipoprotein A1 (Kozyraki et al., 2001). In addition, the
concentration of TF was elevated in HDL3 subfraction, which may
affect lipoprotein metabolism due to increased antioxidant capacity
(McPherson et al., 2007).

Comparing ontology fingerprints can also prioritize genes that
do not have explicit terms in their fingerprints relevant to lipids.
One example is thyroid hormone receptor beta (THRB). THRB
was found to negatively regulate the LPL inhibitor (Fugier et al.,
2006), and the agonist of THRB is associated with a decrease of TG
concentration in rats (Erion et al., 2007; Prieur et al., 2005). Neither
the relationship of THRB to nor its influence on the concentration of
TGs in humans is established, so the annotation for this gene shows
no direct link to lipid metabolism. In addition, such a potentially
important functional role would not be captured by text-mining
approaches, such as co-occurrence, without some additional means
to consider functional information. For example, we examined the
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Table 4. Genes without apparent connection to lipid in their current
annotation were identified to link to publications mentioning GO terms
relevant to lipids

Gene GO term

HDL TF Apolipoprotein
PSMB10 Apolipoprotein
CTRL Cholesterol transport
CTRL Apolipoprotein

LDL SORT1 Lipoprotein receptor
AP1M2 LDL binding
AP1M2 Lipoprotein receptor
BIN1 LDLR
RXRB Fatty acid binding
PVRL2 Apolipoprotein

TG PSMD9 Apolipoprotein
PSMB1 Apolipoprotein

Note that this is not intended to replace existing manual annotation but to provide new
evidences of how these genes may be related to the traits in the context of GWA studies.
The full table is shown in Supplementary Table 8.

iHop database (Fernandez et al., 2007; Hoffmann and Valencia,
2005) and the PolySearch system (Cheng et al., 2008) for the
potential link between THRB and TGs, and neither suggested that
human THRB relates to TG level; iHop only suggested the relation
between THRB and TGs in rats. In contrast, among the significant
genes from the GWA study, our method indicates that THRB is
among the top 10 genes ranked by similarity scores. Our method
therefore shows a place for further experimental investigations.
Another example is dynamin 2 (DNM2), which is not annotated
as LDL-related gene in Entrez Gene. Our method indicates that
DNM2 may play a major role in metabolism of oxidized LDL
and mediate its role in apoptosis. In fact, Murphy et al. (2003)
established a link between DNM2 and both lysophatidic acid and
sphingosine-1-phosphate, two potent signaling molecules thought
to mediate a multitude of the effects of lipoprotein–cell interactions.
These findings indicate that our approach can provide us with
extra functional data to capture the relevance between genes and
biological concepts (Supplementary Tables 5, 6).

Because our similarity score between genes and phenotypes is
based on biological evidence from literature, the ranking is different
from the GWA p-value assessment of how a gene is associated with
a phenotype. Its complementary nature makes our method useful
to prioritize genes where their associated GWA p-values are almost
indistinguishable. Supplementary Table 9 shows an example of three
situations in which genes have very similar association p-values but
different similarity scores. These genes can be further prioritized
based on how relevant they are to the phenotype through their
similarity scores, which is very useful if a decision has to be made
to select genes for further experimental validation. Ranking genes
based on their similarity score can be particularly useful to prioritize
genes for a multi-gene LD block. In GWA studies, many times a
LD block strongly associated with a phenotype contains several
genes. Differentiating genes that are likely to make significant
contributions to the phenotype from those that are not is critical.
Table 5 shows several examples in which the ontology fingerprint-
derived similarity scores can help to prioritize genes within a
particular LD block. Each LD block in Table 5 shows 2–4 genes, and

Table 5. Genes within multi-gene LD block have different similarity scores
to the phenotype

LD block GWA best
p-value

Gene Similarity
score

Chromosome Position

HDL 16 55500421 8.43 × 10−20 CETP 1473.99
SLC12A3 67.27
HERPUD1 0

LDL 19 50084093 3.25 × 10−21 APOE 2824.46
APOC1 296.763
PVRL2 95.7221
TOMM40 8.03323

19 11077560 3.95 × 10−5 LDLR 3493.24
SPBC24 0.21
ANKRD25 0

TG 11 116062457 3.25 × 10−11 APOA5 795.062
ZNF259 0.213755
BUD13 0

The higher the similarity score, the more relevant a gene to the phenotype.

the similarity score can differentiate genes that are highly relevant
to a phenotype from those that are not.

3.4 Discussion
Even though several text-mining approaches have been developed
to identify relationships between genes and biological concepts
(phenotypes, diseases, pathways, etc.), our approach is significantly
different in several aspects: (i) a hypergeometric enrichment
test was used to focus on identifying overrepresented ontology
terms for genes and biological concepts in relevant PubMed
abstracts; (ii) ontology fingerprints with quantitative measures,
rather than individual ontology term annotations, were used to
capture comprehensive characteristics of genes and biological
concepts; and (iii) a method to calculate similarity scores between
ontology fingerprints evaluated the relevance between genes and
biological concepts.

One advantage of the hypergeometric enrichment test is its
hypersensitivity. Given the large volume of PubMed abstracts linked
to human genes, the p-value of a GO term could be highly significant
even if it appears in a few abstracts linked to a gene or a biological
concept. This allows us to capture most GO terms that are relevant
to a gene or biological concept and build a comprehensive ontology
fingerprint. Such comprehensiveness is essential to capture as many
features of a gene or biological concept as possible. Our goal is
not to identify individual significant terms to annotate a gene or
a concept but to capture the characteristics of a gene or a concept
through a comprehensive set of ontology terms and their enrichment
p-values. Therefore, the hypersensitivity will not affect our relative
ranking of genes based on their similarity scores to a particular
biological concept because all the genes or concepts are treated
in the same way. Our p-value adjustment and careful selection of
lambda also helps to minimize the influence of high p-value terms
so the contribution of low p-value terms to the similarity score
is consistent (Supplementary Fig. 1). Although we report our use
of hypergeometric enrichment test, we also tested Kappa statistics
for associations. However, due to the large number of PubMed
abstracts involved, Kappa statistics cannot be easily calculated
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(Supplementary Fig. 3). We used a modified inner product approach
to calculate similarity scores between ontology fingerprints. While
other approaches, such as dice coefficient, Jaccard coefficient and
cosine similarity measures could also be used, our approach uses
the number of terms in the ontology fingerprint of the biological
concepts that are not present in the gene’s ontology fingerprint
to normalize similarity scores, which gives a consistent measure
for comparing different genes. These methods and ours are further
discussed in the Supplementary material.

The characteristic of a gene or concept is reflected by not only
specific but also general terms in its ontology fingerprint. For
example, while every protein-encoding gene can be labeled by the
term ‘protein’, its degree of overrepresentation is quite different for
different genes. Such differential overrepresentation can distinguish
genes from each other based on reports from PubMed abstracts.
However, we do see occasional cases where such a general term is
a single component of the ontology fingerprint. Such outliers are
the major reason we can only achieve 90% AUC. In the future,
one approach to eliminate this issue is to limit the components of
ontology fingerprints to terms that are not too general (i.e. terms
appearing in <90% ontology fingerprints).

In this study, we used exact string match to map GO terms
to PubMed abstracts without considering synonyms and syntactic
variations of terms. This requirement for exact match might on its
face seem to be naive. However, we were able to map 8352 GO
terms to the PubMed abstracts, which is comparable to the results
by Verspoor et al. (2003), who used an advanced NLP Application.
We attribute this success to the high quality of GO, such that the
description of many informative GO terms is already consistent with
commonly used terminologies in the field of biomedical research. In
addition, the hypergeometric test takes into account ontology terms
mapped to the PubMed abstracts that are relevant or not relevant
to a gene. If the occurrence rate of the ontology term’s synonyms
or syntactic variants is independent of whether the abstract is
linked to a gene (i.e. the occurrence rates are the same among
abstracts linked or not linked to the gene), our approach could still
associate genes with their corresponding pathways or phenotypes.
This capability is confirmed by the simulation that assumed 5% or
10% of total PubMed abstracts relevant to an ontology term contain
only synonyms or syntactic variant (see Supplementary Material
and Supplementary Table 10). The result shows that our approach is
robust in associating genes with corresponding biological concepts,
even if a small proportion of the ontology terms’ synonyms in the
PubMed abstracts were not captured. However, future work that
uses different types of ontologies to construct fingerprints may need
the advanced NLP methods due to the heterogeneity and different
quality of these ontologies.

We have also assessed several other potential limitations of
our approach. PubMed abstracts may report findings in which no
association was found between a gene and a biological phenomenon
described by ontology terms. Our method would count this case
as if the gene and the term were associated with each other and
introduce noise. However, our validation using the KEGG pathway
correctly assigned most genes, indicating that either this situation
only occurs in a modest portion of PubMed abstracts or the majority
of the literature provides positive evidence for associations between
biological phenomena or both. Moreover, it is also possible that
studies from articles suggesting ‘no association’ are mostly based
on previous findings of some significant or potentially significant

association. Another potential limitation is a lack of information.
For example, our approach cannot analyze genes that do not link
to any PubMed abstracts or have no ontology fingerprints (there
are 404 genes that have links to PubMed abstracts but do not
have any enriched ontology terms). In addition, it is possible
that some genes may be labeled with only a few ontology terms
describing very specific biological functions. As a result, only a
few ontology terms would overlap with the phenotype’s fingerprint.
Since our method gives more weight to highly overlapped ontology
fingerprints, these genes might have low similarity score. Again,
our validation indicates that this issue has not posed a significant
negative impact on quantifying the relevance between genes and
biological concepts. An alternative to our approach is to assess
directly the enrichment of the gene in the PubMed abstracts that
are relevant to a biological concept. However, we observed that this
type of co-occurrence happens at low frequency. In Supplementary
Table 11, we showed that only 4, 11 and 8 out of the top 20 genes
for HDL, LDL and TG, respectively, ranked by our similarity scores
have significant p-values from the direct enrichment test. Therefore,
such a test would not provide useful information for a majority of
genes. In addition, the use of GO can help us to infer how a gene
may be related to a biological concept by tracing back to GO terms
which contributed significantly to the similarity scores.

Our approach demonstrates that ontology fingerprints can be used
to quantify relevance between genes and biological concepts and
prioritize genes effectively for results from high-throughput analysis
such as GWA studies. The Open Biomedical Ontology (OBO) will
provide comprehensive and fine-grained ontology terms that can
further refine the ontology fingerprints for genes or phenotypes
(Smith et al., 2007). Expanding our ontology fingerprints to medical
ontologies, such as the one provided in Unified Medical Language
System (UMLS), might capture additional clinical features. These
expansions could increase the accuracy of comparing ontology
fingerprints between genes and phenotypes.
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