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Abstract

Background: The generation and analysis of high-throughput sequencing data are becoming a major component

of many studies in molecular biology and medical research. Illumina’s Genome Analyzer (GA) and HiSeq

instruments are currently the most widely used sequencing devices. Here, we comprehensively evaluate properties

of genomic HiSeq and GAIIx data derived from two plant genomes and one virus, with read lengths of 95 to 150

bases.

Results: We provide quantifications and evidence for GC bias, error rates, error sequence context, effects of quality

filtering, and the reliability of quality values. By combining different filtering criteria we reduced error rates 7-fold at

the expense of discarding 12.5% of alignable bases. While overall error rates are low in HiSeq data we observed

regions of accumulated wrong base calls. Only 3% of all error positions accounted for 24.7% of all substitution

errors. Analyzing the forward and reverse strands separately revealed error rates of up to 18.7%. Insertions and

deletions occurred at very low rates on average but increased to up to 2% in homopolymers. A positive correlation

between read coverage and GC content was found depending on the GC content range.

Conclusions: The errors and biases we report have implications for the use and the interpretation of Illumina

sequencing data. GAIIx and HiSeq data sets show slightly different error profiles. Quality filtering is essential to

minimize downstream analysis artifacts. Supporting previous recommendations, the strand-specificity provides a

criterion to distinguish sequencing errors from low abundance polymorphisms.

Background

Next generation sequencing (NGS) is revolutionizing

molecular biology research with a wide and rapidly

growing range of applications. These applications

include de novo genome sequencing, re-sequencing,

detection and profiling of coding and non-coding tran-

scripts, identification of sequence variants, epigenetic

profiling, and interaction mapping. Compared with

microarrays, previously used for many of these applica-

tions, NGS offers a higher dynamic range, enabling the

detection of rare transcripts and splice variants in the

transcriptome as well as rare genomic polymorphisms -

for example, somatic mutations present within cancer

samples. The challenge remains to distinguish sequence

variation from sequencing errors, and a thorough char-

acterization of NGS data is required in order to detect

method-inherent errors and biases. Systematic errors are

platform-dependent. In the context of this work, we

focus on Illumina data. According to market share ana-

lysis, almost two thirds of all NGS instruments presently

in operation have been manufactured by Illumina [1].

Existing studies about Illumina data evaluation have

revealed several biases, that is, a non-random distribu-

tion of the reads in the sequenced sample over the

reference (reported for the Genome Analyzer (GA) I

[2-5]) and a non-random distribution of errors (GAIIx

[6]). Preferences of certain substitution errors and

sequence context have been observed. For instance,

wrong base calls are frequently preceded by base G [2]

and frequencies of base substitutions vary by 10- to 11-

fold, with A to C conversions being the most frequent

error [2,7]. Such errors might have profound
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implications on the interpretation of results: a non-ran-

dom read distribution can bias profiling of transcripts

and hamper the detection of sequence polymorphisms

in regions of low sequence coverage. Errors in the reads

can result in false positive variant calls or wrong con-

sensus sequences.

The Illumina sequencing technology has been under

constant development, relating to instrumentation, sig-

nal processing software, and sequencing chemistry,

towards the production of more data and longer

sequencing reads. The HiSeq2000 became commercially

available in the second quarter of 2010 and uses sequen-

cing-by-synthesis (SBS) chemistry similar to the Illumina

GA series but at a two- to five-fold increased rate of

data acquisition. A HiSeq flow cell can be imaged on

both the top and bottom surface. To increase the HiSeq

data collection rate, imaging is performed in a line scan-

ning mode, in contrast to the area imaging in the GA.

Instead of using only one camera, the HiSeq operates

with a four camera system that detects the intensities of

all four bases simultaneously. The Hiseq currently runs

with lower cluster densities than the GA and with a

maximal read length of 100 nucleotides for single reads

or 2 × 100 nucleotides in paired-end mode.

Every development of a system can shift error profiles

and can reveal new types of errors. Here, we evaluate

Illumina sequencing data generated on the latest sys-

tems, the GAIIx and HiSeq2000, using current sequen-

cing chemistry and up-to-date base-calling software. We

focus on errors and biases that have an impact on com-

mon sequencing applications and we provide sugges-

tions on how to trim and filter the reads in order to

substantially reduce error rates. Since high quality refer-

ence sequences are not always available in a sequencing

project, we first report properties of the unprocessed

raw reads. Then we assess the error rates and biases

after mapping against high quality reference sequences

derived from two plants (Beta vulgaris and Arabidopsis

thaliana) and the bacterial virus PhiX174.

Results

We generated genomic paired-end reads of 2 × 95

nucleotides and 2 × 100 nucleotides on an Illumina

HiSeq2000 sequencing machine and of 2 × 150 nucleo-

tides on an Illumina GAIIx instrument (Table 1). Three

HiSeq flowcell lanes of 2 × 95-nucleotide reads resulted

in 246 million read pairs corresponding to 46.8 billion

bases of sequence data. These data were a mix of geno-

mic reads of B. vulgaris (Bv, 99%) and the bacteriophage

PhiX174 (PhiX, 1%) spiked in as standard quality con-

trol. One HiSeq flowcell lane of 2 × 100-nucleotide read

pairs containing 99% genomic DNA of A. thaliana (At)

and 1% PhiX resulted in 71 million read pairs corre-

sponding to 14.3 billion sequenced bases. One lane

containing PhiX only was sequenced on a GAIIx and

yielded 9 million read pairs of length 2 × 150 nucleo-

tides (2.7 billion bases).

Properties of raw reads and filtering criteria

As a first quality evaluation we analyzed the raw read

sequences and their corresponding quality values

assigned by the base-calling software. The Illumina

base-calling software calculates a quality score for each

base reflecting the probability that the called base is

wrong. The calculation takes into account the ambiguity

of the signal for the respective base as well as the quality

of neighboring bases and the quality of the entire read.

The quality score Q is defined by Q = -10 log10(P); for

example, Q = 30 corresponds to the probability P =

0.001 that a base has been called incorrectly. The high-

est possible value for Q assigned by the base-calling

software is 40, corresponding to P = 0.0001.

In the samples sequenced on the HiSeq, 80% (Bv +

PhiX, read length 95 nucleotides) and 74% (At + Phix,

100 nucleotides) of all bases had quality scores of at

least 30, whereas for the PhiX data (150 nucleotides)

sequenced on the GAIIx this fraction was 64%. The

average quality score was Q = 31.8 (Bv + PhiX) and Q =

30.2 (At + PhiX) for the HiSeq data and Q = 27.2 for

the GAIIx data. For both platforms the first read of a

read-pair had slightly better average quality scores than

the second read. The difference of Q between both

reads was in the range of 0.3 (HiSeq) and 1.7 (GAIIx),

respectively.

Uncalled bases are represented by a ‘dot’ in the

sequence and by a ‘B’ in the quality string (correspond-

ing to a quality score of Q = 2; the quality values are

represented by ASCII characters). In the entire HiSeq

data set 1.4% of all bases were uncalled, affecting 2.4%

of all reads, and 0.5% of all reads were entirely com-

posed of uncalled bases. In the GAIIx data set we found

14% of all bases to be uncalled, affecting 16% of all

reads, and 7% of all reads were entirely uncalled (Table

1).

The quality of the 3’ end of a sequencing read can be

low for reasons such as phasing artifacts. If most bases

at the 3’ end of a read have quality values of Q ≤ 15,

the base-calling software considers the whole segment

as unreliable and assigns values of Q = 2 to the bases of

this segment (represented by a ‘B’ in the quality string,

just like uncalled bases). Illumina recommends exclud-

ing this portion of the read in further analysis

(CASAVA1.7 User Guide). In the following we use the

term ‘B-tail’ for consecutive Bs at the 3’ end of a read,

including unreliably called bases as well as uncalled

bases. The most extreme cases - that is, reads entirely

composed of Bs or reads containing only one B at the 3’

end - are also considered as B-tailed reads. The fraction
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of bases lying within B-tails was 13.8% in the HiSeq data

and 25.8% in the GAIIx data. Among these B-tail bases,

10.3% (HiSeq) and 53.3% (GAIIx) were uncalled. The B-

tail length distribution shows a slight increase towards

short B-tails and a sharp increase towards reads entirely

composed of B. The predominant size is the full-length

B-tail even after the removal of reads entirely composed

of uncalled bases (Figure S3 in Additional file 1). In

both HiSeq data sets, on average, 32.8% of all reads we

studied had B-tails, and 19.6% of all read pairs had a B-

tail in both reads. In the GAIIx data 67.9% of all reads

had a B-tail, and 53% of all read pairs had a B-tail in

both reads. Excluding the reads entirely composed of

uncalled bases, the average read length after B-tail trim-

ming was reduced to 122 bases in GAIIx reads (original

read length 150 nucleotides), to 85 bases for reads from

the HiSeq Bv + PhiX sample (original read length 95

nucleotides) and to 74 bases for the HiSeq At + PhiX

reads (original read length 100 nucleotides).

Removing B-tails has a strong effect on the expected

error rate (determined by the average of the error prob-

ability of each base according to Illumina quality values).

In HiSeq Bv + PhiX data the removal of B-tails

decreased the expected error rate from 7.09% to 0.16%

and reduced the data output by 11%. In the GAIIx data

the expected error rate decreased from 16.43% to 0.23%,

reducing the data amount by 25.8%. Apart from B-tail

removal, further filters can be applied based on Illumi-

na’s quality measurement. We tested several filtering cri-

teria separately and in combination and recorded the

resulting expected error rates (Table 2). The Illumina

software provides a read quality rating by introducing

the chastity filter. The chastity is determined from the

ratio of the signal intensities of the four possible bases

in each sequencing cycle. Reads do not pass the chastity

filter if they underrun a certain chastity cutoff within

the first 25 cycles (see Materials and methods for

details). The lowest expected error rate was obtained for

the following combination of filtering criteria: B-tail

trimming, passed chastity filter, removal of reads con-

taining uncalled bases, keeping reads only if at least

two-thirds of the bases of the first half of the read had

quality values of Q ≥ 30.

The GC content (%GC) of the unfiltered HiSeq reads

was higher than expected: 40% for Bv + PhiX data and

45.5% for At + PhiX. The B. vulgaris reference sequence

has a %GC of 35% [8] and that of the A. thaliana gen-

ome is 36% (calculated from TAIR10 [9]). The fraction

of PhiX reads (44.7% GC) accounts for only 1 to 2% of

the data. For the PhiX sample sequenced on the GAIIx

Table 1 Properties of the sequence data

Species Bv + PhiX At + PhiX PhiX

Platform HiSeq HiSeq GAIIx

Read length 95 100 150

Number of lanes 3 1 1

Number of sequenced pairs 246,159,940 71,393,237 9,046,254

Number of sequenced bases 46,770,388,600 14,278,647,400 2,713,876,200

Fraction of uncalled bases 1.52% 1.21% 13.77%

Fraction of uncalled bases - read 1 1.45% 1.07% 12.66%

Fraction of uncalled bases - read 2 1.58% 1.34% 14.87%

Fraction of reads with at least one uncalled base 2.46% 2.26% 15.57%

Fraction of entirely uncalled reads 0.56% 0.50% 7.16%

Fraction of bases in B-tails 11.01% 16.56% 25.78%

Fraction of uncalled bases in B-tails 1.49% 1.18% 13.75%

Fraction of bases in B-tails - read 1 11.02% 14.45% 24.82%

Fraction of bases in B-tails - read 2 11.00% 18.67% 26.74%

Average length of B-tails 10.5 (9.9)a 16.6 (16.1)a 38.7 (27.9)a

Fraction of reads with B-tail 26.15% 39.44% 67.87%

Fraction of reads containing at least one uncalled base in B-tail 2.19% 1.98% 14.99%

Fraction of both reads with B-tail 14.70% 24.50% 53.10%

Average Q-score 31.81 30.23 27.17

Average Q-score - read 1 31.83 31.10 27.62

Average Q-score - read 2 31.80 29.37 26.73

Q ≥ 30 bases 37.27 Gbp (79.68%) 10.56 Gbp (73.99%) 1.74 Gbp (64.29%)

Q ≥ 30 bases - read 1 18.70 Gbp (39.98%) 5.49 Gbp (38.42%) 0.90 Gbp (33.01%)

Q ≥ 30 bases - read 2 18.57 Gbp (39.71%) 5.08 Gbp (35.57%) 0.85 Gbp (31.28%)

aValues in parentheses are those without reads entirely composed of uncalled bases. At, Arabidopsis thaliana; Bv, Beta vulgaris; PhiX, bacteriophage PhiX174.
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the %GC of 45.7% is much closer to the expected value

of 44.7%.

Mapping of raw reads against reference sequences

We evaluated the actual quality of the sequencing reads

by mapping the reads against high-quality reference

sequences. We used the 5-kbp bacteriophage PhiX

sequence, the 110-kbp insert sequence of a B. vulgaris

BAC clone, and the 30 Mbp chromosome 1 of A. thali-

ana as references (see Materials and methods). The

small and gene-dense PhiX genome is commonly used

in Illumina sequencing as quality control. Sugar beet has

a highly repetitive genome, and from Arabidopsis we

used the large sequence of an entire chromosome in

order to include references of different lengths and

properties in our study.

We mapped the whole data set against the PhiX refer-

ence genome (5,386 bp) and kept all read pairs that had

passed the Illumina chastity filter, did not contain adapter

sequence, and were matching the genome uniquely with

correct read orientation and expected mapping distance.

This resulted in 4,302,400 and 887,009 PhiX read pairs

sequenced on the HiSeq (2 × 95 nucleotides together with

sugar beet or 2 × 100 nucleotides together with Arabidpo-

sis, respectively) and 6,405,298 PhiX read pairs sequenced

on the GAIIx (2 × 150 nucleotides). To distinguish these

three PhiX data sets in the following analysis, we use the

terms PhiX-95nt, PhiX-100nt, and PhiX-GAIIx.

The sugar beet sample is derived from a whole gen-

ome shotgun library that was sequenced in three

HiSeq lanes. The reference is the BAC insert ZR-

47B15 (109,563 bp), here called ‘ZR’, sequenced to fin-

ished quality [8] and previously used in a study on the

quality of Illumina reads produced on the GA I

sequencing instrument [2]. We implemented filtering

steps for sugar beet reads in order to exclude reads

that mapped to ZR but originated from a different

region of the genome (see Materials and methods).

Such wrongly assigned reads could lead to erroneous

conclusions on read coverage and read error rates - for

instance, in the case of divergent repetitive regions. We

obtained 53,101 reads covering ZR (26,495 pairs, 111

singletons). This read data set is referred to as Bv-95nt

in the following.

The Arabidopsis whole genome shotgun sequencing

data were mapped against the entire Arabidopsis gen-

ome sequence. Pairs were kept if they had passed the

Illumina chastity filter and matched chromosome 1

uniquely with correct read orientation and expected

mapping distance, resulting in 5,815,990 pairs (referred

to as the At-100nt data set).

Read distribution over the reference sequence

For most sequencing applications it is desired to get an

even distribution of reads along the reference. Improve-

ments in the cluster generation and sequencing chemis-

try may have led to a reduction of the previously

observed biases [2,3]. However, we still observe high

coverage variation over the ZR reference, and even in

the deeply covered PhiX genome we observe variation

by a factor of 2. In the sugar beet sample, the per-base

coverage of ZR ranged from 0- to 159-fold, with an

average of 49-fold (Figure 1a). The PhiX genome was

covered, on average, 159,300-fold (range 106,500- to

224,000-fold) by PhiX-95nt data (Figure 1b), 34,710-fold

(range 23,280- to 49,560-fold) by PhiX-100nt data, and

375,100-fold (range 162,100- to 508,300-fold) by PhiX-

GAIIx data. Similar to previous reports, we found a

positive correlation between %GC and read coverage for

the two plant samples (Figures S1, S4a, b, and S6a in

Additional file 1). PhiX, in contrast, did not show a sig-

nificant correlation between %GC and coverage (Figures

S4c-e, S5f, and S6b, c in Additional file 1). The PhiX

genome differs from the plant reference sequences in its

higher average %GC (PhiX, 44.7%; ZR, 34.8%; At, 35.9%)

and its smaller %GC variation (1st and 99th percentiles

of PhiX, 41 to 49%; of ZR, 24 to 47%; of At, 20 to 50%).

Selecting ZR regions of %GC between 31% and 39%

clearly showed a correlation but regions of %GC

between 41% and 49% did not (data not shown). This

finding suggests that the extent of the %GC-coverage

correlation is dependent on the %GC range of the refer-

ence sequence.

No correlation between coverage and error rate (Fig-

ure S7a in Additional file 1) or coverage and average

Table 2 Expected error rates after filtering

Expected error ratea (percentage of bases
discarded)

Filter Bv + PhiX At + PhiX PhiX-GAIIx

No filter 7.093 (0.0%) 10.619 (0.0%) 16.434 (0.0%)

ChF 2.583 (10.2%) 4.819 (12.7%) 7.360 (17.8%)

B-tail 0.163 (11.0%) 0.205 (16.6%) 0.229 (25.8%)

N 5.943 (2.5%) 9.688 (2.3%) 8.601 (15.6%)

C33 1.521 (14.3%) 2.907 (17.7%) 5.207 (21.7%)

A30 1.802 (12.7%) 3.586 (15.5%) 5.457 (21.3%)

B-tail + N 0.141 (11.4%) 0.187 (17.0%) 0.206 (26.8%)

B-tail + ChF 0.118 (13.8%) 0.161 (19.2%) 0.204 (27.2%)

B-tail + ChF + C33 0.083 (16.9%) 0.127 (22.1%) 0.174 (28.3%)

B-tail + ChF + A30 0.093 (15.8%) 0.139 (21.0%) 0.176 (28.2%)

B-tail + ChF + N + C33 0.077 (17.1%) 0.125 (22.2%) 0.168 (28.9%)

B-tail + ChF + N + A30 0.085 (16.0%) 0.136 (21.1%) 0.171 (28.6%)

aExpected error rate: average error probability of each base assigned by

Illumina as quality scores. No filter, raw data prior to filtering; ChF, Illumina

chastity filter; B-tail, B-tail trimming; N, removal of reads with at least one

uncalled base; C33, removal of reads having less than two-thirds of bases with

Q ≥ 30 within the first half of the read; A30, removal of reads that have an

average Q-score < 30 in the first 30% of the read. Note that some quality

filters discard partially the same reads (for instance, the chastity filter and the

removal of reads containing at least one uncalled base).
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quality score could be detected (tested for ZR; Figure

S7b in Additional file 1).

Accumulation of reads with B-tails

Intuitively, reads with low quality 3’ ends (marked with

a B-tail in the quality string) are expected to occur at

any position within the reference sequence. However,

we noticed that B-tailed reads were not distributed ran-

domly but accumulated at distinct locations, and in sev-

eral cases the accumulation was found almost

exclusively on one strand (Figure 2a; Figure S8 in Addi-

tional file 1). The average Q-scores were decreased

according to where B-tails accumulated (Figure 2b), as

expected, but even after B-tail trimming, regions pre-

viously spanned by B-tails still displayed lower average

Q-scores in the remaining bases (Figure 2c). This obser-

vation was made in the PhiX-95nt data as well as in the

Bv-95nt data and could be perfectly reproduced with

the PhiX-100nt data (Figure S9a-d in Additional file 1).

When comparing our PhiX-GAIIx data to the two

HiSeq PhiX data sets, we observed that some of the low

quality peaks were common to both sequencing plat-

forms (Figure S9a, e in Additional file 1).

The example region in Figure 3 illustrates the finding

of region-specific accumulation of B-tails within the ZR

reference. The comparison of this region before and

after B-tail trimming shows that the high number of

substitution errors, densely packed within a distinct

region of the reference sequence, disappears as soon as

B-tails are removed (Figure 3a, b). Further analysis indi-

cated that 95% of the B-tailed reads in this region

mapped to the forward strand, suggesting a sequence

context-specific accumulation of low quality reads

(more precisely, of the low quality 3’ parts of reads). All

read pairs with a B-tail in this region had the B-tail only

in one of the two reads of the pair. The accumulation of

low quality bases and sequencing errors, including their

directionality, was also observed by Nakamura et al. [6]

in bacterial read data sequenced on a GAIIx, but in

their study quality values were not considered as a cri-

terion to filter out erroneous parts of the reads. They

rather truncated the reads by a fixed number of bases or

removed complete reads containing a certain number of

mismatches. By taking off only the B-tail of a read we

remove the vast majority of erroneous bases and at the

same time we keep the coverage loss to a minimum.

The effect of coverage decrease due to B-tail trimming

is obvious for regions of B-tail accumulation. When

aligning B-tail trimmed reads of Bv-95nt back to ZR,

46% of all reference bases were affected by a coverage

decrease (Table 3); in some cases the coverage went

down to 5% of the coverage by full reads (with B-tail).

For PhiX reads, B-tail trimming reduced the coverage of

each base in the genome but within a narrower range

(remaining coverage 68 to 99%). However, the median

coverage decreased only by 3% for both ZR and PhiX.

The sequencing error analysis in the following para-

graphs was performed after B-tail trimming.

Substitution error rates and distributions

Substitution errors are far more frequent than insertions

or deletions (indels) in Illumina sequencing data (Table

Figure 1 Distribution of read coverage depth for (a) Bv-95nt reads and (b) Phix-95nt reads. Read coverage was computed per base. In

three separate calculations we considered all positions (black), positions in regions below (red) and positions in regions above (blue) the

average GC content (%GC) of the reference. The regional %GC was determined based on a window of 250 bases upstream and 250 bases

downstream of each position. In contrast to PhiX (b) the coverage variation in the sugar beet sample (a) is related to the %GC.
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4). In B-tail trimmed and adapter-free PhiX-95nt reads,

for instance, base substitutions account for 99.5% of all

detected errors. We found 7,615 substitution errors at

6,537 different positions in the mapping result of the

Bv-95nt data (6% of all ZR positions affected) and

1,792,190 substitution errors at 1,523,614 different posi-

tions in the At-100nt data (5% of all At chromosome 1

positions affected). All positions in the PhiX genome

were affected by substitution errors after mapping of

PhiX-GAIIx data; for HiSeq data, reduced coverage at

the terminal regions of the linear PhiX reference

sequence referring to a circular genome resulted in 3

bases (PhiX-95nt) and 28 bases (PhiX-100nt) remaining

error-free. On average, we counted at each reference

position 154 substitutions in PhiX-95nt, 37 substitutions

in PhiX-100nt, and 916 substitutions in PhiX-GAIIx

Figure 2 Distribution of low quality bases along the PhiX reference genome. Analysis was performed on reads derived from an Illumina

PhiX library (PhiX-95nt data set). (a) Number of bases within B-tails (consecutive bases of Q-score = 2 at the 3’ end of a read) per position. (b)

Average Q-score of bases in untrimmed reads. (c) Average Q-score of bases in B-tail trimmed reads. (d) Observed per-base substitution error

rate. Calculations for (a-d) were performed separately for the forward strand (green) and reverse strand (red). Low quality values accumulated in

certain regions even after removal of B-tails. The peaks of observed error rates occur at positions where increased low quality counts are

detected, and in most cases the peak is seen only on one strand.
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(reflecting the coverage difference between the three

PhiX samples). This corresponds to a global average

substitution error rate of 0.11% for the two HiSeq PhiX

data sets and of 0.28% for the PhiX-GAIIx data set. The

HiSeq read data sets from the two plant samples both

had a global substitution error rate of 0.16%. Uncalled

bases were not counted as sequencing errors. Within

the B-tails of PhiX-95nt we find a greatly increased sub-

stitution error rate of 6.5%.

We determined the distribution of error rates within a

read. In an Illumina sequencing cycle, elongation by

exactly one base per molecule per cluster in the presence

of all four nucleotides at the same time is taking place.

We calculated the per-cycle error rate by dividing the

number of base substitutions in a particular cycle by the

number of all sequenced bases of that cycle. We generally

observed lower per-cycle error rates in the first half of

the reads, and lower error rates in read 1 compared to

read 2. Per-cycle error rates ranged from 0.04 to 0.3% in

PhiX-95nt reads and from 0.08 to 0.29% in Bv-95nt

reads. Towards the 3’ end the error rate doubles for

PhiX-95nt reads (Figure 4a) and does not increase in

Bv-95nt reads (Figure 4b). For the At-100nt and PhiX-

100nt data sets the error rate was approximately doubled

(read 1) or tripled (read 2) towards the 3’ end of reads

(Figure S10a, b in Additional file 1), and the Phix-GAIIx

data (length 150 nucleotides) showed an error rate

increase of about five- to ten-fold (Figure S10c in Addi-

tional file 1). Increased error rates up to 1.78% (about 16-

fold) could be observed at 3’ ends of HiSeq data if no

adapter trimming was performed (Figure S10d in Addi-

tional file 1). Sequencing of library inserts smaller than

the read length results in reads containing parts of the

adapter. We removed reads containing adapter sequence

prior to analysis (see Materials and methods).

In the sequencing data, increased error rates were

observed in some sequencing cycles (Figure 4; Figure S10

in Additional file 1). It turned out that only a fraction of

the reads was affected by these peaks. When inspecting

their spatial placement within the flow cell we found that

they concentrated in certain regions (Figure S11 and text

supplement T1 in Additional file 1). The increased error

rates were consistently reflected in the average quality

scores of the particular cycles and regions for HiSeq

Figure 3 Alignment of reads before (a) and after (b) B-tail trimming in a selected region of the ZR reference (positions 63,633 to

63,662). Uniquely mapped reads from the Bv-95nt data set were visualized using the Tablet browser [17]. Forward matching reads are shown in

grey, reverse matching reads are shown in blue, mismatch bases are shown in white. Long white stretches are uncalled bases. Mismatches

accumulated in one region, and almost all mismatches are eliminated after B-tail removal.

Table 3 Coverage drop after B-tail removal

Remaining per-base coverage
after B-tail removal

Number of positions with this coverage in the ZR
reference (Bv-95nt data)

Number of positions with this coverage in the PhiX
reference (PhiX-95nt data)

90 to 100% 41,130 (40.26%) 4,016 (91.65%)

80 to 90% 4,056 (3.97%) 266 (6.07%)

60 to 80% 1,711 (1.67%) 100 (2.28%)

40 to 60% 310 (0.30%) 0 (0.00%)

20 to 40% 76 (0.07%) 0 (0.00%)

0 to 20% 29 (0.03%) 0 (0.00%)
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reads (Figures S16 and S17 in Additional file 1) as well as

GAIIx reads (data not shown). Thus, taking quality values

into account should safely prevent potential interfering

effects caused by these outliers during downstream

analysis.

Within the PhiX reference genome we found 161 posi-

tions of significantly increased error rates ranging from

0.36% to 8.83% (higher than the mean error rate plus

standard deviation). The 161 bases represent 3.0% of the

PhiX genome but 24.7% of all substitution errors occur

at these positions (PhiX-95nt data). Closer inspection

revealed that error rates at these positions differ between

the two strands reaching peaks of 18.7% when determin-

ing strand-specific error rates (Figure 2d; Table S1 in

Additional file 1). We tested the reproducibility by using

several other PhiX data sets (generated on both GAIIx

and HiSeq instruments; supplemental methods in Addi-

tional file 1) and another mapping program. Between dif-

ferent samples and two mapping programs the error

prone positions were highly reproducible (Figure S12 and

S13 in Additional file 1). However, the finding is less

obvious in GA data (Figure S13d-f in Additional file 1)

than in HiSeq data (Figure S13a-c in Additional file 1).

Among GA data, it is less obvious in the data sets of

smaller cycle numbers than in the data set of 150 cycles

(Figure S9h in Additional file 1). The 161 positions them-

selves, but also the surrounding positions, show low aver-

age quality values (Figures 2c), and the quality values are

low not only for wrongly but also for correctly called

bases (Figure 5). The location of these peaks close to

regions of accumulated B-tails (Figure 2a) prompted us

to trim off a larger part than the actual B-tail (5, 10 and

15 bases more than the B-tail length), but extended trim-

ming and even the complete removal of B-tailed reads

could not eliminate the error rate peaks (Figure S14 in

Additional file 1). As suggested by B-tail accumulation,

we find a non-random distribution of errors within the

reference, different for the two strands.

Table 4 Indels and substitution errors in B-tail trimmed reads

Data set Uniquely aligned bases Substitution errors (rate) Indels (rate)

Bv-95nt 4,900,840 7,615 (0.16%) 84 (1.7 E-5)

PhiX-95nt 778,014,176 830,351 (0.11%) 3,789 (4.9 E-6)

At-100nt 1,111,314,053 1,792,190 (0.16%) 26,130 (2.4 E-5)

PhiX-100nt 170,078,494 203,729 (0.12%) 546 (3.2 E-6)

PhiX-GAIIx 1,760,062,929 4,936,167 (0.28%) 7,077 (4.0 E-6)

Figure 4 Observed error rates of 2 × 95-nucleotide HiSeq reads by cycle (averaged across all flow cell tiles). Read 1 (left) and read 2

(right) were analyzed separately for PhiX-95nt data (a) and Bv-95nt data (b). PhiX and sugar beet DNA was sequenced in the same lane, and

reads were mapped against the PhiX or ZR reference sequences, respectively.
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To determine the probability of particular neighboring

bases appearing next to substitution errors, we calcu-

lated for all substitution error positions the frequencies

of three-base tuples containing the wrong base call at

the middle position (Figure 6a). For the bases flanking

the wrong base call we used the corresponding reference

bases in order to exclude potential additional errors. As

a general trend we found substitution errors to be more

likely preceded by a G or C than by A or T, which is in

agreement with previous reports [2]. In PhiX-95nt the

most frequently observed error context G-error-G was

3.9-fold elevated compared to A-error-T. The position

after the error is generally more variable than the posi-

tion before the error, but within tuples starting with the

same base the position after the error was more fre-

quently G or A than C or T. When inspecting bases up

to five positions preceding an error, G and C were

slightly more frequently observed in all templates (Fig-

ure S15 in Additional file 1). We paid special attention

to the positions of elevated error rates mentioned above

and searched for a pattern shared by the sequence con-

text of these positions. Performing a k-mer analysis (K =

3, 4, 5) as well as a simple counting of the four different

bases, we inspected the close (5 bp) and distant (200 bp)

vicinity upstream and downstream of 136 of the error

prone positions (we excluded terminal regions that

showed a coverage loss in the linear reference of the cir-

cular genome). In the close vicinity we found a high

percentage of G (47%) upstream and a slightly higher

percentage of A and T (59%) downstream of the error

base (average %GC of PhiX = 44.7%). Accordingly,

upstream k-mers containing Gs were over-represented,

with TGG and AGG showing the highest numbers

within the vicinities and GGG and CGG being the most

frequent k-mers related to all k-mers of the genome (5-

bp as well as 10-bp vicinities tested). In the distant vici-

nity of 200 bp no significantly over-represented k-mer

was found. Nakamura et al. [6] reported that GGC was

found within the 10-bp vicinities of most of the start

positions of error prone regions in their data. We found

this motif in the 10-bp vicinities of only 31 of 136 error

prone positions in our data. However, start positions of

error prone regions detected by Nakamura et al. are not

necessarily congruent with the single-base positions of

elevated error rates we here report (see Discussion).

For a miscalled base three different substitution errors

are possible. It was reported previously that in GA I

data particular base conversions were more frequently

observed than others [2]. We counted all conversion

events in our HiSeq and GAIIx data and found again

certain preferences. Summarized over all HiSeq data we

found A replacing C or vice versa (29.2%) and G

Figure 5 Mean quality scores of correct and wrong bases sequenced (PhiX-95nt data) at error-prone positions and all other positions

in the PhiX reference. The bases covering 161 positions of significantly elevated error rates (A, B) in the PhiX reference show lower average

quality scores compared to the bases covering other positions (C, D). This is true for correctly called bases (A, C) as well as for incorrectly called

bases (B, D).
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replacing T or vice versa (26.8%) to be the most fre-

quent substitutions. The fluorophore groups attached to

bases A and C are excited by the same laser and distin-

guished only by the emission at different wave lengths;

the same is true for the fluorophores of bases G and T.

The fact that these pairs of bases are exchanged at high

frequencies suggests an impact of these detection set-

tings; the emission spectra of bases excited by the same

laser might not be perfectly separated.

The individual conversions show slight variation

between different HiSeq samples and greater variation

between HiSeq and GAIIx samples (Figure 6b). The

most frequent conversion in GAIIx data (A into C) is

the same as reported for GA I data [2]. In three of four

HiSeq samples G was the base most frequently appear-

ing as a miscall (conversion of any other base into G:

PhiX-95nt, 38%; PhiX-100nt, 32%; At-100nt, 32%); the

Bv-95nt sample had A (33%) as the most frequent

resulting base (Table S2 in Additional file 1). The cor-

rect base being most frequently called incorrectly was A

in At-100nt, PhiX-100nt and PhiX-GAIIx, C in Bv-95nt,

and T in PhiX-95nt. We analyzed positions of signifi-

cantly elevated error rates mentioned above separately.

Each of the 136 positions analyzed in the PhiX genome

showed a mixture of the three possible substitution

errors but in all cases one of them was clearly dominat-

ing (seen at fractions of 42.5% to 99.1%). This may lead

to confusion with low abundance polymorphisms as

observed in heterogeneous samples. Since the individual

error rate for the dominating base differed greatly in

many cases between the two strands (for 117 of 136

positions by at least 10-fold, for 125 positions by at least

5-fold) a strand-specific analysis can help to distinguish

real polymorphisms from region-specific substitution

errors by confirming the occurrence of a variation on

both strands at about the same rate. Furthermore, as

Figure 6 Frequencies and context of sequencing errors and quality scores compared to observed error rates. The sugar beet sample

(yellow) and the Arabidopsis sample (blue) were each sequenced together with PhiX DNA (red and green, respectively) on a HiSeq2000

sequencing instrument. PhiX DNA only (black) was sequenced on a GAIIx. (a) Sequence context of substitution errors. The frequency of

neighboring bases one position upstream and downstream of an error position is displayed. Sequence triplets were summarized for all types of

base substitutions at the central position (indicated by an ‘e’). We counted reads spanning the triplet positions and ignored potential further

substitution errors within the triplet sequence of the read. The frequency was determined by dividing the occurrence of a triplet containing a

central substitution error by the occurrence of all triplets with the same marginal bases but variable central base. The display of triplets is

ordered by increasing average frequency in the HiSeq data. (b) Frequency of base substitution errors. For each sample, the proportion of each

substitution is indicated (ordered by increasing average frequency in the HiSeq samples). (c) Rates of insertions or deletions in homopolymer

tracts normalized by homopolymer length. Homopolymers longer than seven bases were present only in the two plant samples. Homopolymers

of length 16 to 19 in the Bv-95nt data and of length 26 to 29 in the At-100nt data were each covered by less than 50 reads. (d) Expected

versus observed error rates. Expected error rates according to quality scores (Q) were calculated for Q = 2 to Q = 40 (solid diagonal line). For

each sample the uniquely aligned bases were grouped by quality score, and the observed error rate was determined from the number of

observed substitution errors for each Q separately.
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mentioned above, positions of elevated error rates are

reflected in the quality values, which should also be

taken into account. The conversion from A or T in the

reference sequence to G or C in the read sequence was

seen at 118 (87%) of the 136 positions as the dominant

base substitution and, among these, in 102 cases (86%)

the positions were preceded by a G, resulting in G[A/T]

being the most frequent motif at positions of elevated

error rates. However, this motif occurs many more

times (992) in both the forward and reverse strand of

the PhiX genome.

Insertions and deletions

The frequency of insertions and deletions (indels) is very

low, and insertions occur less frequently than deletions

(Table 5; Table S3 in Additional file 1). The difference

in the number of insertions and deletions was larger in

the PhiX samples than in the plant samples. Among sin-

gle-base indels, an insertion or deletion of A or T was

more frequently observed than indels of C or G (ele-

vated by an average factor of 7.5 in the plant samples

and by a factor of 1.6 in the PhiX samples). Indel events

of more than one base occurred at lower rates than sin-

gle-base indels (14.8% of all indel events in the plant

samples, 2.4% in PhiX samples). We calculated the per-

base indel error rate in homopolymers of different sizes.

Illumina sequencing is considered to be robust against

homopolymer errors. However, within homopolymers of

increasing lengths from 2 to 15 nucleotides we observed

a 1,000-fold increase of the indel error rate per homo-

polymer base (Figure 6c).

ELANDv2 performs multiseed and gapped alignments,

allowing the detection of indels with a length of up to

20 bases. The description of the conditions of ELANDv2

indel calls implies that no indels are reported in term-

inal regions of the reads. Indeed, simulations showed

that no indels were detected if they were located before

position 5 or after position 89 within reads of 95

nucleotides. All indels between positions 21 and 76 were

reported, and a fraction of the indels was reported for

positions 5 to 20 and 77 to 89. Consequently, the indel

error rates as displayed in Table 4 can be considered as

slightly underestimated.

Assessment of quality values

Quality scores are relevant for SNP detection and con-

sensus calling and they are also used by mapping pro-

grams such as BWA [10] and Bowtie [11]. In all

sequenced HiSeq samples the observed error rates fitted

well with the expected error rates derived from the

quality values assigned by the Illumina base-calling soft-

ware. The At-100nt and PhiX-100nt data base-called

with a newer software version scatter closer around the

expected error rates than the Bv-95nt and PhiX-95nt

data processed with an earlier version (Figure 6d). Cor-

rectly called bases have, on average, a high quality score

of 35 to 37 (At-100nt, Q = 37; Bv-95, Q = 36; PhiX-

95nt, Q = 35) and wrong called bases have, on average,

a low quality score of 18 to 28 (At-100nt, Q = 18; Bv-

95nt, Q = 28; PhiX-95nt, Q = 18). We found no major

differences when analyzing reads 1 and 2 of the read

pair separately (data not shown).

Quality filtering improves the average Illumina quality

scores of the sequenced bases at the expense of remov-

ing part of the data (see above). We determined

expected error rates (calculated from the average quality

score) and observed error rates after mapping as well as

the fraction of removed bases for different filtering cri-

teria separately and in combination (Table 6; Table S4

in Additional file 1). B-tail trimming reduces observed

and expected error rates most drastically. This is a con-

sequence of discarding bases of Q = 2, which is an arbi-

trary value to mark low quality read segments

corresponding to an extremely high error rate of 63%.

Uncalled bases were not counted as sequencing errors.

If they were counted as sequencing errors, the observed

error rates increase slightly by a factor of up to 1.1

(Table S5 in Additional file 1).

Discussion

In this work we have analyzed several sequence data sets

generated on state of the art Illumina second-generation

sequencing instrumentation. Specifically, we analyzed

data from the HiSeq2000 and the GAIIx. We deter-

mined base substitution and indel error frequencies, and

assessed biases of read coverage, sequencing errors, and

base quality score assignments.

Table 5 Number of insertions and deletions

PhiX-95nt At-100nt

Insertions Deletions Insertions Deletions

All 336 (100%) 3,453 (100%) 11,043 (100%) 15,087 (100%)

1 base of T, A, C or G 330 (98%) 3,381 (98%) 10,225 (93%) 12,936 (86%)

1 base of T or A 259 (77%) 2,100 (61%) 8,878 (80%) 10,940 (73%)

1 base of C or G 71 (21%) 1,281 (37%) 1,347 (12%) 1,996 (13%)

> 1 base 6 (2%) 72 (2%) 818 (7%) 2,151 (14%)
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Based on our analysis of the observed and expected

error rates after application of different read filtering steps,

we recommend to perform B-tail trimming and to remove

reads containing adapter sequence prior to analysis. The

accuracy of the sequencing data can be further improved

by removing reads that have less than two-thirds of the

bases with Q ≥ 30 in the first half of the read, reads not

passing the chastity filter, and reads containing at least

one uncalled base. However, rigorous quality filtering

might reduce the local coverage in regions of accumulated

low quality reads. This effect should be taken into account

when performing quantitative analyses rather than com-

parative sequencing. For de novo assemblies the coverage

loss might result in contig breaks but the accuracy of the

consensus sequence will benefit greatly from using error-

free input reads; a regionally divergent unfiltered read

population will result in either contig breaks or an erro-

neous consensus.

Despite the improvements of Illumina cluster amplifica-

tion kits and sequencing reagents, sequencing on the

HiSeq and the GAIIx still shows a GC bias. The finding

that templates such as ZR with a %GC varying from 24%

to 47% (1st and 99th percentiles) show increased coverage

of GC-rich regions when using Illumina standard proto-

cols is in accordance with previous results [2,4]. Aird et al.

[4] analyzed a mixture of genomes covering a broad %GC

spectrum and reported a read coverage increase for tem-

plates with %GC up to 47% followed by a coverage

decrease in regions of higher %GC. Since the %GC of the

PhiX is in a narrow interval around the angular point of %

GC = 47% (1st and 99th percentiles of PhiX: 41 to 49%)

the lack of correlation between read coverage and %GC in

PhiX data is in line with the findings of Aird et al. The GC

bias is also reflected in the %GC of the raw read sequences

from the samples we sequenced, which differs from the

reference %GC for the two plant species but is close to the

%GC of the PhiX genome.

Sequence reads with low base quality can result from,

for example, phasing discrepancies. The quality measure-

ment is able to indicate these effects to a certain extent by

assigning low quality values of Q = 2, depicted as ‘B’ in the

quality string, typically at the 3’ end of reads. Such B-tailed

reads were expected to be randomly distributed across the

reference genome. However, we observed regions in the

reference genome in which the mapping reads have a

lower average quality and B-tails accumulate. After

removal of B-tails, such regions remained error-free or

greatly error-reduced. We found single positions of signifi-

cantly increased error rates remaining after B-tail trim-

ming. These positions displayed one dominant base

conversion, which mainly occurred on one strand.

We were not able to identify sequence-based criteria to

predict such error-prone positions unambiguously. Most

positions with increased error rates had an over-repre-

sentation of G in close vicinity upstream and were

located within regions of low average base quality values.

We found over-representation for several G-containing

motifs, especially GGG and CGG. Nakamura et al. [6]

suggested that a GGC motif precedes error-prone

regions. In Nakamura et al., the start of such a region is

defined by positions of very high error rates (applying the

same criteria, we find only one error-prone region in our

PhiX-95nt data). In our analysis, we distinguish between

two observations: error-prone regions (errors removable

by B-tail trimming) and error-prone positions (remaining

after B-tail trimming). There does not seem to be any

universal short motif that co-occurs with elevated error

rates.

We successfully eliminated most error-prone regions

by trimming B-tails and retaining the parts of higher

quality values. Still, we encountered single positions of

elevated error rates, and neither the extension of B-tail

trimming towards the 5’ end nor complete exclusion of

B-tailed reads could remove the error rate peaks at these

Table 6 Expected and observed error rates after filtering of aligned reads

PhiX-Bv PhiX-GA

Expected (%)a Observed (%)b Percentage bases removed Expected (%)a Observed (%)b Percentage bases removed

No filter 4.549 0.650 0.0 5.829 1.555 0.0

ChF 2.989 0.399 4.8 5.292 1.349 2.0

C33 2.121 0.274 9.3 4.823 1.113 3.3

B-tail 0.166 0.130 7.0 0.194 0.309 9.0

B-tail + ChF 0.137 0.107 9.1 0.182 0.280 9.9

B-tail + N 0.159 0.130 7.2 0.187 0.310 9.5

B-tail + C33 0.106 0.088 12.2 0.172 0.251 10.5

B-tail + A30 0.114 0.092 11.3 0.172 0.262 10.5

B-tail + ChF + C33 0.105 0.087 12.5 0.170 0.248 10.9

B-tail + ChF + A30 0.113 0.091 11.6 0.170 0.257 10.8

aExpected error rate: average error probability of each base, assigned by Illumina as Q-scores. bObserved error rate: substitution error rate of aligned bases. ChF,

Illumina chastity filter; B-tail, B-tail trimming; N, removal of reads with at least one uncalled base; C33, removal of reads that have less than two-thirds of Q ≥ 30

bases within the first half of the read; A30, removal of reads that have an average Q-score < 30 in the first 30% of the read.
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positions. We speculate that the two phenomena,

although related to each other, originate from two effects,

one resulting in regions of accumulated errors and low

quality, and another being responsible for single positions

of drastically increased error rates.

As a single sequence motif could not be found, the co-

occurring pattern is expected to be more complex. It has

been suggested that folding effects due to inverted

repeats might be a reason for the accumulation of errors

[6]. We agree that secondary structures might be a

potential source of region-specific sequencing artifacts,

although the details are not yet understood. The respon-

sible sequence pattern(s) may be located in any part of

the fragment to be sequenced, even beyond the actually

sequenced end. Pairs of low quality peaks on different

strands of the reference should be related to each other,

as long as the distance between them does not exceed

the library insert size. Closer inspection of low quality

regions might reveal the factor(s) causing B-tail accumu-

lation as well as error-prone single positions. For now,

we have shown that error-prone regions can be efficiently

cleaned by B-tail trimming, and error-prone single posi-

tions can be detected by the directionality of the reads

and the quality value of the affected base. Low copy sin-

gle-nucleotide polymorphisms (occurring in viral popula-

tions or arising from somatic mutations or RNA editing)

have to be distinguished from such sequencing errors.

Confirmation on both strands may help to find true var-

iants. Data sets obtained from strand-specific sequencing

of RNA are particularly sensitive to such errors as only

sequences from one strand are available for analysis. Data

interpretation might be complicated in situations when a

polymorphic position coincides with an error-prone posi-

tion and base conversions lead to alterations of allele

ratios. Quality values of bases at error-prone positions

were found to be clearly reduced, which can serve as an

additional criterion for discrimination.

For the Illumina GA I sequencing platform, we pre-

viously reported an average error rate of 0.6% for sequen-

cing of ZR with 27-nucleotide reads [2]. For HiSeq data,

after B-tail trimming and removal of reads that did not

pass the chastity filter, we observed an error rate of

0.16% in reads of 95 bases, testifying to the advanced

accuracy of this now matured second generation sequen-

cing technology. In particular, by removing read pairs

containing the sequencing adapter, neither HiSeq reads

nor the GAIIx reads (data not shown) displayed an expo-

nential increase of error rates towards read ends as

reported for GA I data previously. The increase was

found to be about two- to three-fold for HiSeq data (95

to 100 nucleotides) and about five- to ten-fold for GAIIx

data (150 nucleotides).

For plant DNA sequenced with the HiSeq we obtained

slightly higher base substitution rates and indel error

rates than for the spiked in PhiX controls. Also, the

ratio between insertions and deletions, the ratio between

indels of one versus more than one base, and the ratio

between A/T versus G/C single base indels were distinc-

tively different in plant and PhiX sequencing data. These

differences can potentially be explained by somatic var-

iation present within the plant material from which the

DNA was extracted or by the occurrence of consensus

errors in the plant reference sequences, for example,

within repeat regions, which are difficult to assemble.

Conclusions

For the successful application of sequencing technologies

the read data quality is crucial. We here provided a

resource of information regarding several error types as

well as ways to detect and minimize bad quality. We

showed how appropriate data filtering criteria, inferred

from properties of raw reads, substantially reduces error

rates. When comparing expected and observed error

rates the quality scores assigned by the base-calling soft-

ware were generally accurate. Within reads, a signifi-

cantly increased error rate towards the end of the read

was not observed after quality filtering. Within the refer-

ence sequence, we found regional accumulation of low

quality bases and single positions of notably elevated

error rates, which are important to consider when analyz-

ing nucleotide variations. Supporting previous recom-

mendations [6,12], we conclude from our data that true

variants should be confirmed on both strands and quality

values should be taken into account. Error types found in

GA data are also present in HiSeq data, such as %GC

bias, preferred base conversions, or the presence of a pre-

ferred base preceding wrong base calls.

Materials and methods

DNA extraction, sequencing library preparation,

sequencing

Leaf material from sugar beet (B. vulgaris) genotype

KWS2320 and from A. thaliana accession Columbia

(Col-0) were used for DNA extraction. These genotypes

were chosen because the same accessions were used in

the preparation of the reference genome sequences of

the respective species ([13] and unpublished data).

Genomic DNA was prepared using the Nucleospin Plant

XL Kit (Macherey Nagel, Düren, Germany). The DNA

of PhiX174 RF1 was purchased from New England Bio-

labs (Ipswich, MA, USA). Genomic DNA was fragmen-

ted in a Covaris instrument (Woburn, MA, USA) to an

average size of 250 nucleotides (plant DNA) or 300

nucleotides (PhiX174 RF1). Library preparation was per-

formed using standard Illumina protocols and Illumina

paired-end adapters [14].

Sequencing on the Illumina GAIIx was performed

with a paired-end cluster generation kit v4 and TruSeq
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SBS v5 sequencing kits. A library prepared from

PhiX174 RF1 was loaded onto the flowcell at a concen-

tration of 5 pM. Clusters were prepared using the Illu-

mina cluster station according to the manufacturer’s

instructions. Sequencing was performed following a 2 ×

150-nucleotide cycle recipe. For Hiseq sequencing, a

PhiX kit v2 library (Illumina) was spiked into the B. vul-

garis and A. thaliana sample libraries at a proportion of

about 1% each. The total loading concentration was 7

pM. Amplification was performed in the cBOT (Illu-

mina) using an Illumina HiSeq paired-end cluster gen-

eration kit PE-401-1001. For sequencing, a 200 cycle

SBS kit FC-401-1001 was used, and 2 × 95 (B. vulgaris)

or 2 × 100 (A. thaliana) cycles of sequencing were

performed.

Data processing, mapping, and read filtering

The Illumina pipeline version 2.8 was used for base-call-

ing of GAIIx data, and the HiSeq2000 control software

version 1.1.37 for the B. vulgaris sample and version

1.1.37.8 for the A. thaliana sample. From the GAIIx

run, we obtained a full lane of data consisting exclu-

sively of reads from PhiX. HiSeq data consisted of geno-

mic reads from sugar beet or Arabidopsis plus 1% of

control PhiX that had been spiked into the genomic

sample. HiSeq read pairs were mapped with ELANDv2

(within Casava 1.7) to a PhiX reference sequence pro-

vided by Illumina, and consecutively to a sugar beet

genome reference sequence prepared and assembled by

our group (unpublished data) and sugar beet BAC clone

ZR-47B15 insert that had been previously sequenced to

finished quality with Sanger dideoxy terminator sequen-

cing chemistry (’ZR’, GenBank: FJ752587) [8]. The ZR

genotype is the same as the genome reference we pre-

pared (unpublished data). We used this draft genome

assembly to select the portion of reads covering ZR. In

the first step, we mapped all read pairs of the three

sugar beet lanes against the B. vulgaris draft assembly.

We kept only those pairs of which at least one read

mapped to the part of the sugar beet genome corre-

sponding to ZR and nowhere else in the genome. The

resulting 37,696 pairs were mapped against the high-

quality ZR sequence from Dohm et al. [8] and were

kept if they had passed the Illumina chastity filter and

matched ZR uniquely with the correct read orientation

and expected mapping distance of less than 500 nucleo-

tides. Reads passed the chastity filter if they had, within

the first 25 cycles, no more than one cycle of a chastity

below 0.6 (Chastity = Highest intensity/(Highest inten-

sity + Next highest intensity)). To keep adapter-free

pairs only, pairs were removed if the two reads showed

the wrong matching order within the reference, that is,

if the reverse matching read was found upstream of the

forward matching read. This occurs if the read length is

larger than the sequenced library insert, resulting in an

overlapping read pair containing the Illumina 3’ adapter.

From the remaining 28,993 pairs we further excluded

4,885 reads that mapped to a region of 6 kbp in ZR at

positions 30 to 36 kbp. Within this putatively repetitive

region, we found that error rates were elevated five-fold

compared to other ZR regions, and the read coverage

was five times higher than seen on average in ZR (Fig-

ures S1 and S2 in Additional file 1). This region had

passed the first filtering step because it was underrepre-

sented in the draft assembly. The final read data set

comprises 26,495 read pairs and 111 single reads.

Read match coordinates and information on mis-

matches were retrieved from the ELAND output file.

The Illumina PhiX preparation that was sequenced on

the HiSeq contained three base positions that did not

correspond to the PhiX reference. Errors at these posi-

tions were ignored during analysis.

ELANDv2 performs multiseed and gapped alignment

of paired reads. In a mulitseed alignment, in case the

first seed (default first 32 bases) cannot be mapped with

up to 2 mismatches, the next seed (default next 32

bases) is attempted to be mapped. For B. vulgaris/PhiX

reads we reduced the seed length to 31 bases to allow

up to three seeds in reads of length 95 bp. Starting from

the matching seed, the alignment is extended to the full

length of the read allowing for more mismatches and

gaps (indels) of up to 20 bases. ELANDv2 only opens

gaps if a gap corrects at least five mismatches down-

stream and if the ratio between the number of mis-

matches in the gapped versus ungapped alignment is

above a certain threshold. The latter criterion permits

gaps that improve noisy ungapped alignments to be dis-

tinguished from bona fide small insertions/deletions

(CASAVA1.7 User Guide).

Scripting and data visualization

To create statistics on errors and quality values, we

extracted and processed information from the ELAND

output using scripts written in Perl v5.8.9 [15] and R

2.9.0 [16]. Plots were generated with R.

Calculation of per-base indel error rates in homopolymer

sequences

Homopolymer sequences in the reference were categor-

ized according to their length. For each of the homopo-

lymer tracts we determined the number of spanning

reads and the number of reads with indels. We ignored

the first and last ten bases of each read within which

indel errors are not reliably called by ELAND. The

number of indel errors in homopolymers of a certain

size was divided by the number of reads spanning

homopolymers of that size. The obtained rates were

divided by the homopolymer sizes to obtain the per-
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base indel error rate in homopolymers (necessary to

detect if the indel error rate actually increases with

longer homopolymers despite the fact that a longer

stretch of sequence can accumulate more indel errors).

Data availability

Sequence data of this study have been submitted to the

Sequence Read Archive (SRP008975).

Additional material

Additional file 1: Supplemental text, Figures S1 to S18, Tables S1 to

S5, supplemental methods, and supplemental references.
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