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EXECUTIVE SUMMARY 

A large number of highway bridges are in need of repair, replacement, or significant 

upgrade because of deterioration induced by environmental conditions, increasing traffic 

volume, and higher load requirements. For bridge replacement, there are not only the 

associated material costs to consider, but also the labor costs, delays, and detours.  Hence, 

a cost-effective solution must consider the minimization of traffic disruption as well as 

future maintenance needs. 

Fiber reinforced polymer (FRP) materials offer high stiffness and strength-to-weight 

ratios, excellent corrosion and fatigue resistance, reduced maintenance costs, simplicity 

of handling, and faster installation time compared to conventional materials. Under the 

Innovative Bridge Research and Construction (IBRC) program of the Federal Highway 

Administration (FHWA), the City and County of Denver in cooperation with the 

Colorado Department of Transportation (CDOT) and FHWA built a bridge with a glass 

fiber reinforced polymer deck (GFRP) in O’Fallon Park, which is located west of the City 

of Denver. One of the main objectives of this project is to investigate the feasibility of 

using FRP decks for highway bridges. Hence, the FRP deck in the O’Fallon Park bridge 

was designed to have a configuration similar to a highway bridge deck. 

The GFRP deck has a sandwich construction with top and bottom faces and a 

honeycomb core. They were manufactured in a factory, shipped to the site, and 

assembled by the supplier, which is Kansas Structural Composites, Inc. The deck is 

covered by a ½-inch-thick polymer concrete wear surface. Even though the bridge is 

mainly for pedestrians and occasionally small vehicles, the deck was designed to carry a 

standard HS 25-44 truck to allow the passage of fire trucks and garbage trucks. Because 

of the lack of standard design provisions and manufacturing techniques for GFRP deck 

panels, studies have been conducted at the University of Colorado at Boulder to evaluate 

the design proposed by the manufacturer, and the load-carrying capacity and long-term 

performance of the selected panels as part of the IBRC program. 
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The studies reported here were divided into two phases.  Phase I was intended to 

evaluate and confirm the candidate deck sections proposed by the manufacturer. To this 

end, four GFRP beams were tested to evaluate their stiffness and load-carrying capacities 

and compression tests were conducted to evaluate the crushing capacities of the panels. 

In Phase II, the load-carrying capacity and fatigue endurance of a full-size two-span 

GFRP panel that had the same design as the actual bridge deck was studied. The aim was 

to investigate the influence of load cycles on the load-carrying capacity of a panel and on 

the performance of the anchor bolts. 

Furthermore, finite element models and analytical models based on the Timoshenko 

beam theory and the Kirchhoff-Love plate theory have been developed to obtain a better 

understanding of the experimental results and to evaluate the design of the actual deck. 

In particular, the load distribution capability of the GFRP deck has been evaluated and 

the effective width for shear and bending has been identified. 

This study has shown that the design of the GFRP deck is adequate according to 

the provisions of the City and County of Denver. The deck has a factor of safety of five 

against failure. The deck also satisfies the deflection limits stipulated in the design 

provisions. However, the tests and the analyses have indicated that the material 

orthotropy of the panel and the localized bending effect caused by the soft core can 

reduce the effective bending width by 25% compared to a homogenous isotropic panel. 

Furthermore, this and past studies have shown that the governing failure mode of this 

type of sandwich panel is the delamination of the upper face from the core and that there 

is a large scatter of the interface shear strength among the test specimens. Hence, this 

should be a major consideration in design. From the fatigue endurance standpoint, it is 

recommended that the maximum interface shear be no more than 20% of the shear 

strength under service loads. In the absence of test data, this recommendation is based on 

the general recommendation to prevent the creep rupture or fatigue failure of GFRP 

materials. Furthermore, the anchoring of the panels to the supports requires further 

studies. This study has shown that mechanical anchor bolts could fail prematurely under 

the static wheel loads of an HS 25 truck. 
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Implementation 

A GFRP deck has already been constructed and installed in the O’Fallon Park 

bridge. This project has demonstrated the feasibility of using GFRP decks for highway 

bridges. However, several issues require special attention. First, the interface shear 

between a face and the core should be a major consideration in design. It is recommended 

that the interface shear be less than 20% of the shear strength under service loads.  To 

increase the level of confidence in design, a good quality control is called for to ensure a 

consistent interface shear strength. The effective bending width of a GFRP panel can be 

25% smaller than that of an isotropic panel. However, this is also dependent on the 

geometry of a panel and the support conditions. A finite element analysis taking into 

account the material orthotropy and soft core can be conducted to determine the effective 

bending width. The anchoring of a panel to the supports requires further investigation. 
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EQUATION CHAPTER 1 SECTION 1

1 INTRODUCTION 

1.1 Background 

A large number of highway bridges are in need of repair, replacement, or significant 

upgrade because of deterioration induced by environmental conditions, increasing traffic 

volume, and higher load requirements. In the United States, 50% of all bridges were built 

before the 1940’s and approximately 42% of these structures are structurally deficient 

(Stallings et al. 2000). Many bridges require upgrades because of a steady increase in the 

legal truck weights and traffic volume.  Changes in social needs, upgrading of design 

standards, and increase in safety requirements lead to the need of major maintenance, 

rehabilitation, or reconstruction. In some cases, repair and retrofit will not suffice and 

replacement is the only possible solution.  In such a case, there are not only the associated 

material costs to consider, but also the labor costs, delays, and detours.  Hence, a cost-

effective solution must consider the minimization of traffic disruption as well as future 

maintenance needs. 

Fiber reinforced polymer (FRP) materials offer high stiffness and strength-to-weight 

ratios, excellent corrosion and fatigue resistance, reduced maintenance costs, simplicity 

of handling, and faster installation time compared to conventional materials.  However, 

there is still a great need for further research on durability, performance, and testing and 

manufacturing standards to develop design guidelines and codes for FRPs, which will 

lead to a wider use of the materials and, thereby, reduced costs. 

Recently, many state transportation departments in collaboration with the Federal 

Highway Administration (FHWA) are working toward the use of FRP materials for 

bridge construction. The Innovative Bridge Research and Construction (IBRC) Program 

of FHWA was initiated with the aim of promoting the use of innovative materials and 

construction technologies in bridges. Under the IRBC program, the City and County of 

Denver in cooperation with the Colorado Department of Transportation (CDOT) and 

FHWA built a bridge with a glass fiber reinforced polymer deck (GFRP) in O’Fallon 
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Park, which is located west of the City of Denver. 

The GFRP deck in the O’Fallon Park bridge is supported on five reinforced concrete 

risers built over an arch as shown in Figure 1-1.  The total length of the deck is 43.75 ft. 

and the width is 16.25 ft. One of the main objectives of this project is to investigate the 

feasibility of using FRP decks for highway bridges. Hence, the FRP deck in the O’Fallon 

Park bridge was designed to have a configuration similar to a highway bridge deck. 

However, the spans between the concrete risers are a bit shorter than those in a typical 

highway deck. 

The GFRP deck has a sandwich construction with top and bottom faces and a 

honeycomb core. The deck comprises six 7.29-ft.-wide and 7.5-in.-thick panels as shown 

in Figure 1-1. They were manufactured in a factory, shipped to the site, and assembled by 

the supplier, which is Kansas Structural Composites, Inc. (KSCI).  The deck is anchored 

to the concrete risers with bolts secured by epoxy. There are two anchor bolts on each 

riser for each 7.29-ft.-wide panel. The plan view of the deck is shown in Figure 1-2.  The 

panels are attached to each other with a special type of connection specially designed for 

this application. The details of the connection will be shown in Chapter 7. The deck is 

covered by a ½-inch-thick polymer concrete wear surface.   

Even though the bridge is mainly for pedestrians and occasionally small vehicles, the 

deck was designed to carry a standard HS 25-44 truck to allow the passage of fire trucks 

and garbage trucks. KSCI provided the deck design. Because of the lack of standard 

design provisions and manufacturing techniques for GFRP deck panels, studies must be 

conducted to evaluate the design proposed by the manufacturer, and the load-carrying 

capacity and long-term performance of the selected panels. These studies have been 

conducted at the University of Colorado at Boulder as part of the IBRC project.  
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Figure 1-1 Plan, elevation, and section views of the O’Fallon Park bridge 
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Figure 1-2 Plan view of the O’Fallon Park bridge deck 

1.2 Scope of the Study 

The studies reported here were divided into two phases.  Phase I was intended to 

evaluate and confirm the candidate deck sections proposed by the manufacturer. To this 

end, four GFRP beams were tested to evaluate their stiffness and load-carrying capacities 

and compression tests were conducted to evaluate the crushing capacities of the panels. 

The stiffness, load-carrying capacity, and failure modes of the beams were identified. The 

deflections of the beams were compared to the requirement stipulated in the design 

provisions of the City and County of Denver. In Phase II, the load-carrying capacity and 

fatigue endurance of a full-size two-span GFRP panel that had the same design as the 

actual bridge deck was studied. The panel was supported on three reinforced concrete 

risers and anchored to the supports using the same details as the actual bridge.  The aim 

was to investigate the influence of load cycles on the load-carrying capacity of a panel 

and on the performance of the anchor bolts.  Once the fatigue test was completed, the 

panel was loaded to failure to determine the ultimate load-carrying capacity and the 

governing failure mode. 
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Furthermore, finite element models and analytical models based on the Timoshenko 

beam theory and the Kirchhoff-Love plate theory have been developed to obtain a better 

understanding of the experimental results and to evaluate the design of the actual deck. 

In particular, the load distribution capability of the GFRP deck has been evaluated and 

the effective width for shear and bending has been identified. 

1.3 Organization of the Report 

In Chapter 2, the design, section properties, and manufacturing process of the GFRP 

panels used in the O’Fallon Park bridge are briefly summarized. The mechanical 

properties of the GFRP materials used in the panels are presented in Chapter 3. In 

Chapter 4, the design evaluation conducted on the bridge deck is presented. Chapter 5 

presents the experimental studies conducted in Phase I on four simply supported GFRP 

beams and the crushing tests performed on four GFRP specimens. In Chapter 6, the 

numerical and analytical studies conducted on the test beams with the Timoshenko beam 

theory and finite element models are presented.  Chapter 7 describes the static load tests 

and fatigue test conducted in Phase II on a full-size two-span deck panel that had the 

same design as the actual deck. Chapter 8 presents the analytical study conducted on the 

test panel with the Kirchhoff-Love plate theory to investigate the load-resisting behavior 

of a GFRP deck, including the effective bending width and the influence of material 

orthotropy. In Chapter 9, the finite element analyses performed on the test panel are 

presented. The analyses are to evaluate the analytical model based on the plate theory, the 

influence of the shear deformation of the honeycomb core and support conditions on the 

effective bending width, and the design of the actual deck based on the experimental 

results. Summary and conclusions are provided in Chapter 10. 
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2  DECK MANUFACTURING PROCESS  

This study focuses on the load-carrying behavior of glass fiber reinforced polymer 

(GFRP) bridge deck panels manufactured by Kansas Structural Composites, Inc. (KSCI) 

using a hand lay-up technique. The deck panels are constructed using a sandwich panel 

configuration, which consists of two stiff faces separated by a lightweight core.  The 

core has a sinusoidal wave configuration in the x1-x2 plane, as shown in Figure 2-1. 
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x1 

x2 

x3 
tc

2
 i

n
.

x1 

x2 

Core 

=0.09 in. 

2 in. 

Face 

(a) Panel (b) RVE 

Figure 2-1 Configuration of the core and the faces 

The sinusoidal wave has an amplitude of 2 in. and the core material has a thickness 

of 0.09 in., as shown in Figure 2-1(b). Figure 2-1(b) shows a Representative Volume 

Element (RVE), which is a single basic cell that is repeated periodically to form the core 

structure. The panel was designed for one-way bending about the x2 axis. Therefore, the 

bending stiffness about the x2 axis is much higher than that about x1. 

Plunkett (1997) described in detail the panel manufacturing process.  The 

honeycomb core is composed of a flat GFRP sheet bonded to a corrugated GFRP sheet as 

shown in Figure 2-1. The core flat parts are laid up on a flat surface with vinylester resin 

manually applied to chopped strand mat reinforcement.  The corrugated parts are 
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fabricated in the same fashion as the flat parts but on corrugated molds.  The flat parts are 

then placed on top of the wet corrugated parts to produce a bond as the corrugated parts 

cure. The face is composed of fiberglass fabric layers, which are wet in resin and laid up 

upon each other until desired face thickness is obtained.   

To increase the interface shear strength between the core and the faces, a new detail 

is introduced in the manufacturing process for the O’Fallon Park bridge panels.  In the 

panels, GFRP mats are inserted between the core and the faces at about 13 in. distance as 

shown in Figure 2-2(b). 

CoreCore 

Top face 

Bottom face 

Shear strengthening 

13 in. 

Top face 

Bottom face 

Unstrengthened panel 

(a) (b) 

Figure 2-2 Shear strengthening details 

Figure 2-2 shows that the shear strengthening also increases the thickness of the 

faces and thereby the bending resistance of the structural members.  This must be 

considered in analysis. 
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3 MATERIAL PROPERTIES 

The honeycomb panels manufactured by Kansas Structural Composites, Inc. (KSCI) 

are normally designed for one-way bending about the x2 axis as shown in Figure 2-1. For 

this reason, most of the past research has been focused on the tensile properties of the 

materials in the x1 direction. Table 3-1 shows the properties of material samples from the 

core flat parts and faces of a panel in the direction x1 which were obtained by Lopez 

(2001). 

Table 3-1 Tensile properties of face and core samples 

Property Core flat parts Face 

Ultimate Tensile Strain 0.014 0.016 
Modulus of Elasticity E11 (ksi) 1158 2840 

In reality, a panel bends in both directions, and to model such behavior accurately, 

the orthotropic bending properties of a panel must be considered.  However, it would be 

computationally too involved to consider the complicated geometry of the core in such 

analysis. For this reason, homogenization theories have been used to find equivalent 

material properties for modeling and design purposes. 

Davalos et al. (2001) have developed a method to calculate the equivalent stiffness 

properties of the core and the faces using micromechanical and macromechanical models. 

The equivalent core properties are obtained by using a homogenization theory.  The 

homogenization theory exploits the in-plane periodicity of the structure.  The objective is 

to substitute the heterogeneous structure with an equivalent homogeneous structure.  The 

equivalent face properties are calculated by applying a micromechanical approach 

combined with the classical laminate theory.  They have shown that the theoretical results 

compare well with finite element (FE) analyses and experimental data.  The orthotropic 

material properties of the faces and the core calculated by Davalos et al. (2001) are 

presented in Table 3-2. 
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Table 3-2 Homogenized face and core material stiffness properties 

Elastic Moduli (ksi) Poisson Ratios 

E11  E22  E33  G12  G13  G23 ν12 ν13 ν23 

Core 76.8 0.102 183 0.102 47.7 20.2 0.431 0.169 0.0000273 

Face 2846 1850 546 0.302 

It should be noted that E11 of the face material obtained by Davalos et al. (2001) is 

very close to the test result shown in Table 3-1. Furthermore, Davalos et al. (2001) have 

modeled the honeycomb sandwich panel as a three layer laminated system and using 

classical lamination theory they have computed the effective stiffness properties for a 

sandwich panel as a whole. The panel considered by Davalos et al. (2002) had a total 

thickness of 5 in. and a face laminate thickness of 0.425 in.  The results are shown in 

Table 3-3. 

Table 3-3 Equivalent stiffness properties of GFRP honeycomb sandwich panel 

Elastic Moduli (ksi) Poisson Ratio 

E11  E22  G12 ν12 

1273 803 236 0.301 

The equivalent properties provided in Table 3-3 can be used with plate theory to 

analyze the load-displacement behavior of a panel. 
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EQUATION CHAPTER 4 SECTION 1

PLAN FRP DECK

4 EVALUATION OF DECK DESIGN FOR THE O’FALLON 

PARK BRIDGE DECK 

4.1 General 

For FRP deck panels, there are no standard guidelines for design, and design 

methods differ from manufacturer to manufacturer (Busel and Lindsay 1997).  The panels 

in O’Fallon Park bridge were designed and manufactured by Kansas Structural 

Composites, Inc. (KSCI). A schematic of the deck is shown in Figure 4-1. 

A 

A 

9’’ 

2 1/2’’ 

1
6

’-
3
’’

 

6 @ 7’-3 ½’’=43’-9’’ 

3
’-

8
’’

4
’-

0
 1

/2
’’

4
’-

0
 1

/2
’’

3
’-

8
’’

 

GFRP deck panel 
PLAN VIEW 

9’’ 1’-8’’ 
2 1/2’’ 

SECTION A-A 

Figure 4-1 Schematic of the bridge deck 
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Six 16’-3’’ by 7’-3 1/2’’ GFRP panels are used for the bridge deck.  The bridge is 

owned by the City and County of Denver, which has special design provisions (City and 

County of Denver 2002) for the deck.  In Section 600 of the provisions, there are 

specifications on materials, design requirements, and manufacturing quality control.  The 

manufacturer designed the deck following these specifications.  They initially proposed 

several candidate sections for the deck.  These sections were evaluated analytically at the 

University of Colorado. Two of these sections were later evaluated by beam tests.  The 

final design was selected based on results of these tests.  The following sections describe 

the design specifications and the calculations used to examine the different panel sections 

proposed by the manufacturer. 

4.2 Design Requirements 

4.2.1 Structural Loads 

For this bridge, the design live load specified is an HS 25 truck.  This leads to a 

design wheel load of 20 kips. With an impact factor of 30%, the design load becomes 26 

kips per wheel. 

4.2.2 Tire Contact Area 

In the AASHTO LFRD Specifications (1998), the tire contact area is considered a 

rectangle with a width of 20 in. and a length l given by: 

IM  (4.1)
l = 2.28γ 

1 + 
100 

 P 
 

where γ is the load factor, IM is the impact factor, and P is the wheel load. 

For this case, γ = 1.75, IM = 30, and P=20 kips. Hence, l=19 in., which leads to a 

contact area of 380 square inches. 
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4.2.3 Load Transfer 

The load transfer capability of a honeycomb panel is not well understood.  Therefore, 

to determine the effective width for design, some assumptions are necessary.  For this 

evaluation, assumptions were made based on the AASHTO Standard Specifications 

(1996) for concrete slabs. AASHTO distinguishes between two cases for slabs supported 

along two edges: (1) main reinforcement perpendicular to the traffic, and (2) main 

reinforcement parallel to the traffic.   

In the first case, the live load moment for a simple span shall be determined by the 

following formula (impact not included): 

(4.2)
M ' = 

 S + 2  
P Moment in foot-pounds per foot-width of slab 

 32 
 

where S is the effective span length in feet and P is the wheel load in pounds. For slabs 

continuous over more than two supports, the effective span is defined as the clear span. 

To estimate the effective bending width for a one-way slab, the load per foot-width of a 

slab is given as: 

4 'M
P ' = Load in pounds per foot-width of slab 

(4.3) 

S 

The effective bending width in feet is then calculated as follows: 

P (4.4)
=wb 

P ' 

Equation (4.2) is a semi-empirical formula based on plate theory, and M’ represents the 

maximum moment per unit width.  Equation (4.4) gives a conservative estimate of the 

effective bending width for brittle materials like FRP, where failure is dominated by the 

maximum stress. 

4.2.4 Deflection Criterion 

According to the City and County of Denver provisions, the panel should be 

designed so that the deflection due to service load plus impact shall not exceed 1/1000 of 

12 



the span length. 

4.2.5 Flexure Criteria 

Section 600 of the City and County of Denver provisions suggests using both 

Allowable Stress Design and Load Factor Design approaches as follows. 

The maximum strain shall be limited to 20% of the ultimate strain under service 

loads and the maximum dead load strain shall be limited to 10% of the ultimate strain.   

The maximum Factored Load shall be given by: 

P = 1.3x(1.67x(LLxIM)+DL)) (4.5) 

and it shall not exceed 50% of ultimate load capacity.  In equation (4.5), LL is the Live 

Load, IM is the Impact Factor, and DL is the Live Load. 

In the City and County of Denver provisions, there is no specification on the 

effective width of a panel. According to equation (4.4), the effective bending width for 

the bridge deck is 5.3 ft. Therefore, in this evaluation, the effective width for bending, 

wb, was conservatively assumed to be four feet. 

4.2.6 Shear Criteria 

The shear failure mode for the honeycomb sandwich panel used for the O’Fallon 

bridge deck is expected to be different from that for reinforced concrete (RC) decks. 

GFRP sandwich deck fails in shear when a face delaminates from the core, and previous 

experimental studies (Stone et al. 2001 and Lopez 2001) have shown that this mode is 

most often the governing failure mode for this type of panel.   

Section 600 of the City and County of Denver provisions indicates that the maximum 

Factored Load shall be given by equation (4.5) and it shall not exceed 45% of the 

ultimate shear load capacity of the deck. 
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In this evaluation, the effective width for shear, ws, was assumed to be equal to the 

panel width, which is seven feet. This is because delamination in one spot will not 

necessarily lead to a complete delamination in a panel.  However, results of the study 

presented later in this report indicate that this assumption needs to be revisited. 

4.2.7 Crushing Criteria 

The crushing failure load can be calculated by assuming a contact area of 380 in.
2 

(AASHTO 1998). According to the provisions of the City and County of Denver (2002), 

the maximum Factored Load shall be given by equation (4.5) and it shall not exceed 45% 

of the crushing failure load. 

4.2.8 Thermal Expansion 

Section 600 of the City and County of Denver provisions states that the supplier has 

to demonstrate through analysis or testing that the FRP bridge deck structure is thermally 

compatible with both steel and concrete girder systems. 

4.3 Deck Analysis 

4.3.1 General 

This section provides a description of the analysis conducted to evaluate the load-

carrying capacities of five candidate panel sections proposed by KSCI.  A three-point 

bending configuration was considered in the analysis.  The panel span, L, was assumed to 

be 48.5 in., which is the center-to-center distance of an interior span of the actual deck, 

and the panel was assumed to be loaded at midspan. Five panel cross sections proposed 

by the manufacturer were analyzed to compare costs and performances.  The analysis 

results are summarized in Table 4-1. 
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Table 4-1 Summary of analysis results 

(1) (2) (3) (4) (5) (6) 

Panel 
Section h s 

Total 
Weight εs/εult 50 % PF 45 % PS 45% PC δ PU /P 

in in lbs/ft
2 

kips Kips kips in. 

1 6.5 0.375 12.5 11% (20%) 133 (56.5) 65 (56.5) 137 (56.5) 0.053 (0.05) 5.55 

2 6.5 0.5 14.5 9% (20%) 155 (56.5) 65 (56.5) 137 (56.5) 0.041 (0.05) 5.55 

3 6.5 0.625 16.5 7% (20%) 192 (56.5) 65 (56.5) 137 (56.5) 0.033 (0.05) 5.55 

4 8.0 0.375 14.0 9% (20%) 147 (56.5) 80 (56.5) 137 (56.5) 0.035 (0.05) 6.83 

5 8.0 0.5 16.0 7% (20%) 193 (56.5) 80 (56.5) 137 (56.5) 0.028 (0.05) 6.83 

In Table 4-1, εs is the strain under the service truck load of 26 kips, εult is the 

ultimate strain, PF is the Ultimate Bending Capacity, PS is the Ultimate Shear Capacity, 

PC is the Ultimate Crushing Capacity, δ is the maximum displacement under the service 

load, PU is the ultimate load capacity which is the smallest of PF, PS and PC, and P is the 

service load. The numbers in the braces represent the design requirements. The 

parameters h and s are defined in Figure 4-2. 

In column (1), the maximum strain under the service load shall be limited to 20% 

of the ultimate strain according to the design requirements in section 4.2.  In columns (2), 

(3) and (4), the calculated Maximum Factored Load is 56.5 kips and shall be less than 

50% of the Ultimate Bending Capacity, and 45% of the Ultimate Shear and Crushing 

Capacities. In column (5), the maximum displacement at midspan shall be smaller than 

L/1000 = 0.05 in. In column (6), the ratio PU/P represents the factor of safety against 

failure. 

The panel was designed assuming one-way bending.  The nonhomogeneous panel 

section was converted to an equivalent homogeneous section using the transformed 

section method.  
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Figure 4-2 Schematic of a beam section 

The material properties used in the calculations were based on the homogenized 

properties given in Table 3-2 , and the ultimate tensile properties given in Table 3-1.  In 

the direction x1, the homogenized elastic modulus of the face was Ef11 = 2840 ksi, and the 

elastic modulus of the core was Ec11 = 76 ksi. Thus, the modulus ratio n = Ec11 / Ef11= 

0.0268. The equivalent core width of a transformed section was calculated as follows. 

bc=nb 
(4.6) 

where b is the width of a panel strip. The moment of inertia with respect to bending about 

x2, I2, was calculated considering a transformed section. 

3 3 (4.7)bs  h s 
2 

bh
I2 = + 2bs   + 

2 
 + n 

6  s 12  

4.3.2 Flexural Strength 

The maximum flexural strain under the service load has to be less than 20% of the 

ultimate strain.  To take into account of the possible strength reduction of the composite 

material in compression, the ultimate strain was conservatively assumed to be 50% of the 

ultimate strain in tension shown in Table 3-1.  This resulted in an εult of 0.008. The strain 

at the top of the panel, εtop, under the service load was calculated by using the flexure 

formula. 
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ε = 
M H (4.8) 

top 
E I2 2f 11 

where I2 is the moment of inertia with respect to bending about x2, and was calculated 

with equation (4.7) with b = 4 ft., which is the assumed effective bending width, wb, Ef11 

is the Young’s modulus of the face, H is the height of the beam, and M is the bending 

moment.  For a simply supported beam, the moment, M, is related to the applied load as 

follows. 

PL (4.9)
M = 

4 

where L is the span of the panel and P=26 kips. The strain at the service load εs was 

calculated for each panel section.  The ε εs/ ult values are shown in column (1) of Table 4-1. 

The maximum Factored Load has to be less than the 50% of ultimate bending load 

capacity. The ultimate moment capacity was calculated by assuming εtop=εult=0.008 and 

solving equation (4.8) for the moment, M; the ultimate load capacity, PF was calculated 

by solving equation (4.9) for P. The results are shown in column (2) of Table 4-1. 

Columns (1) and (2) of Table 4-1 show that the strain limitation requirement and the 

ultimate bending capacity are satisfied for all the five panel sections considered. 

The displacement at midspan was obtained using the Timoshenko beam theory: 

PL
3 

PL (4.10)
δ = + 

48E I2 4κG
c13 Af 11 

where Ef11 is the elastic modulus of the faces in the x1 direction, Gc13 is the homogenized 

shear modulus of the core as given in Table 3-2, κ is the shape factor, and A is the cross 

sectional area that resists shear.  The deflection was calculated assuming an effective 

bending width of 4 ft. In this study, the cross section was considered a flanged section, 

and, therefore, κ was conservatively assumed to be 1.0.  A was calculated considering 

only the cross-sectional area of the core, i.e., A=bh. Column (5) of Table 4-1 shows that 

the deflection requirement is satisfied for four of the panel sections considered. Even 
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though the first panel section slightly violates this requirement, it is considered 

acceptable as the analysis is based on a conservative assumption of a panel simply 

supported along two edges. In the actual bridge, the panel is continuous over five 

supports. 

4.3.3 Crushing Failure 

A panel is assumed to fail in crushing when the maximum crushing stress calculated 

exceeds the ultimate crushing stress. 

The ultimate crushing stress, σc, was estimated with previous experimental results 

(Lopez 2001).  A beam tested by Lopez failed because of the crushing of the core.  The 

ultimate load recorded was 115 kips.  The area of the loading plate was 12 in. by 12 in. 

However, the actual contact area, Ac, consists of only the flat and the corrugated parts of 

the core. By considering one RVE (Representative Volume Element) as shown in Figure 

2-1(b), the cross-sectional area of the flat parts is given by: 

in2
Aflat = 2t × 4     (4.11)

c     

and the area for the corrugated parts is given by: 

    (4.12)t 4 in2
Acorrugated = 2.93 ×  ×     c 

where 2.93 in. is the arc length of a quarter sine wave.  In a 12x12 in.
2 

area, there are 9 

RVE. Therefore, the actual contact area is: 

9 9 (4.13)Ac = × Aflat + ×  Acorrugated 

Hence, the ultimate crushing stress is: 

P (4.14)
σ = c = 7.2ksi c 

Ac 

where Pc is the crushing load. 

For design purposes, it is useful to adopt the nominal crushing stress calculated with 

the area of the loading plate instead of the actual core area. The loading area in this case 

is A=12in.x12in. = 144 in
2
. Thus, the nominal crushing stress was calculated to be: 
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c Pσ = = 0.8 ksi 
(4.15) 

, 
A

c nom  

The beam tested by Lopez (2001) was 2.5-ft. deep and had 0.5-in.-thick top and 

bottom faces. Since core crushing is very much governed by the geometric stability, a 

deeper core is expected to have a lower crushing load. Hence, the nominal crushing stress 

shown in equation (4.16) was deemed conservative for the panels considered here and 

was, therefore, adopted. The ultimate crushing capacity for the panels was calculated by 

assuming a tire contact area of 380 in.
2
 (AASHTO 1998).  The results are shown in 

column (4) of Table 4-1.  The maximum Factored Load has to be less than the 45% of the 

ultimate load capacity, and column (4) of Table 4-1 indicates that this requirement is 

satisfied for the panel sections considered. 

4.3.4 Shear Failure 

The shear failure of a GFRP sandwich panel is quite different from the shear failure 

observed for reinforced concrete structures. Based on the published literature, the failure 

of GFRP panels manufactured by KSCI is normally triggered by the delamination of the 

top face from the core. In this report, such a failure mode is considered shear failure. 

Hence, a GFRP panel is considered to fail in shear when the shear stress at the interface 

between the face and the core reaches the interface shear strength.   

For the O’Fallon bridge deck, it is important to consider the dimensions of the 

support and loading area in the calculation of the nominal interface shear stress because 

their dimensions are not negligible compared to the panel span.  To evaluate the nominal 

interface shear stress in a beam, a segment between the edge of the loading area and the 

free end was considered as shown in Figure 4-3. In Figure 4-3, d is the distance between 

the edge of the loading area and the center of the closest support.  By using the simple 

beam theory and assuming a perfect bond between the face and the core, the following 

formula can be derived: 

1 top  h2  (4.17)
F = bσ 11  H − 

H 


4  
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where F is the force acting on the face at a distance d due to bending as indicated in 

Figure 4-3, σ top  is the nominal stress in direction x1 at the top of the face, and b, H and h11 

are dimensions defined in Figure 4-3. 

σ 

The bending stress at the top of the beam is given by:  

11 = 
PH 

d 
(4.18) top 

4I2 

int To calculate the nominal shear stress, τ , at the interface between the face and the 13

core, the following equation is used: 

int F 
= 

F (4.19)
τ 13 = 

A  xb  s 

where b is the nominal width and x is the distance between the end of the panel and the 

edge of the loading area as indicated in Figure 4-3.  By substituting equation (4.18) in 

int (4.17), and then substituting equation (4.17) in (4.19), the nominal shear stress, τ can be13

expressed as: 

h
2  (4.20)

int = 
PdH 

 H − 
H 

τ 13 
16I2 x  

The shear stress calculated with equation (4.20) is considered as the nominal 

shear stress. The nominal width, b, was chosen because the actual contact width was 

difficult to determine with the new shear strengthening detail shown in Figure 2-2.   
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Figure 4-3 Schematic for the shear stress calculation   

The Ultimate Shear Capacity, PS, is defined as the load at which the nominal 

interface shear stress is equal to the ultimate shear strength, τ ult. Thus, by rearranging 

int equation (4.20) and letting τ =τ ult, we have:13

16I x  
= 2PS 

d H  
2 − h2 ) 

τ ult  

(4.21) 

( 

For the O’Fallon Park deck, the b value used to calculate I2 was assumed to be 7 ft., 

which was the assumed effective width for shear, the tire contact width perpendicular to 

the direction of the traffic is 20 in. (AASHTO 1998), and the support for the deck is 9 in. 

wide. Hence, with the conservative assumption that the deck has a simply supported span 

of 48.5 in. and that the wheel load is at midspan, x is 18.75 in. and d is 14.25 in.   

The ultimate interface shear strength, τ ult, was estimated from the results of the four 

beam tests conducted by Lopez (2001) and Stone et al. (2001).  By using equation (4.20), 

the nominal shear stress at failure was calculated to be 0.08 and 0.085 ksi for the two 

beams tested by Lopez, and 0.14 and 0.21 ksi for the beams tested by Stone et al. 

Because of the small number of data available, the lowest shear stress of 0.08 ksi was 

used as the ultimate shear strength for the analysis here. 

The maximum Factored Load has to be less than the 45% of the Ultimate Shear 
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Capacity, and Column (3) of Table 4-1 indicates that this requirement is satisfied for all 

the panel sections considered. 

Moreover, it must be mentioned that the manufacturer of the O’Fallon Park bridge 

deck had improved the interface shear strength by providing a shear strengthening detail 

as shown in Figure 2-2. The beam tests presented later in this report show that the new 

shear strengthening method can indeed substantially increase the face-core interface shear 

strength. 

4.3.5 Thermal Effect 

For FRP structures, the thermal effect could be a critical factor.  For the continuous 

panels in the O’Fallon Park bridge, thermal stresses introduced by the differential 

temperature across a panel section could be significant. For this reason, a thermal 

analysis was conducted by assuming a severe temperature differential of ∆T = = 50 ºF, 

between the top and bottom faces of a panel.  Figure 4-4 shows a two-span continuum 

deck considered in this analysis.  The thermal stresses can be calculated with the 

principle of superposition by first removing the center support and reapplying the support 

reaction P as shown in Figure 4-4. 

L 

x 
θ 

0 

L 

L L 

δ 

P 

y,w 

therm 

Figure 4-4 Schematic for thermal load calculation 
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The coefficient of thermal expansion given by the manufacturer is α = 28x10
-6

 / 

ºC.  The curvature induced by a thermal gradient is given by the following equation: 

φ =
α∆ T (4.22) 

H 

The rotation of an infinitesimal segment is thus obtained as: 

dθ =
α∆ T (4.23)

dx  
H 

and the deflection at midspan can be found by applying the principle of Virtual Work: 

therm 
L L 1 α∆ Tδ = 2∫ 0 
M dθ = 2 x  dx  

(4.24) 
v ∫ 0 2 H 

where Mv is the virtual moment due to a unit point load applied at midspan in the same 

direction as the displacement δ. 

Therefore, the deflection at midspan is: 

δ therm =
α∆ TL

2 (4.25) 

2H 

The deflection due to the force P applied at midspan as shown in Figure 4-4 is:  

8PL3 (4.26)
δ = 

48E I2f 11 

δ therm By having = δ , the force P is found as follows: 

P = 
3α∆ TE f 11I2 

(4.27) 

HL 

The shear stress due to the force P obtained with equation (4.27) can be calculated 

int with equation (4.20). For a differential temperature of 50 ºF, the shear stress, τ , is 0.0113

ksi for panel section 1, 0.01 ksi for panel section 2, 0.02 ksi for panel section 3, 0.01 ksi 

for panel section 4, and 0.02 ksi for panel section 5. These are lower than the assumed 

ultimate shear strength of 0.08 ksi.   
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4.4 Summary 

In summary, all five panel sections considered here satisfy the design requirements 

of Section 4.2. Panel sections 1 and 2 were chosen for further evaluation with beam tests 

because they provide the required structural performance, light weight, and desired panel 

depths. 

24 





EQUATION CHAPTER 6 SECTION 1

5 BEAM TESTS 

5.1 Introduction 

Section 600 of the City and County of Denver provisions requires performance 

testing of samples of deck panels selected for the O’Fallon Park bridge.  To this end, 

beam specimens were tested at the University of Colorado at Boulder to evaluate the 

stiffness and ultimate load capacity of different panel sections. 

The tests followed the procedures specified in Section 600 of the City and County of 

Denver provisions. The beams were tested under third-point loading with a span of 48.5 

in., which is the span length of the actual bridge deck.  However, the actual deck spans 

continuously over five reinforced concrete risers as shown in Figure 1-1. 

Section 600 of the City and County of Denver provisions requires that the midspan 

deflection of a one-foot-wide beam shall not exceed 1/500 of the clear span when 

subjected to a point load of 10,000 lbs. In addition, the provisions require that the 

sections shall be loaded until failure to evaluate the ultimate load capacity of the 

specimens.  The following sections describe the test specimens, test setup, and results. 

5.2 Test Specimens 

A total of four beams, which represented candidate sections for the deck panels of 

the O’Fallon Park bridge, were tested in bending using third-point loading.  Based on the 

evaluation presented in Chapter 4, two types of beam sections were selected with two for 

each type.  All the beams had a core height of 6.5 in.  Two of the beams had 0.375-in. 

faces and the remaining two 0.5-in. faces as shown in Table 5-1.  The section with 0.375-

in. faces is the lightest section that satisfies the design requirements.  The beams were 

wrapped with external layers of GFRP to increase the shear resistance at the core-face 

interface as shown in Figure 5-1. 
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Figure 5-1 Beam shear strengthening detail 

The shear strengthening increased the thickness of the faces and, hence, the bending 

resistance of the beams.  To take into account this strengthening, the moment of inertia of 

the beams, I in Table 5-1, was calculated with a thickness increase of 0.09 in. for each 

face. Htot in Table 5-1 is the total height of the beams including the thickness of the shear 

strengthening material. 

Table 5-1 Beam dimensions 

b h s H Htot I 
in in in in in in4 

Test 1 13 6.5 0.375 7.25 7.43 155 
Test 2 12 6.5 0.375 7.25 7.43 143 
Test 3 13 6.5 0.5 7.5 7.68 201 
Test 4 13 6.5 0.5 7.5 7.68 201 

In Table 5-1, b, h, s, and H are defined in Figure 4-2, and I is the moment of inertia 

calculated using equation (4.7). The panel sections shown in Table 5-1 were selected 

because they satisfy the required structural performances and were also cost-effective. 

Two different face thicknesses were tested to evaluate the effect of the face thickness on 

the beam performance.  Two beams of each section type were tested to assess the 

repeatability of the results. However, it must be pointed out that the beam in Test 2 had a 

different width, which was introduced unintentionally in the manufacturing process. 
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5.3 Instrumentation 

Electrical high precision strain gages produced by Micro Measurements Group, Inc., 

with a resistance of 350 ohms, were used along with M-Bond Type AE 10 adhesive 

system to measure strains in the axial direction of the beams. Deflection at midspan was 

monitored using a Linear Variable Differential Transformer (LVDT). Mechanical dial-

gauges were mounted to check the LVDT readings. Displacement, strain and load 

readings were recorded during the tests using a data acquisition system. Figures 5-2 to 

Figure 5-5 show a schematic of the strain gauge locations for the four beam tests. Test 1 

and Test 3 had gages glued on the front and back of the beams, whereas Test 2 and Test 4 

had gages only on the front. The gages on the top and bottom faces were located right at 

the center of the face. 

0.68 in 

3.74 in 

7.30 in 

7.20 in 

1.06 in 

Elevation View 

Back 

Test 1 

sg1 

sg3 

sg2 

sg4 

sg5 

sg6 

Front 

CLCL

Figure 5-2 Strain gages for Test 1 (face thickness = 0.375 in) 
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Figure 5-3 Strain gages for Test 2 (face thickness = 0.375 in.) 
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Figure 5-4 Strain gages for Test 3 (face thickness = 0.5 in.) 
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Figure 5-5 Strain gages for Test 4 (face thickness = 0.5 in.) 

5.4 Test Setup 

All beams were tested with a concentrated load at midspan. The test setup is 

illustrated in Figure 5-6 and Figure 5-7. 

13x13x¾ in. steel plate
Load cell

Faces 

Core 

48.5 in 

13 in 

½ in. rubber pad 

Teflon sheet 

½ in. steel plate 

Figure 5-6 Schematic of the beam test setup 
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Figure 5-7 Beam test setup 

The beams were simply supported on rollers at each end and the load was distributed 

uniformly using a 13x13x3/4-in. steel plate.  The beams were tested using a rate of 

loading of approximately 0.0075 in./min.  Data was recorded at a rate of one sample per 

second using a 16-channel data-acquisition system. 

Crushing tests were also conducted on small panel samples to evaluate the uniaxial 

compression strength.  The following sections present the results of the crushing tests and 

bending tests. 

5.5 Crushing Tests 

The manufacturer provided four 13-in.-by-12-in. specimens for crushing tests.  Like 

the beam specimens, the height of the core was 6.5 in.  Two were manufactured with 

0.375-in. face and two with 0.5-in. face. They were fabricated together with the beams 

and were cut from the originally longer beams specimens.  An MTS machine with a load 

capacity of one million pounds was used.  All the specimens were tested under 

displacement control.  The aim of these tests was to find the ultimate crushing load of the 

specimens. 
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The test setup is illustrated in Figure 5-8.  Two 2-in.-thick steel plates and two 1-in.-

thick rubber pads were used to distribute the load uniformly at the top and bottom as 

illustrated in Figure 5-8. 

MTS 

Loading plate 

Specimen 

Rubber 

pad 

Figure 5-8 Crushing test setup 

All the specimens failed in the same manner.  The specimens emitted the first noise 

between 35 and 70 kips, and visual observation indicated that the core walls started to 

buckle between 120 and 130 kips. The crushing loads are shown in Table 5-2.   

Table 5-2 Failure loads and stresses 

Failure Load Actual Core Stress Nominal Core Stress  

(kips) (ksi) (ksi) 

Test 1 - 0.375 160 9.27 1.02 

Test 2 - 0.375 164 9.48 1.05 

Test 3 - 0.5 170 9.85 1.09 

Test 4 - 0.5 155 8.98 0.99 

The average crushing load was 162 kips with a standard deviation of 6.3 kips 

indicating a small scatter of results.  Table 5-2 also shows the core crushing stresses 

calculated with equations (4.14) and (4.15).  The average nominal and actual stresses at 

failure are 30% higher than those obtained by Lopez (2001).  The specimens after failure 

are shown in Figure 5-9. 
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Test 3- 0.500 in. face thickness

Test 2- 0.375 in. face thickness

Test 4- 0.500 in. face thickness

Test 1- 0.375 in. face thicknessTest 1 – 0.375-in.-thick faces Test 2 – 0.375-in.-thick faces 

Test 3 – 0.5-in.-thick faces Test 4 – 0.5-in.-thick faces 

Figure 5-9 Crushing failure 

5.6 Beam Test Results   

5.6.1 Beams with Face Thickness of 0.375 inch 

Test 1 

Figure 5-10 shows the load-deflection curve for Test 1.  The deflection was 

measured with the LVDT placed at midspan.  At 20, 30, and 40 kips, the specimen was 

unloaded to evaluate the behavior in the unloading phase.  Then, the specimen was 

loaded until failure. The figure indicates that the behavior is linear elastic up to failure 

during loading and unloading. The maximum vertical deflection recorded at midspan 

was 0.74 in. at a failure load of 103 kips. Figure 5-11 shows the data obtained from the 

strain gage labeled sg1, glued on the lower face surface at the middle of the beam.  The 

maximum tensile strain recorded was 0.008601 at about 103 kips.  The reading of the 

gage confirms a linearly elastic behavior up to failure. 
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Figure 5-10  Load-deflection curve for Test 1 
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Figure 5-11 Load-strain curve for Test 1 (gage sg1) 

Figure 5-12 shows the data obtained from the strain gage labeled sg3, glued on the 

side near the top face at the middle of the beam.  In this case, the maximum compressive 

strain recorded at 103 kips was -0.007426. Considering that the gage was glued at 0.68 

in. from the top surface, the calculated maximum compressive strain on the upper surface 

was -0.00912 using the plane-section assumption.  This value agrees well with the 

maximum tensile strain recorded at the bottom face. 
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Figure 5-12 Load-strain curve for Test 1 (gage sg3) 

Figure 5-13 shows the data obtained from the strain gage labeled sg4 placed 7.5 in. 

from the midspan on the top face.  As expected, the strain recorded was smaller than the 

strain recorded at the middle of the beam.  Figure 5-14 shows the load-strain curve from 

the strain gage (sg5) glued on the bottom surface and placed at about 7.5 in. from the 

midspan.  The strain recorded at about 103 kips was 0.008412, which was considerably 

higher than the maximum compressive strain of -0.005437 recorded by the gage at the 

same location but on the upper face of the beam.  The stress-strain curve also indicates a 

highly nonlinear behavior near the peak load. 
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Figure 5-13 Load-strain curve for Test 1 (gage sg4) 
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Figure 5-14 Load-strain curve for Test 1 (gage sg5) 

The strain profiles at midspan shown in Figure 5-15 indicate that plane sections 

remained plane during bending.  Figure 5-15 shows that the neutral axis shifted down 

right after reaching the 103-kip load indicating the delamination of the top face from the 

core. 
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Figure 5-15 Strain profiles at different loading stages for Test 1 (midspan) 

During the test, several types of damage occurred.  At about 25 kips, a first noise was 

heard indicating that some fibers were breaking.  In fact, the load-strain curve from strain 

gage sg3 exhibits some nonlinearity at about 27 kips as shown in Figure 5-12. 

Throughout the rest of the test, noises were heard indicating that fibers were probably 

breaking continuously during loading.  Inspection of the beam after failure showed the 

presence of loose fibers.  Finally, at a load of 103 kips, the top face started delaminating. 

The failure was brittle and released a large amount of energy.  Debonding between the 

core and the upper face started under the load and propagated outward along the top core-

face interface as shown in Figure 5-16.  After that, the top face debonded.  The core was 

subsequently subjected to a larger load which caused the local buckling of the core at 

both sides of the beam as illustrated in Figure 5-17.  After failure, the top face and the 

core were completely detached as shown in Figure 5-18. 
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Figure 5-16 Failure mode in Test 1 – side view 

Figure 5-17  Local buckling of the core in Test 1  
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Figure 5-18 Failure mode in Test 1 – end view 

Test 2 

The load-deflection curve for Test 2 is shown in Figure 5-19.  The figure indicates 

that the behavior is linearly elastic until close to failure.  The specimen failed at a load of 

about 76 kips. 
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Figure 5-19  Load-deflection curve for Test 2 
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0.375 - test2

Figure 5-20 shows the data recorded by the strain gage labeled sg1, which was glued 

on the bottom face surface at the middle of the beam.  The maximum tensile strain 

recorded was 0.006438 at about 76 kips. 
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Figure 5-20 Load-strain curve for Test 2 (gage sg1) 

Figure 5-21 shows the data obtained from the strain gage labeled sg2, glued on the 

side near the top face at the middle of the beam.  The load-strain curve is not linear.  The 

maximum compressive strain recorded at 76 kips was -0.004231, and the maximum 

compressive strain on the upper surface calculated from this value based on the plane 

section assumption is -0.006694, which is very similar to the maximum tensile strain 

recorded. 
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Figure 5-21 Load-strain curve for Test 2 (gage sg2) 

Figure 5-22 shows the data obtained from the strain gage labeled sg3.  Figure 5-23 

and Figure 5-24 show the load-strain curves from the strain gages glued on the top and 

bottom surfaces, respectively.  They were placed at about 7.5 in. from the midspan.  The 

top ultimate strain recorded was -0.004403 while the maximum tensile strain at the 

bottom was 0.003135. 
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Figure 5-22 Load-strain curve for Test 2 (gage sg3) 
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Figure 5-23 Load-strain curve for Test 2 (gage sg4) 
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Figure 5-24 Load-strain curve for Test 2 (gage sg5) 

Figure 5-25 shows that the load-strain curve from strain gage sg6 is linear elastic up 

to failure. Figure 5-26 shows the strain profiles at midspan.  After failure at 76 kips, the 

neutral axis shifted down indicating that the upper face had delaminated. 
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Figure 5-25 Load-strain curve for Test 2 (gage sg6) 
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Figure 5-26 Strain profiles at different loading stages for Test 2 (midspan) 

The failure in Test 2 was very similar to the failure reported in the first test.  During 

the test, noises were heard indicating that some fibers were breaking during loading.  At 

75 kips, the load dropped slightly (Figure 5-19), probably because of a partial debonding 

between the top face and the core.  Eventually, the partial debonding propagated and 
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triggered the brittle failure.  At a load of 76 kips, the top face debonded.  Debonding 

between the core and the upper face started under the load and propagated outward along 

the core-face interface as shown in Figure 5-27.   

Figure 5-27 Failure mode in Test 2 

As in the first test, the upper face was completely detached from the core as shown in 

Figure 5-28. The lost of composite action caused the core to carry more load, and 

consequently, the core buckled locally as shown in Figure 5-29. 

Figure 5-28 Debonding at top face-core interface in Test 2 
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Figure 5-29 Buckling of the core in Test 2 

5.6.2 Beams with Face Thickness of 0.5 inch 

Test 3 

The load-displacement curve for Test 3 was linear up to about 23 kips as shown in 

Figure 5-30.  At 23 kips and a deflection of 0.165 in, the upper face started debonding 

and the load-displacement curve became nonlinear.  At 39, 47, and 50 kips, the load 

dropped suddenly indicating that the upper face continued to slip.  This is well explained 

in Figure 5-31, which shows that, after the load dropped, the neutral axis at midspan 

shifted downward due to delamination of the top face.  At 52 kips, the load dropped and 

the neutral axis shifted upward to the centroidal position, as shown in Figure 5-31, 

indicating that the bottom face slipped eventually causing the sudden failure of the beam. 
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Figure 5-31 Strain profiles at different loading stages for Test 3 (midspan) 

The reading from the strain gage placed at the middle of the beam on the bottom face 

indicated that the face-core system lost the full composite action at 40 kips.  This can be 

deduced from the sudden stiffness change in the load-strain curve in Figure 5-32.  The 
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.

strain reading from the strain gage located at the top is shown in Figure 5-33.  Figure 

5-34 and Figure 5-35 show the readings from the strain gages located at about 7.5 in. 

from the middle of the beam.   
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Figure 5-32 Load-strain curve for Test 3 (gage sg1) 
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Figure 5-33 Load-strain curve for Test 3 (gage sg2) 
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Figure 5-34 Load-strain curve for Test 3 (gage sg3) 
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Figure 5-35 Load-strain curve for Test 3 (gage sg4) 

Up to about 39 kips, the load-strain curves for gages sg3 and sg4 show a constant 

stiffness, as for the gages sg1 and sg2.  At the section were these gages were located, the 

neutral axis did not change position up to the peak load as shown in Figure 5-36. This 

indicates that, in the beginning, the slip was localized at the middle and, later, it 

propagated toward the end of the beam.   
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Figure 5-36 Strain profiles at different loading stages for Test 3 (sg3/sg4) 

The failure observed in Test 3 was different from the failures reported in the 

previous tests. The beam failure was pseudo-ductile.  The face debonded from the core 

progressively starting at 36 kips.  The delamination started at the top of midspan and 

propagated toward the end of the beam.  The top face did not debond uniformly and only 

the back side of the core buckled as shown in Figure 5-37. 

Figure 5-37 Failure mode in Test 3 

48 
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This failure mechanism is probably due to workmanship in the manufacturing 

process. The bond between the top face and the core was not of uniform quality and this 

induced the premature debonding.  This decreased the strength of the beam as compared 

to the two previous beams.  After the test, visual inspection of the beam showed that one 

side of the face was completely debonded from the core. 
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Test 4 

The load-displacement curve for Test 4 is perfectly linear up to 108 kips as shown in 

Figure 5-38. From 108 kips up to failure, the load-displacement curve becomes slightly 

nonlinear. The beam failed at 131 kips with a deflection of 0.76 in. 
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Figure 5-38  Load-deflection curve for Test 4 

The strain gage located at midspan under the beam indicated that the response was 

linear elastic up to 108 kips as shown in Figure 5-39.  The gage probably failed at a 

smaller load level than the beam.  This may be due to gage malfunctioning or a localized 

failure (some fibers might have broken at this location). 
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Figure 5-39 Load-strain curve for Test 4 (gage sg1) 

The strain gage, sg2, glued at the middle to measure the maximum compressive 

strain as shown in Figure 5-5 did not work.  However, at 3.54 in. from midspan, another 

strain gage, sg3, was glued on the side of the beam.  It showed that the load-strain curve 

was linear up to 108 kips and then became slightly nonlinear.  The top and bottom strain 

gages located at 7.5 in. from midspan showed a linearly elastic behavior until failure as 

shown in Figure 5-41 and Figure 5-42. Finally, Figure 5-43 shows that the strain gage, 

sg6, placed at 9.44 in. from midspan indicated a linearly elastic behavior up to failure.   
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Figure 5-40 Load-strain behavior for Test 4 (gage sg3) 
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Figure 5-41 Load-strain behavior for Test 4 (gage sg4) 
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Figure 5-42 Load-strain behavior for Test 4 (gage sg5) 
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Figure 5-43 Load-strain behavior for Test 4 (gage sg6) 

In Test 4, the first sound was registered at 20 kips, and noises were heard constantly 

thereafter at different loading stages indicating progressive damage (broken fibers).  The 

load-displacement response was linearly elastic up to 108 kips.  At about 108 kips, the 

top face started to debond from the core under the loading plate.  The load-strain curve 

collected by sg1, located at midspan, became nonlinear at this load stage, while sg4 and 

sg6, located at 7.08 in. and 9.44 in. from midspan, respectively, did not register any 

stiffness change. The debonding process propagated from midspan toward the end of the 

beam eventually causing failure at 131 kips.  After failure, both sides of the core buckled 

as shown in Figure 5-44.  After failure, the top face was completely detached from the 

core as shown in Figure 5-45. 
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Figure 5-44 Failure mode in Test 4 

Figure 5-45 Debonding at the face-core interface in Test 4 

5.7 Summary of Test Results 

Table 5-3 summarizes the results of the bending tests.  The recorded failure loads 

were between 39 and 131 kips. This big scatter was mainly due to the bonding quality of 
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the face-core interface. 

Table 5-3 Summary of test results 

Test Moment of Failure Max displ. L/δ Failure Max top strain at 
Inertia load (δ) Mode midspan 

in4 kips in x1000 

1 - 0.375 in. 155 103 0.71 69 1 -8.1822 
2 - 0.375 in. 143 76 0.60 80 1 -6.0838 
3 - 0.5 in. 201 39 0.29 167 2 -2.4924 
4 - 0.5 in. 201 131 0.76 64 1 -7.0055 
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In Table 5-3, the maximum top strain in Test 4 was recorded 3.54 in. from midspan 

(gage sg3), L is the beam span, and δ is the maximum displacement.  The maximum 

strain at the top of the beam is calculated with the gage readings taken along the depth of 

the beams based on the plane-section assumption.  Failure mode 1 represents a linearly 

elastic behavior till failure, and failure mode 2 represents a pseudo-ductile behavior with 

progressive damage.  

Figure 5-46 shows the load-displacement curves for the four tests. The figure shows 

that the face thickness influenced the stiffness of the beams as reflected by their moment 

of inertia shown in Table 5-3. 
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Figure 5-46 Load-displacement curves for the four tests   
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Section 600 of the City and County of Denver provisions requires that the midspan 

deflection shall not exceed 1/500 of the clear span for a one-foot-wide beam subjected to 

a 10-kip load. The span length, L, is 48.5 in. Therefore, L/500=0.097 in.  For Test 1, the 

midspan deflection at 10 kips was 0.080 in. For Tests 2, 3, and 4, they were 0.093, 0.068, 

and 0.060 in., respectively. However, it should be mentioned that the beams in Test 1, 

Test 3, and Test 4 were 13-in. wide. The midspan deflection is directly proportional to 

the moment of inertia of the beams.  A 12-in.-wide beam deflects about 8% more than a 

13-in.-wide beam.  For Tests 1, 3, and 4, the adjusted deflections for a one-foot-wide 

beam are 0.087, 0.074, and 0.065 in., respectively. Therefore, the beams satisfied the 

deflection requirement.   

The Ultimate Crushing Capacity, PC, is calculated by assuming a tire contact area of 

380 in.
2
 (AASHTO 1998) and using the crushing test results presented in Table 5-2. 

Table 5-4 indicates that 45% of the ultimate crushing capacity is much higher than 

the Factored Load of 56.5 kips.  

Table 5-4 Ultimate Crushing Capacity 

 45% PC 

(kips) 

Test 1 - 0.375 175 

Test 2 - 0.375 179 

Test 3 - 0.5 186 

Test 4 - 0.5 170 

The interface shear stress at failure, τult, is calculated using equation (4.20) and the 

Ultimate Shear Load Capacity, PS, for a bridge panel is calculated from τult of each beam 

by assuming an effective width of 7 feet.  Table 5-5 presents the results.  As shown, 45% 

of the Ultimate Shear Load Capacity is well above the maximum Factored Load of 56. 5 

kips. Hence, the tests indicate that the panel sections satisfied the shear design 

requirement.  
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Table 5-5 Tested Ultimate Shear Capacity 

 Failure Load τult 45% PS 

(kips) (ksi) (kips) 

Test 1 - 0.375 103 0.41 300 

Test 2 - 0.375 76 0.33 240 

Test 3 - 0.5 39 0.16 118 

Test 4 - 0.5 131 0.54 398 

The factor of safety against failure, PU/P, can be calculated with the PS and PC values 

shown in 

Table 5-4 and Table 5-5. For all the beams tested, the flexural load capacity PF is not 

a dominating factor and is therefore not considered here. Hence, PU is the ultimate load 

capacity that is the smaller of PS and PC, and P is the service load of 26 kips.  The shear 

capacity, PS, of the beam in Test 3 provides the minimum PU, which leads to a factor of 

safety of 11. This factor of safety is two times the value shown in Table 4-1 because of 

the shear strengthening introduced into the test beams. 
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6 BEAM ANALYSES  

6.1 Introduction 

The Timoshenko beam theory and the finite element method are used to analyze the 

behavior of the beams that were tested.  The following sections give a description of the 

analysis models used and the comparison of the theoretical results with experimental 

data. 

6.2 Timoshenko Beam Theory 

Because of the low span-to-depth ratio of the test beams, the Timoshenko beam 

theory is utilized to analyze the beam response.  Perfect bond is assumed between the 

core and the faces, and FRP is considered a linearly elastic material up to failure.  The 

loading plate is assumed to distribute the pressure uniformly as shown in Figure 6-1. 

x3,w 

θ 

0 
x1 

q 

c 

L 

a a 

Figure 6-1 Schematic of the beam analysis  

By including the effect of the shear deformation, the differential equation for beam 

deflection is given as: 

2 (6.1) 

 M x1 

f 11d w
= −  

1  
( )  + 

E I2 
( )  

 
1 

dx1

2 
E I 2  κ AGc13  

q x  
f 11  
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where Ef11 is the modulus of elasticity of the face in the x1 direction, q(x1) is the load 

applied per unit length of the beam, Gc13 is the shear modulus of the core in the x1-x3 

plane, κ is the shear correction factor, and A is the shear area.  In this analysis, κ is 

assumed to be 1.0 and A excludes the cross-sectional area of the face, i.e., A=bh (Figure 

4-3). By integrating equation (6.1), we have: 

(6.2)
w x1( )  = 

qc 
x

3 + C x  + C2 for  0  < x1 < a1 1
12E I2

1 

f 11 

( )  = −  
q

x1 +
(2a + c  q  3 

(2E I  − a G  A q  
2 )

4 f 11 2 c13 2
w x1 

12 E I  

)

2 

x1 + x1 + C x  1 + C4 
24E I2 f 11 f 11 3E f 11I2

3 

for a x1 < L
2

< 

where a=(L-c)/2. 

Finally, by applying the boundary conditions, it is possible to solve for the constants 

C1, C2, C3 and C4: 

2
C1 = −  

qc 
− 

qc 
(6a

2 + 6ca + c ) 
(6.3) 

2G A  24  E f 11I13 2 

C2 = 0 

C3 = −
q a + c) 

−
q a + c)

( 2a
2 + 4ca + c

2 )
(2 (2 

−
2G A  24  E f 11I13 2 

2 4 

C4 

qa 
− 

qa
= 

2G A  24  E
f 11 I13 2 

Once w(x1) is known, M(x1) and, therefore, the strain and stress can be calculated as 

follows:   

d w  x  1 
(6.4)

M x1( )  = −  
2 ( )  

E
f 11  I22dx1 

d w  x  1( ,ε x y) = 
2 ( )  

y (6.5)
1 2dx1 

σ ( ,  x y) x y) = E ε ( ,1 f 11  1  
(6.6) 

In equations (6.5) and (6.6), y represents the distance between the neutral axis of bending 

and the point at which the strain and stress are calculated.  In the analytical solution, the 
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Tractions

Steel plates

strains and stresses are calculated by assuming that the plane sections remain plane 

during bending. 

6.3 Elastic Finite Element Analyses 

Finite element (FE) analyses are performed with a 2D mesh using the program 

Merlin (MERLIN II User’s and Theory Manuals 2002). The 2D model is discretized 

using 3-node triangular plane-stress elements.  The FRP is characterized by a linearly 

elastic orthotropic material model.  The material properties used for the model are the 

homogenized face and core material stiffness properties shown in Table 3-2.     

Figure 6-2 shows the boundary conditions and the mesh used in the analyses.  To 

model the tests closely, two steel plates, which are free to rotate, are introduced at the 

supports. The plate used to load the beam in the test is modeled by applying a uniform 

traction as shown in Figure 6-2. 

Steel plates 

Traction 

Figure 6-2 Finite element model of the test beams 

6.4 Results of Elastic Analyses 

6.4.1 Analytical Results from Timoshenko Beam Theory 

Figure 6-3 through Figure 6-6 compare the experimental and analytical load-

displacement curves for all the four tests.  By comparing the results from the Timoshenko 

59 



Experimental

Timoshenko
Beam theory

Bernoulli
Beam theory

FEA

0.375 - test1

beam theory and the Eurler-Bernoulli beam theory, as shown in the figures, we can 

observe that shear deformation is not negligible.  The influence of the shear 
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strengthening, shown in Figure 5-1, on the bending capacity is considered in the 

analytical model by assuming an additional mat thickness of 0.09 in. on each face of a 

beam.  In general, the analytical solutions from the Timoshenko beam theory agree with 

the experimental response well until debonding occurs.  Because of initial support 

settlements in the test setup, the experimental load-displacement curves are initially 

slightly softer than the calculated ones. Except for Test 4, the analytical load-

displacement curves trace the experimental load-displacement curves well.  When the 

faces started to debond, the experimental response changed from linearly elastic to 

nonlinear; this behavior cannot be captured with the linearly elastic model used here.  For 

Test 4, the experimental result somehow shows a stiffer behavior than the analytical 

result. 
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Figure 6-3 Comparison of load-displacement curves from analytical and FE models 

with experimental results for Test 1 
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Figure 6-4 Comparison of load-displacement curves from analytical and FE models 

with experimental results for Test 2 
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Figure 6-5 Comparison of load-displacement curves from analytical and FE models 

with experimental results for Test 3 
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Figure 6-6 Comparison of load-displacement curves from analytical and FE models 

with experimental results for Test 4 

Figure 6-7 through Figure 6-14 compare the bottom strain values obtained from the 

beam theory and the tests at midspan and at 7.5 in. from midspan.  For all the four tests, 

the analytical load-strain curves are slightly softer than the experimental ones because of 

two possible reasons. First, in the analytical solution, the dimensions of the supports are 

not considered. Second, the beam theory assumes a uni-axial stress state, while, in reality, 

a beam is subjected to multi-axial stresses. 
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Figure 6-7 Analytical and numerical load-strain curves for bottom strain at 

midspan for Test 1 
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Figure 6-8 Analytical and numerical load-strain curves for bottom strain at 

midspan for Test 2 
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Figure 6-9 Analytical and numerical load-strain curves for bottom strain at 

midspan for Test 3 
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Figure 6-10 Analytical and numerical load-strain curves for bottom strain at 

midspan for Test 4 
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Figure 6-11 through Figure 6-14 compare the load-strain curves obtained from the 

analytical model and the tests for the bottom gage at 7.5 in. from midspan.  Comparing 

Figure 6-11 with Figure 6-12, it is evident that the experimental load-strain curves from 

Test 1 and Test 2 are quite different. This is likely due to the malfunctioning of the gage 

in Test 2, which resulted in the experimental load-strain curve in Figure 6-12 much stiffer 

than the analytical result. 
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Figure 6-11 Analytical and numerical load-strain curves for bottom strain at 7.5 in. 

from midspan for Test 1 
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Figure 6-12 Analytical and numerical load-strain curves for bottom strain at 7.5 in. 

from midspan for Test 2 
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Figure 6-13 Analytical and numerical load-strain curves for bottom strain at 7.5 in. 

from midspan for Test 3 
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Figure 6-14 Analytical and numerical load-strain curves for bottom strain at 7.5 in. 

from midspan for Test 4 

6.4.2 Numerical Results from Elastic Finite Element Analyses 

All the results from the FE analyses are given as nodal values.  Figure 6-3 through 

Figure 6-6 compare the experimental and FE load-displacement curves for all the four 

tests. The effect of the shear strengthening on the bending resistance is considered, as in 

the analytical model, by adding a thickness of 0.09 in. to each face.  The numerical 

solutions agree with the experimental response well until debonding occurs.  In the FE 

analyses, as in the Timoshenko beam model, the slip between the faces and the core is not 

considered. 

Figure 6-7 through Figure 6-10 compare the strain values obtained at midspan from 

the FE analyses with the experimental results.  For all four tests, the numerical results 

match the experimental data well.  Unlike the Timoshenko beam theory, the FE analyses 

take into account the dimensions of the supports, and also provide a two-dimensional 
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Strains along the top surface0.375 - test1

stress state.  For this reason, the FE model provides a better estimate of the beam stiffness 

than the beam theory.   

The strain distribution along the top surface of the beam in Test 1 at the peak load 

of 103 kips is shown in Figure 6-15.  The experimental value of the top strain at midspan 

is calculated by using the gage readings taken along the depth of the beam.  As shown in 

the figure, the numerical results match the experimental data well.  The discrepancy at the 

edge of the loading plate could be partially caused by the localized bending effect 

introduced by the stiff plate, which cannot be exactly captured with the assumption of a 

uniform traction.  This could also be due to the small uncertainties in the exact location of 

the gages. However, the strain distribution at the peak load of 75 kips along the top face 

of the beam in Test 2 is well predicted as shown in Figure 6-16. 
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Figure 6-15 Strain distribution along the top face of the beam in Test 1  
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Figure 6-16 Strain distribution along the top face of the beam in Test 2  

In the third test, the face debonded early as the load increased.  The face started to 

debond at 23 kips. Below this load level, the FE analysis agrees with the experiment well 

as shown for a load of 16 kips in Figure 6-17.  This was a stage when the beam was still 

acting as a full composite.  After delamination, the difference between the FE analysis 

and test results increases as shown for a load of 48 kips in Figure 6-17.  This is due to the 

loss of the composite action.  The experimental strain in the face is smaller than the 

calculated value because of the face slip.  Furthermore, Figure 6-17 shows that at a load 

of 48 kips, the experimental strain in the bottom face is larger than that in the top face. 

This indicates that the top face had more severe debonding than the bottom face, 

probably due to the localized bending effect caused by the steel loading plate. 
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Figure 6-17 Strain distribution along the top and bottom faces of the beam in Test 3 

at different loading stages (only the top stain is shown for the FEA) 

Figure 6-18 compares the numerical and experimental strain distributions along the 

top face of the beam in Test 4 at a load of 130 kips. Again, the experimental values are 

lower than the numerical results probably due to debonding. 
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Figure 6-18 Strain distribution along the top face of the beam in Test 4  

6.5 Delamination Analysis 

Delamination of the top face of a beam is a complex phenomenon that is caused by a 

combination of high shear and peeling stresses.  Peeling stresses are the tensile stresses 

that are normal to the interface.  For the sandwich beams analyzed in this report, the 

peeling stresses appear to be very small compared to the shear stresses.  Hence, it is only 

important to evaluate the shear stress distribution between the core and the face at failure.   

The shear strength between the core and the face, τ, can be calculated with the 

simple beam theory, i.e., equation (4.20), FE analyses, and experimental strain 

measurements by considering the failure loads identified in the beam tests.  In addition, 

the formula given by ASTM C393-94 (Standard Test Method for Flexural Properties of 

Sandwich Constructions) can be used. C393-94 suggests the following equation based on 

the simple beam theory to calculate the interface shear strength: 

τ int = 
P (6.7) 

13 
(H h  b  + ) 

where P is the load applied, and H, h and b are the beam dimensions shown in Figure 4-2.  
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Equation (6.7) is slightly different from equation (4.20) in that the former does not 

consider the dimensions of the loading plate and the supports.  It should be noted that the 

shear strength is computed by considering the nominal core width, b, as shown in Figure 

4-3. 

In the FE analyses, the faces of the beams are modeled by a single layer of linear 

triangular elements and the interface shear stresses are computed at the nodes.  Figure 

6-19 shows the peeling stresses (σ33) and the shear stresses (τ13) at the top face-core 

interface of the beam in Test 1 obtained by the FE analysis at a load of 100 kips, which is 

just below the failure load of 103 kips.  As mentioned before, the peeling stresses are so 

small that they have little influence on the delamination.  The shear stresses are 

predominant and exhibit a peak just outside the loading plate.  In the aerospace research 

community, this stress concentration behavior is a well-known problem for sandwich 

panels and is called the indentation problem.  It is associated with local plate bending and 

it is due to the local deformation of the loaded face into the soft core.  Several researchers 

(Thomsen and Frostig 1997, Polyakov 2000, Lee and Tsotsis 2000) investigated this 

problem and showed that the stress predictions based on classical theories are incorrect. 

Figure 6-20 shows the maximum and minimum principal stresses for Test 1 just below 

the load of 100 kips.  The arch mechanism is clearly shown by the pattern of the 

minimum principal stresses.  The maximum principal stresses indicate a tension oriented 

at about 45 degrees just outside the loading plate.   
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Figure 6-19  Stresses along the interface between the top face and the core of the 

beam in Test 1 from FE analysis 
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Figure 6-20 Maximum and minimum principal stresses for Test 1 from FE analysis 

By considering a schematic similar to that shown in Figure 4-3, the interface shear 

stress can be estimated from the experimental strain readings in the following way.  The 

resultant bending force in the top face of a beam can be estimated from the strain gage 

73 



readings.  The net force per unit width acting on a segment of the face between locations 

a and b can be calculated as: 

(6.8)
∆Fa b  = F − F = (ε − ε )E s , b a b a f 11  

where s is the face thickness, Ef11  is the Young’s Modulus of the face, and a and b are the 

locations of the points at which the strains are measured. 

By considering the equilibrium of the face in the horizontal direction, ∆F
a b

is equal ,

to the integral of the interface shear stress between a and b, i.e., 

( )  
(6.9)∆Fa b  = ∫x

x

a

b τ x  dx  , 

where τ is the shear stress. Considering an average shear stress τ between points a and 

b, we have: 

(6.10)∆Fa b  = τ ∫x

x

a

b 

dx  = τ ( x − x ), b a 

Hence, the average interface shear stress can be estimated as: 

ε
b 

− ε (6.11)
τ = a E s  

( x − x ) 
f 11 

b a 

Table 6-1 presents the shear strengths calculated for all four tests.  In Table 6-1, the 

analytical results are obtained using equation (4.20), and the ASTM results are obtained 

with equation (6.7).  The ASTM equation overestimates the shear stresses because the 

simplified equation does not take into account the dimensions of the supports and of the 

loading plate. 

Table 6-1 Interface shear stress (ksi) (τ) 

 Analytical ASTM Experimental FEA 

Test 1 – 0.375 (100 kips) 0.41 0.58 0.33 (sg4) Max = 0.55; Av = 0.38 (69%) 

Test 2 – 0.375 (75 kips) 0.31 0.43 0.30 (sg4-sg6) Max = 0.46; Av = 0.31 (69%) 

Test 3 – 0.500 (40 kips) 0.17 0.29 0.14 (sg3) Max = 0.23; Av = 0.19 (83%) 

Test 4 – 0.500 (130 kips) 0.54 0.70 0.55 (sg4-sg6) Max =  0.67; Av = 0.55 (83%) 

For Test 1 and Test 3, the shear stresses are estimated from the experimental results 
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with a single gage (sg4) reading by considering the equilibrium of the top face over a 

distance x = xb - xa, where xa is at a free end of the beam as shown in Figure 6-21.  For 

Test 2 and Test 4, the results are obtained by using the readings of the two gages 

indicated in Table 6-1. Only Test 2 and Test 4 had both sg6 and sg4 gages glued on the 

top of the beams in the shear span region, where the shear stress is almost constant.   

x 

Supports 

τ 

48.5 in. 

xa 
xb 

Loading plate 

0 in. 

Figure 6-21  Average shear stress 

The FE results presented in Table 6-1 show both the maximum shear stress values 

calculated and the average shear stresses calculated over the distance, x.  The average 

stresses are calculated to compare the FE results to the experimental and analytical 

results. For the beams with 0.375- and 0.500-in. faces, the average shear stress is 69 % 

and 83% of the maximum shear stress, respectively.  This means that by increasing the 

face thickness, we can minimize the localized bending effect induced by the loading 

plate. 

The interface shear strengths obtained in this study are compared to that of prior 

studies (Stone et al. 2001 and Lopez 2001) in Table 6-2.  Beams in the prior studies did 

not have the shear strengthening used in this study (see Figure 2-2). 
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Table 6-2 Comparison of the interface shear strengths (ksi) with and without shear 

strengthening 

Without shear  With shear 

strengthening strengthening

 Analytical ASTM  Analytical ASTM 

(Eq. (4.20)) (Eq. (6.7)) (Eq. (4.20)) (Eq. (6.7)) 

Stone 1 (2001) 0.14 0.19 Test 1 - 0.375 0.41 0.58 

Stone 2 (2001) 0.21 0.28 Test 2 - 0.375 0.31 0.43 

Lopez 1 (2001) 0.08 0.10 Test 3 - 0.500 0.16 0.29 

Lopez 1 (2001) 0.085 0.15 Test 4 - 0.500 0.54 0.70 

Average 0.13 0.18 Average 0.36 0.50 

For short spans, the ASTM results overestimate the shear strengths and they are 

shown here only for completeness. The results show that the new shear strengthening 

detail increased the average shear strength by 2.8 times.  In this study, the lowest shear 

strength value was found in Test 3, which failed in a ductile-like manner because of 

possible defects in the interface.  This and prior studies have shown that the bonding 

between the faces and the core is the most important parameter governing the bending 

capacity of a panel. Quality control is important for all engineering materials but is 

especially critical for composite materials.  It is therefore essential that the manufacturing 

process assures a good quality control of the face-core interface. 

6.6 Nonlinear Fracture Mechanics Analysis of the Face-Core Interface 

The delamination failure is studied by using a Nonlinear Fracture Mechanics 

(NLFM) model developed at the University of Colorado (Cervenka et al. 1998) and 

implemented in an interface element in the program Merlin (MERLIN II User’s and 

Theory Manuals 2002). The discrete crack model used is a generalization of the classical 

Fictitious Crack Model of Hillerborg et al. (1976), modified to account for the shear 

effects along the fracture process zone (FPZ) and the crack.  In this model, the interface 

strength is described by the following failure function (Cervenka et al. 1998): 

2 2 2 2 2F = (τ +τ ) − 2cTan(φ )(σ − σ ) − Tan (φ )(σ −σ f ) = 0 
(6.12)1 2 f t f 

where c is the cohesion, φf is the angle of friction, σt is the interface tensile strength, τ1 

and τ2 are the two tangential components of the interface traction vector, and σ is the 
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normal traction component.  The evolution of the failure function is based on a softening 

parameter uieff which is the norm of the inelastic displacement vector u
i
. The inelastic 

displacement vector is obtained by the decomposition of the displacement vector u into 

e
an elastic part u  and an inelastic part u

i
. The inelastic part can subsequently be 

decomposed into plastic (i.e. irreversible) displacements u
p
 and fracturing displacements 

f
u . 

Linear softening laws describe the cohesive stresses in the FPZ.  The critical opening 

and sliding corresponding to zero cohesion and tensile strength are denoted by wσ and wc, 

respectively, and they are determined from the condition that the areas under the linear 

softening law must be equal to mode I fracture energy, G
I
F, and mode II fracture energy, 

G
IIa 

F, as shown in Figure 6-22. G
IIa

F is the mode II fracture energy as defined by Carol et 

al. (1992). 

σ 

c

c 

0σt0 

GIIa 
FGI

F 

0 wσ uieff 0 wc 
uieff 

Figure 6-22 Linear softening law 

The FE model used here is similar to that in Section 6.3 expect that the top face and 

the core in this case is connected by a line of interface elements based on the nonlinear 

fracture mechanics model described above, as shown in Figure 6-23, to allow the 

delamination to occur.  The analyses are performed by increasing the displacement with 

0.2-in. increments at the top of a rubber pad that is used to distribute the load uniformly 

as shown in Figure 6-23.  Displacement control is used to capture the post-peak behavior 

of the load-displacement curve.  The material parameters used in the FE analyses are 

presented in Table 6-3. 
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Imposed 

displacement 

Interface crack Rubber pad 

Figure 6-23  Finite element mesh for nonlinear fracture mechanics analysis 

Table 6-3 Interface material parameters 

Interface parameters 

Shear Stiffness Kt 284000 psi/in. (assumed)  
Normal Stiffness Kn 284000 psi/in. (assumed)  
Tensile Strength σt0 380 psi (glue tensile strength from manufacturer) 
Cohesion c 550 psi (result from Test 1)  
Friction Angle φf 53 degrees  

Dilatancy Angle φt 45 degrees  
Specific mode I fracture energy GI

F 0.1 lbf/in.   
Specific mode II fracture energy GIIa

F 1.0 lbf/in.   
Ratio of irreversible displacement γ 0.3  
Maximum dilatant displacement umax 0.4 in  

The cohesion value is selected to match the result of Test 1.  The interface specific 

mode I fracture energy, G
I
F, is based on tests conducted on similar sandwich panels by 

Smith (2001).  The mode II fracture energy, G
IIa

F, is assumed to be 10 times G
I
F. The 

interface normal stiffness is chosen to be the highest possible value that provides a well 

conditioned numerical solution.  The interface shear stiffness is assumed to be equal to 

the interface normal stiffness.  Since the face-core interface normally exhibits a brittle 

fracture behavior, the friction angle φf, the dilatancy angle φt, ratio of irreversible 

displacement γ, and the maximum dilatant displacement umax do not influence the 

numerical results too much.  Hence, their values are arbitrarily selected.  The analysis 

results are shown in Figure 6-24. The analysis of Test 1 shows an excellent agreement 

with the experimental result.  This is expected as the model is calibrated to match this 

test. However, for Test 2 and Test 4 numerical peak loads are 21.5% higher and 28% 
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lower than the experimental results, respectively.  This is because the same fracture 

properties are used in all the analyses and the interface strengths are different in different 

test beams as shown in Table 6-1.  Similarly, the fracture parameters used do not trace 

Test 3 accurately. The numerical failure load for Test 3 is 2.66 times the experimental 

result. As already said, the premature failure in the test was caused by the fact that the 

top face was not glued to the core with a uniform quality.  This reduced the interface 

shear strength and triggered the premature failure. It is expected that if the actual 

interface shear strengths were used in the analyses, the numerical results would match the 

experiments a lot better. 
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Figure 6-24 Finite element analysis results 

Figure 6-25 shows the deformed shape at failure for Test 2.  Debonding starts near 

the edge of the loading plate (Figure 6-25 (a)), and propagates toward the end of the 
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beam (Figure 6-25 (b)).  This result matches the experimental observation. 

Rubber 

Debonding failure 

started here 

plate 

Face Steel 

support 

(a) (b) 

Figure 6-25  Deformed shape after failure (Amplification factor of 5) 
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7 PANEL TESTS 

EQUATION CHAPTER 7 SECTION 1 

7.1 Test Specimen 

 

Tests were conducted to evaluate the static and fatigue load behavior of a GFRP 

sandwich panel.  The panel dimensions are shown in Figure 7-1.  The thickness of the 

faces of the test panel was 0.375 in., and the core height was 6.75 in.  The total panel 

height was 7.5 in.  The panel manufacturing process and geometry are described in 

Chapter 2 in detail.  

SECTION A-A

AA

TOP VIEW

Picture  of the

panel-to-panel connection

Supports

GFRP panel

0.375 in. face thickness

7.5

114.5

120

87.5

114.5

 

Figure 7-1  Panel dimensions (in inches) 

As shown in Figure 1-1, the O’Fallon Park bridge deck consists of 6 panels attached 

to one another.  Each panel is 87.5-in. wide and is connected to the other panels by using 

the connection shown in Figure 7-1.  This type of connection was designed and used by 

Kansas Structural Composites, Inc. (KSCI) for the first time.  The test specimen consisted 

of two panel-to-panel connections as shown in Figure 7-1 in order to evaluate the 

performance of the connections as well. 

 



7.2 Test Setup 

The panel was tested in a two continuous span configuration with two concentrated 

loads applied at midspan locations.  The test setup is illustrated in Figure 7-2.  A reaction 

steel frame was used to support the actuators.  The loads were applied with 13x13x1-in. 

steel plates and ¾-in.-thick rubber pads between the plates and the deck. 

Steel 

GFRP 

deck 

48.5 in 

Loading steel plate 

48.5 in 

Hydraulic actuator 

Rubber pads 

Actuators 

frame 

48.5 in 

Figure 7-2 Test setup 

The test setup was designed to reproduce a segment of the O’Fallon Park bridge 
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deck. The reinforced concrete support consisted of three risers.  The concrete mix was 

provided by a local supplier. The mix had the following components per cubic yard: 383 

lbs of cement, 1430 lbs of sand, 1680 lbs of size #57  aggregates, 259 lbs of water, 25.5 

ozs of water reducer, 127 lbs of Class C fly ash, and 4 - 7 percent of air content.  The 

concrete had a specified strength, f’c, of 4,250 psi, and the steel bars had a specified yield 

strength, fy, of 60,000 psi. 

No. 4 bars at 4 in. on center were used as main reinforcement.  No. 4 bars at 18 in. on 

center were used for shrinkage and temperature reinforcement as shown in Figure 7-3. 

After curing, the concrete base was tied down to the test floor with 8-¾-in.-diameter steel 

bars. Half-inch-thick elastomeric bearing pads were placed on the supporting risers as 

shown in Figure 7-4. Then, the deck was installed on the risers by Kansas Structural 

Composites, Inc. (KSCI) as shown in Figure 7-5. 

30.0 in. 

106.0 in. 

6.0 in. 

39.5 in. 9.0 in. 

8.0 in. 

8.0 in. 

#4@4 in. 

#4@18 in. Anchor bar 

#4@4 in. 

#4@4 in. 
#4@4 in. 

9.0 in. 39.5 in. 9.0 in. 

Figure 7-3 Reinforcement details for the supports 
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Figure 7-4 Support structure 

The deck installation proceeded as follows: 

• placed the main panel on the bearing pads; over each supporting riser, two holes 

were drilled into the GFRP panel as shown in Figure 7-5(1).  Each hole was 18.75 

in. from the center line (Figure 7-6) of the panel. 

• drilled holes into the supporting risers for anchor bolts as illustrated in Figure 

7-5(2); 

• connected the panels together by gluing the panel-to-panel connections; placed a 

3 oz. GFRP mat onto the panel top surface across the panel connections as shown 

in Figure 7-5(3); 

• rolled vinylester glue onto the GFRP mat to firmly attach the connections as 

shown in Figure 7-5(4); 

• anchored the deck to the supports by using ¾-in.-diameter galvanized anchor 

bolts as shown in Figure 7-5(5). 
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1 

2 

3 

4 

5 

Figure 7-5 Deck installation procedure 

7.3 Instrumentation 

For strain and deflection measurements, strain gages and linear voltage differential 

transducers (LVDTs) were attached to the panel.  Electrical high precision strain gages 

produced by Micro Measurements Group, Inc., with a resistance of 350 ohms, were used 

85 



along with M-Bond Type AE 10 adhesive system to measure strains.  Deflection was 

monitored using LVDTs. Displacement and strain readings, as well as the load and 

stroke of the actuators, were recorded during the tests by using a 48-channels data-

acquisition system.  Figure 7-6 provides a schematic of the strain gage locations and 

Figure 7-7 indicates the LVDT positions on the panel.  For the following discussion, the 

span on the north side is called Span 1, and the span on the south side is called Span 2, as 

shown in Figure 7-7. 

7.4 Test Procedure 

The objective of the tests was to evaluate the load carrying capacity of the GFRP 

deck panel under static and fatigue loads. The tests were divided into five loading phases 

as shown in Table 7-1. In Table 7-1, Actuator 1 was used to load Span 1 and Actuator 2 

was used to load Span 2.  Data were recorded at different loading phases to evaluate the 

structural performance of the panel as shown in Table 7-2  

Table 7-1 Loading stages 

Initial Static Test 

Phase 1 – Cyclic 

Phase 2 - Cyclic 

Phase 3 - Cyclic 

Final Static Test 

Load cycles 

0 

0 - 15,200 

15,200-370,200 

370,200 to 1,500,000 

1,500,000 

Loading configuration 

Both spans loaded at the same 

time 

Actuators 1 and 2 180º off phase 

Actuator 1 

Actuator 1 

Actuator 1 and then 2 

Table 7-2 Data recorded 

Load cycle No. Loading configuration 

Initial Static Test 0 Both spans loaded at the same 

time 

Cyclic data 1 15,000-15,200 Actuators 1 and 2 180º off phase 

Cyclic data 2 370,000-370,200 Actuator 1 

Static test 1M 1,000,000 Actuator 1 

Static test 1.5M 1,500,000 Actuator 1 

Final Static Test 1,500,000 Actuator 1 and then 2 
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Figure 7-6 Strain gage locations for the panel test (all dimensions in inches) 
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Figure 7-7 LVDT positions (all dimensions in inches) 

The panel flexural stiffness was first evaluated through an initial static test, and then 

a fatigue test was performed to study the long-term performance of the GFRP deck.  In 

the initial static test, both spans were loaded at the same time up to 22 kips.  In the 

subsequent cyclic tests, the panel was loaded by each actuator with a harmonic load given 

as: 

( )p t = ip + 0 sin  p ωt (7.1) 

where 0p  is the amplitude of a sine wave, pi  is the offset load, ω is the circular 

frequency and t is the time.  Figure 7-8 shows a plot of the load cycles in which p  = 100

kips, pi  = 12 kips, and ω = 1 rad/sec. In this report, compressive load on the deck is 

considered positive. 
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Figure 7-8 Cyclic load definition 

The cyclic frequency is f=2πω and was kept constant at 1.4 Hz during the three 

fatigue load phases. The values of p0 and pi and the loading schemes were varied in the 

cyclic tests as follows: 

Phase 1: From 0 to 15,200 cycles, the loads in Actuators 1 and 2 were 180° 

off-phase with p0 = 19 kips and pi = 21 kips. At about 15,000 

cycles, Span 2 started emitting a strong noise.  Strain gage and 

LVDT data were recorded between 15,000 and 15,200 cycles to 

evaluate the panel damage (Cyclic data 1 in Table 7-2). 

Phase 2:  From 15,200 to 370,200 cycles, only Actuator 1 was used to load 

the panel with p0 = 10 kips and pi = 12 kips. Between 370,000 and 

370,200 cycles, data were recorded to evaluate the panel 

performance (Cyclic data 2 in Table 7-2). 

Phase 3:  From 370,200 to 1,500,000 cycles, only Actuator 1 was used to 

load the panel with p0 = 14 kips and pi = 17 kips. At 1,000,000 

cycles, the cyclic test was interrupted to perform a static test to 

evaluate the panel performance (Static Test 1M in Table 7-2). At 

about 1,500,000 cycles, Span 1 started emitting a strong noise. 

Thus, a static test was performed right after 1,500,000 to evaluate 
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the damage in the panel (Static Test 1.5M in Table 7-2). 

At the end of the fatigue test, the two spans were loaded one at a time up to 100 

kips, which is close to the loading capacity of the actuators used. 

7.5 Initial Static Test 

The purpose of the initial static test was to evaluate the flexural behavior of the 

virgin panel. In this test, both spans were loaded at the same time up to 22 kips.  Both 

strain gage and LVDT data were obtained in this test. A schematic of the LVDT locations 

along the center line of the panel (line C-C in Figure 7-7) is shown in Figure 7-9.   

Load 2 

R1 R2 R3 

2 in. 

LVDT3 LVDT5 LVDT4 LVDT2 LVDT8 LVDT1 

2 in. 

Bearing 

pads 

Load 1 

Figure 7-9 Elevation view of the LVDT locations  

The panel stiffness was difficult to determine from the test results because it was 

influenced by the settlement of the bearing pads.  For this reason, one LVDT was placed 

near each support to record the displacement due to the settlement of the bearing pads. 

Figure 7-10 shows the experimental load-displacement curves from all the LVDTs placed 

along line C-C shown in Figure 7-7. 
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Figure 7-10  Load-displacement curves for the initial static test 

The anchor bolts on riser R1 (see Figure 7-9) slipped during the test.  Visual 

inspection at the end of the static test showed that the bearing pad placed on riser R1 

moved from the initial position.  The pad rotated and left a gap between the riser and the 

panel at the location of line C-C, and this explains why LVDT 3 registered a larger 

deflection than LVDT 5. The deformed shape of the panel at 22 kips, drawn with 

AUTOCAD 2000 using the LVDT readings, is shown in Figure 7-11.  In this figure, a 

Bezier curve is used to approximate the deformed shape and estimate the actual 

deformation of the panel.  A Bezier curve is a simple cubic equation and was originally 

developed by Pierre Bézier in the 1970's for CAD applications.  A cubic Bezier curve is 

defined by four points: (x0,y0) is the origin point, and (x3,y3) is the destination point, and 

(x1,y1) and (x2,y2) are control points. 

Equations (7.2) and (7.3) are used to define the points on a Bezier curve. The points 

on the curve are evaluated by varying the values of t between 0 and  1. One equation 
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yields values for x, and the other yields values for y. 

x(t) = axt
3 

+ bxt
2 

+ cxt + x0 (7.2) 

y(t) = ayt
3 

+ byt
2 

+ cyt + y0 
(7.3) 

where: 

cx = 3 (x1 - x0) 

bx = 3 (x2 - x1) - cx 

ax = x3 - x0 - cx - bx 

cy = 3 (y1 - y0) 

by = 3 (y2 - y1) - cy 

ay = y3 - y0 - cy - by 

All dimensions in Figure 7-11 are in scale, with the displacements in the x3 direction 

amplified 30 times.  The curve is forced to have a horizontal tangent at the center of the 

interior riser, R2, and it is used to estimate the bearing pad settlements at the supports.   

LVDT 4 LVDT 8 

0.124 0.041 0.066 
0.041 

0.042 

0.074 

0.75 

x3,w 

x1 

LVDT 3 LVDT 5 

0.114 

LVDT 2 

0.055 

LVDT 1 

¾ in. bearing rubber pads 

Actual deflection 

of span 2 Actual deflection 

of span 1 

Figure 7-11 Deformed shape along line C-C (All dimensions in inches, deflections 

amplified 30 times) 

The actual panel deflections at midspans are estimated with the deflection curve in 

Figure 7-11 by taking out the rigid-body displacement due to the support settlements.  As 

shown in Figure 7-12, the load-vs-actual displacement curves for the two spans are much 

stiffer than those obtained with the unadjusted readings from LVDT 5 and 8.    
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Figure 7-12 Load-vs-actual deflection curves for the initial static test 

From the load-displacement curves in Figure 7-12, we can see that the midspan 

deflections under the service loads of 26 kips were 0.048 and 0.047 in. for Spans 1 and 2, 

respectively. These satisfy the deflection limit of L/1000 (0.05 in.) specified in the 

design provisions of the City and County of Denver. 

Figure 7-13 shows the load-strain curves obtained from all the strain gages glued on 

the panel. Loads 1 and 2 are defined in Figure 7-9.  The curves are linear. As expected, 

the strain decreases with increasing distance from line C-C (Figure 7-6).  At 37.5 in. from 

line C-C, the deformation is negligible.  Figure 7-14 shows the strains ε  along line B-B11

(Figure 7-6) obtained from the gages glued on the top and bottom of Span 1, where ε  is 

the longitudinal strain in direction x1 as defined in Figure 7-6. 

Figure 7-14 shows that the top surface had a distinct kink in the strain-vs-distance 

curve indicating localized deformation introduced by the loading plate.  This localized 

bending is due to the indentation of the soft core as explained in Section 6.5.  The gages 

glued on the bottom detected a less localized bending and showed a more linear variation 
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Figure 7-13 Load-strain curves for the initial static test 
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Figure 7-14 Strain ε11 along line B-B at different loading stages  

The panel strain, ε , plotted along line C-C under a 20-kip load is shown in Figure 11

7-15. On the top of Span 1, two strain gages were glued just outside the loading plate as 

shown in Figure 7-6. The strain gradient, dε dx  1 , gives an indication of the magnitude 11 

of the shear strain γ13 as explained in Section 6.5.  Figure 7-15 indicates that the 

indentation of the core increases the shear strain near the loading plate.  The different 

strain values between Span 1 and Span 2 are probably due to the gap caused by the 

rotation of the bearing pad on riser R1. The gap decreases the strain at the middle of Span 

2 as shown by the deflection curve in Figure 7-11. 
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Figure 7-15 Strain ε11 along section C-C 
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The localized bending near the loading plate was observed clearly during the test as 

shown in Figure 7-16. Figure 7-17 shows the strain profiles along line C-C at 20-kip load 

and indicates that in Span 1, the neutral axis was at the mid-height of the panel cross 

section. However, in Span 2, the neutral axis was not at the mid-height of the panel 

section, but was shifted toward the upper face at the middle of Span 2 and shifted toward 

the lower face near the interior riser, R2. 

Panel local bending 

Figure 7-16  Picture of the panel local bending 
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Figure 7-17 Panel strain profiles 

Since no panel delamination was expected at this loading stage, the shift of the 

neutral axis was probably caused by the member tension exerted by the anchor bolts as 

the panel experienced excessive settlement at riser R1, as illustrated in Figure 7-18. 
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Figure 7-18 Membrane tension due to the anchor bolts 
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It must be mentioned that if the neutral axis shifts in opposite directions at 

midspan and near the interior riser, the cause is most likely the horizontal force. 

Conversely, if the neutral axis shifts in same direction, the cause could be the 

delamination of one of the two faces.  

7.6 Fatigue Test 

The aim of the fatigue test was to investigate the influence of the load cycles on 

the load carrying capacity of the panel and on the performance of the anchor bolts.  The 

fatigue test had three different loading phases as described in detail in Section 7.4.  In 

Phase 1 (from 0 to 15,200 cycles), the loads in Actuators 1 and 2 were 180° off-phase 

with a peak load of 40 kips.  In Phase 2 (from 15,200 to 370,200 cycles), only Actuator 1 

was used with a peak load of 22 kips. In Phase 3 (from 370,200 to 1,500,000 cycles), 

only Actuator 1 was used with a peak load of 31 kips. 

7.6.1 Phase 1 - 0 to 15,200 cycles 

The two spans were loaded by two actuators with sine waves that were 180° off-

phase and a maximum load of 40 kips in each actuator.  At about 14,000 cycles, Span 2 

started emitting a strong noise near the loading plate.  Inspection of the panel did not 

show any external damage.  The noise was very likely caused by the delamination of the 

upper face from the core.  Between 15,000 and 15,200 cycles, data were recorded for 200 

cycles (Cyclic data 1 in Table 7-2). The load-strain curves are shown in Figure 7-19.   
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Figure 7-19 Load-strain curves for all the strain gages at 15,000 cycles 

Gages 16, 18, 19 and 21 glued on Span 2 show permanent deformation.  Gages 16 

and 19 were attached to the top and bottom faces of the panel right underneath the load in 

Span 2. Gage 19 showed a larger strain than gage 16.  This was probably caused by the 

delamination of the top face. The gages glued at 37.5 in. from the loading point showed 
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small strains as in the initial static test.  The gages glued on the negative moment region 

of Span 2 (gages 18 and 21) showed large deformation compared to the corresponding 

gages in Span 1. 

Figure 7-20 compares the load-displacement curves obtained from the midspan 

locations at the initial static test (0) and between 15,000 and 15,200 cycles.  As indicated 

in Table 7-1, the loading schemes are different, and, therefore, the stiffnesses cannot be 

compared directly.  However, LVDT 8 showed similar results at the initial static test and 

between 15,000 and 15,200 cycles, while LVDT 5 indicated a much larger deformation 

between 15,000 and 15,200 cycles than at the initial static test.  This is probably due to 

the delamination of one of the faces from the core in Span 2.   
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Figure 7-20 Comparison of the load-displacement curves at the initial static test 

(0k) and between 15,000 and 15,200 cycles 
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7.6.2 Phase 2 -15,200 to 370,200 cycles 

Between 15,200 and 370,200 cycles, only Actuator 1 was loaded with a maximum 

load of 22 kips. Until 370,000 cycles, no noise emission was noted and cyclic test data 

were recorded to evaluate the panel performance (Cyclic data 2 in Table 7-2).  The strain 

gage readings obtained in Span 1 between 15,000 and 15,200 cycles (15k - 15.2k) and 

between 370,000 and 370,200 cycles (370k - 370.2k) are compared in Figure 7-21.  The 

loading schemes were different; between 15,000 and 15,200 cycles, both spans were 

loaded sinusoidally with a phase angle of 180°, whereas between 370,000 and 370,200 

cycles, only Actuator 1 was loaded. This means that between 15,000 and 15,200 cycles, 

when Span 1 was loaded with 20 kips, Span 2 was loaded with 2 kips; between 370,000 

and 370,200 cycles, when Span 1 was loaded with 20 kips, Span 2 was not loaded.  The 

latter loading scheme produced a larger uplift force on the damaged anchors, and, 

therefore, induced a larger horizontal membrane force FH (Figure 7-15) on the panel. 

The slopes of the load-strain ( ε ) curves under the point load between 15,000 and11

15,200 cycles and between 370,000 and 370,200 cycles are very similar, and this 

indicates that there was no damage in the deck.  The stiffer behavior of the load-strain 

(ε22) curves between 370,000 and 370,200 compared to those between 15,000 and 15,200 

cycles could have been caused by the horizontal membrane force acting on the panel as 

mentioned previously. 

Gage 8, glued at the end of the panel (37.5 in. from load 1) on the top face of Span 1 

indicated permanent deformation between 370,000 and 370,200 cycles.  This is in 

contrast with the initial static test in which the same gage did not show any deformation. 

Therefore, it is very unlikely that the panel was damaged at this location by the cyclic 

loading. Probably, this permanent deformation is due to the permanent anchor bolt 

slippage at riser R1, which prevented the panel at the supported end from bouncing back 

to the undeformed configuration. 
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Figure 7-21 Load-strain curves at 370,000 cycles 

7.6.3 Stage 3 - 370,200 to 1,500,000 cycles 

At 370,200 cycles, the deck was examined and no damage was observed. The 

loading of Actuator 1 was increased to a maximum load of 31 kips for subsequent cycles. 

At 1,000,000 cycles, the test was interrupted to perform a static test to evaluate the panel 

behavior (Static Test 1M in Table 7-2). To compare the results with those of the initial 

static test, both spans were loaded at the same time up to 20 kips. Figure 7-22 shows that 

the strains under the loading plates and near the interior support, R2, were larger at 

1,000,000 cycles than at the initial static test for both spans under similar loads. The 

stiffness change is probably due to damage in the interface between the faces and the 
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core.  In particular, in Span 2, the strain near the middle support (negative moment 

region) at 1,000,000 cycles is more than four times larger than the strain at 0 cycle. 
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Figure 7-22  Load-strain curves at 1,000,000 cycles 

 

The strain profiles in Figure 7-23 indicate that the neutral axis in Span 1 did not 

change position during the fatigue loading.  The softening was probably caused by the 

delamination of Span 2.  For Span 2, near the interior riser, R2, the neutral axis at 

1,000,000 cycles shifted upward, whereas at midspan, the neutral axis did not move, as 

shown in Figure 7-24.  The progressive damage of the panel is different from that of the 

beams tested previously.  In the beam tests, when one of the two faces delaminated, the 

neutral axis shifted from its initial position (the neutral axis shifted upward if the lower 

face debonded and downward if the upper face debonded) and the failure ensued.  In the 

panel test, the delamination of the faces was not necessarily followed by collapse because 

damage could be local and stress redistribution could occur.   
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Figure 7-24 indicates that, near the interior riser, the top face was carrying less load 

than the bottom face at the initial static test and that the two faces were carrying the same 

amount of load at 1,000,000 cycles.  This indicates that the bottom face could have 

delaminated after the fatigue load cycles.  

At 1,500,000 cycles, Span 1 started emitting a strong noise.  Then, a static test 

was performed to evaluate the panel behavior (Static Test 1.5M in Table 7-2). Figure 

7-25(a) compares the static load-actuator displacement responses at 1,000,000 and 

1,500,000 cycles. The figure does not represent the true flexibility of the panel because 

the actual displacement includes the flexibility of the steel reaction frame that supported 

the actuator as well as the support settlements at the risers. The graph is used only to 

show that the overall stiffness decreased with load cycles.  Figure 7-25(b) shows the 

comparison of the adjusted displacement at the middle of Span 1 at 1,500,000 cycles 

(1.5M) and the LVDT 8 reading at the initial static test (0k).  To find the adjusted 

midspan displacement, the stiffness of the steel frame is first evaluated by using the 

initial static test data.  Then, using this stiffness the steel frame displacement is calculated 

and subtracted from the actuator displacement to find the adjusted midspan displacement 

at 1,500,000 cycles. As shown, the stiffness of Span 1 decreased with increasing loading 

cycles probably because of the local delamination of the upper face from the core.   

Figure 7-26 shows the load-strain curves at 0, 1,000,000 and 1,500,000 cycles. 

The strain profiles for Span 1 in Figure 7-27 indicate that the neutral axis moved upward 

from 0 to 1,500,000 cycles indicating that the lower face delaminated from the core. 
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Figure 7-26 Load-strain curves at 1,500,000 cycles for span1 
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Figure 7-27  Strain profiles at different loading cycles 
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7.7 Final Static Test 

After the fatigue test was completed, the two spans were loaded one at a time up to 

L
o

a
d

 (
k
ip

s
)

100 kips. Figure 7-28 shows the load-actuator displacement response for Span 1.  The 

beams that were tested previously and the panel behaved differently after delamination. 

For three out of the four beams tested, the failure was brittle.  One beam showed a 

ductile-like behavior because the upper face was not glued uniformly to the core and had 

progressive delamination.  The latter is similar to the panel behavior.  In the panel, a 

crack formed in the face-core interface near the loading plate when the maximum shear 

stress exceeded the interface shear strength and the crack propagated gradually causing a 

ductile-like failure.   

. 
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Figure 7-28 Load- actuator displacement curve for Span 1 

The strain profiles for Span 1 at different loading stages, 1, 2, 3 and 4 in Figure 7-28, 

are shown in Figure 7-29 and Figure 7-30.  Both strain profiles show that the neutral axis 

moved downward between stages 1 and 2. This response indicates that the top face 

delaminated from the core.   
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Figure 7-29 shows that the strain at the bottom face near the interior riser was zero at 

stage 2, and the strain became positive at stage 3.  Furthermore, at stage 3, the neutral 

axis near the interior riser was outside of the cross section.  This is possible only if there 

was a horizontal tensile force acting on the panel (see Figure 7-18), which was probably 

caused by the anchor bolts as explained earlier.  Figure 7-30 indicates that between stages 

2 and 3, the neutral axis at midspan moved upward confirming that there was a horizontal 

force acting on the panel. 
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Figure 7-29 Strain profiles in Span 1 near the interior riser at 1,500,000 cycles 
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Strain profiles  (ε11) along line C-C at midspan 1 
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Figure 7-30 Strain profiles at the middle of Span 1 at 1,500,000 cycles 

Between stages 3 and 4, the bottom face delaminated and the neutral axis shifted 

upward at the midspan and near the interior riser as shown in Figure 7-29 and Figure 

7-30. The interface delamination was followed by a strong noise emission and a large 

load drop (stage 3 in Figure 7-28), which indicates a sudden energy release.  A visible 

crack formed in the top face as shown in Figure 7-31.  However, even when both faces 

delaminated, the panel did not collapse but was still carrying load because the damage 

was localized. This ductile-like behavior is desirable because it gives a warning prior to 

collapse. 

Figure 7-31 shows the loading area under the plate after the test.  The crack 

highlighted in the figure opened at stage 3 and propagated with increasing load.  Figure 

7-15 shows that the maximum shear strain is near the loading plate edges.  The high shear 

stress, due to the localized bending,  exceeded the shear strength of the interface between 

the core and the face and triggered the formation of the crack near the loading plate edge. 
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After stage 4, as indicated in Figure 7-28, the load-actuator displacement curve 

shows small load drops, which were accompanied by noise emissions during the test. 

This means that the delamination propagated during the test.  The figure shows that the 

damage propagation decreases the panel stiffness. 

Crack 

Loading plate location 

Gages 

C 

C 

B 

B 

Figure 7-31 Crack located outside the loading plate in Span 1 

Figure 7-32 shows the load – actuator displacement curves for both spans.  The load 

– actuator displacement for Span 2 does not show as large a load drop as for Span 1. 

Probably, the delamination of both faces occurred during the fatigue test, and for this 

reason, the curve does not show a sudden large load drop.  This prior damage caused 

stiffness reduction as shown in Figure 7-32.  The unloading branch indicates that there 

was a permanent plastic deformation when the panel was completely unloaded.   
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Load vs actuator displacements 
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Figure 7-32 Load – actuator displacements for Span 1 and 2 

7.8 Final Remarks 

The initial static test has indicated that the mechanical anchor that attached the GFRP 

panel to the concrete supports did not work very well. Some of the anchor bolts on an 

external support slipped when each of the two spans was subjected to a load up to 22 

kips. Because of this observation, the anchor bolts have been switched to epoxy anchor 

for the O’Fallon Park bridge. 
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8 ANALYSIS OF PANEL BEHAVIOR USING PLATE THEORY 

8.1 Introduction 

The Kirchhoff-Love plate theory is used here to analyze a GFRP panel that has the 

same cross-sectional properties as the O’Fallon Park deck to gain a better insight of the 

experimental results.  The major drawback of this theory is that it does not take into 

account the shear deformation.  Consequentially, the Kirchhoff-Love theory gives 

accurate results only if the ratio of the smaller lateral dimension of the plate to its 

thickness is at least ten (Szilard 1974).  In the case of the O’Fallon Park deck, this ratio is 

only 6.5. Hence, to check the accuracy of the analytical solution, the panel is analyzed in 

Chapter 9 with the finite element method.   

In the actual test, the panel had two spans.  However, in the analytical solution, the 

panel is assumed to be simply supported along two opposite edges and free along the 

other two for sake of simplicity. The panel model has a span of 48.5 in. (center-to-center 

distance of the risers in the original test panel) and a variable width, b, as shown in Figure 

8-1. 
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Figure 8-1 Dimensions of the panel model used in the analysis 

8.2 Kirchhoff-Love Plate Theory 

8.2.1 Differential Equation for Plate Deflection 

The Kirchhoff-Love plate theory is based on the following assumptions and 

conditions (Szilard 1974): 

1. The material of the plate is elastic and homogeneous. 

2. The plate is initially flat. 

3. The slopes of the deflected middle surface are small compared to unity. 

4. The deflection of the plate is represented by the displacement of the middle 

surface normal to its plane. 

5. The stresses normal to the middle surface are negligible. 
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6. The deflection is small compared to the plate thickness.  The maximum 

deflection is less than one fiftieth of the smaller span length. 

7. The thickness of the plate is small compared to the other dimensions.  The 

smaller lateral dimension of the plate is at least ten times larger than its 

thickness. 

8. During loading, plane sections remain plane; the deformation due to 

transverse shear is neglected. 

The first six assumptions are valid for the panel studied here.  However, the ratio 

of the smaller lateral dimension to the thickness is only 6.5, and, hence, condition 7 does 

not apply here. As a consequence, the shear deformation cannot be neglected, and, 

therefore, assumption 8 is not valid.  In spite of this, the Kirchhoff-Love plate theory is 

used here for the sake of simplicity and with an intention of checking its accuracy for the 

thick panel considered here using a finite element model.  It can be used to develop a 

better understanding of the behavior of the panel and the influence of the orthotropy 

introduced by the honeycomb construction. 

To set up the orthotropic plate equation based on the Kirchhoff-Love theory, it is 

necessary to follow these steps: 

1. Consider the equilibrium of the external and internal forces acting on the plate. 

2. Use an orthotropic elastic material law to link strains to stresses. 

3. Express the strains and stresses as functions of the displacement. 

4. Express the internal forces as functions of the displacement. 

1. Equilibrium 

By using the Cartesian coordinate system shown in Figure 8-2 and assuming that 

the plate is subjected only to lateral forces, it is possible to write the following 

equilibrium equations: 

∑ M = 0 ∑ M = 0 ∑ Fx 3 = 0 
(8.1) 

x1 x 2 
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The behavior of a plate is analogous to that of a two-dimensional gridwork of beams. 

Thus, the external load Px3 is carried by Vx1 and Vx2, transverse shear forces, and by Mx1 

and Mx2, bending moments.  Furthermore, plates are characterized by the presence of the 

twisting moments Mx1x2 and Mx2x1. It is customary in plate theory to use internal forces 

and internal moments per unit length of a plate, i.e., mx1, mx2, mx1x2, mx2x1, vx1 and vx2, as 

shown in Figure 8-2. 
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dx  dx  

dx  dx  

+
∂ 

1 2  x x  
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1

1 dx  1  dx  2  m 1 2  + ∂x1 

dx  1 dx  2x x vx 2 + 
vx 2 dx  2  dx  1  v

x1 

 ∂x2      

Figure 8-2 Internal moments and forces acting on a plate element 

After some simplifications, the equilibrium of internal and external forces acting on a 

plate element leads to the following equations: 

x ∂mx1 +
∂mx1  2  = vx1 from the sum of moments around the x 2 axis 

(8.2) ∂x1 ∂x2 

x ∂mx 2 +
∂mx1  2  = vx 2 from the sum of moments around the x 1 axis 

(8.3) ∂x2 ∂x1 

∂v
x1 ∂v

x 2 = −  p
∂x1 

+
∂x2 

x 
from the sum of all forces in the x 3 direction 

(8.4) 3 

Substituting equations (8.2) and (8.3) into (8.4) and noting that mx1x2=mx2x1 leads to the 

following differential equation: 

2∂2
m

x1 + 2 
∂ m

x1 
(8.5)

2 +
∂2

m
x 2 = −  p ( x x  )x 

∂x1

2 ∂x ∂x2 ∂x2

2 x 3 1 , 2 

1 
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2.  Orthotropic stress-strain Law 

In the case of plane stress, five elastic constants are necessary for the description of 

the orthotropic stress-strain relations: 

E
ε =

σ11 −υ21 

σ 22 
(8.6) 

11 

11 E22 

E
ε22 =

σ 22 −υ12 

σ11 

22 E11 

τ12= 
G

γ 12 

12 

Inverting equation (8.6), we can express the stresses in term of strains: 

(8.7)
σ11 = 

E11 (ε +υ ε  )
1−υ υ  

11 21 22 

12 21 

σ11 = 
E22 (ε +υ ε  )

1−υ υ  
22 12 11 

12 21 

τ12 = G12γ12 

3. Relation between strains and displacement 

By using the compatibility condition, it is possible to express the strains in terms of 

the displacement: 

∂2 
w (8.8)

ε = −x3 = x3κ11 x1∂x1

2 

∂2 
w ε22 = −x3 = x3κ x 2∂x 2
2 

∂2 w γ 12 = −2x3 = 2x3χ 
x x2 ∂ ∂1 

where w is the displacement in the x3 direction as defined in Figure 8-2, the κ's are the 

curvatures, and χ is the warping of the plate. 

4. Internal force-displacement relations 

By integrating the stress components along the plate thickness H, the bending and 

twisting moments are given by: 
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H / 2  

m
x1 = ∫−H 

σ x  dx  3 

(8.9) 
11  3  

2 

σ x  dx  3m
x 2 = ∫− 

H

H 

/ 2  

22 3  
2 

m 1 2  = m
x 2  1  = ∫− 

H

H 

/ 2

τ x  dx  3x x  x  12  3  
2 

Substituting equations (8.7) and (8.8) into (8.9), the moments can be expressed in terms 

of displacement, w: 

2 2 

m 
 ∂ w ∂ w  (8.10) 

x1 = −D11  


 ∂x1

2 
+υ21  ∂x2

2  
 

2 2 

m 
 ∂ w ∂ w  

x 2 = −D22   +υ12  ∂x1

2  
 ∂x2

2 

 

∂2 w 
m 1 2  = −2D

tx x  ∂ ∂x x21 

where D11 and D22 are the flexural rigidities of an orthotropic plate, and 2Dt = (1-υ )D1212

represents the torsional rigidity.  For a plate with a uniform thickness, 

E H  
3 (8.11) 

= 11D11 2 )12(1 −ν12 

E H  
3 (8.12) 

= 22D22 2 )12(1 −ν 21 

H 
3 (8.13)

Dt = G12 
12 

Finally, the substitution of equation (8.10) into (8.5) yields the governing differential 

equation for orthotropic plates: 

∂4 
w ∂4 

w ∂4 
w (8.14)

D + 2B 
4 

= p
x3

( x1, x2 ) 11 ∂x1

4 ∂x1

2∂x2

2 
+ D22 ∂x2 

where B is the effective torsional rigidity:   

1 
B = 

2 
(υ21D11 +υ12 D22 + 4Dt ) 

(8.15) 

An exact solution of the governing differential equation, equation (8.14), must satisfy the 

plate boundary conditions. For rectangular plates subjected to lateral loads, the Levi’s 
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and Navier’s methods are most commonly used to solve equation (8.14). 

8.2.2 Levi’s Method 

Levi developed a method to solve equation (8.14) for linear elastic plates.  This 

section presents the solution for isotropic plates and the extended solution for orthotropic 

plates. Figure 8-3 shows the boundary conditions assumed in the solution. 

x2 

Simply supported 

x1 

2 
a 

2 
a 

Figure 8-3 Coordinate system and boundary conditions 

Levi first solved the homogeneous biharmonic differential equation, which 

represents the governing differential equation for an unloaded plate:  

∂4 
w ∂4 

w ∂4 
w (8.16)

D + 2B 
2 

+ D22 = 0 11 ∂x1

4 ∂x1

2∂x2 ∂x2

4 

A solution of equation (8.16) can be found to have the following form: 

w x1( ,  x ) = X1( x ) • X ( x ) (8.17)
H 2 1 2 2 

By using a single Fourier series, a solution that satisfies the boundary conditions and 

equation (8.16) is: 
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∞ π (8.18)
w x1( ,  x ) = ∑ X ( x )sin  

m x1 
H 2 2m 2 

m=1 a 

Substituting (8.18) into (8.16), we have 

D 
4 4 2 2 (8.19) 

11 

m π 
X 2m 

− 2B
m π 

X 
II + D22 X 

IV = 0
4 2 2 m 2 ma a 

X
II 

X
IVIn equation (8.19), and  are the second derivative and fourth derivative of the 

function X, respectively.  The solution of equation (8.19) is of the form: 

= Ge
rx2 (8.20)X 2m 

where  G is a constant and  r are the four roots of the corresponding characteristic 

equation: 

B2 

r 
mπ B D11 

(8.21) 

1,2,3,4 = ±  ±  
D

2 
− 

a D D 
22 22 22 

By defining (Timoshenko and Woinowsky-Krieger 1974) 

B (8.22)
µ = 

D D2211 

we obtain three different cases for the solution of equation (8.16): 

1. Two double real roots if µ = 1, i.e., B = D D22 

(8.23)
11 

2. Four complex roots if µ < 1, i.e., B < D D22 11 

3. Four real roots if µ > 1, i.e., B > D D22 11 

It should be noticed that the first case represents an isotropic case. 

In this study, to compare an isotropic plate with an orthotropic plate, both cases 1 

and 2 are considered.  The orthotropic solution uses the material properties given in Table 

8-1. The values in Table 8-1 are obtained by modeling a 7.5-in. honeycomb sandwich 

panel as a three layer laminate and using the classical lamination theory (Daniel and Ishai 

1994) using the material properties shown in Table 3-2.  The isotropic solution is based 
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12on the elastic modulus, E11, as well as the shear modulus, G12, and Poisson Ratio, υ , 

shown in Table 8-1. 

Table 8-1 Equivalent stiffness properties of GFRP honeycomb sandwich panel 

Elastic Moduli (ksi) Poisson Ratio 

E11  E22  G12 ν12 

827 503 148 0.302 

Substituting the values given in Table 8-1 in equations (8.11) and (8.12), we have µ 

= 0.66. Thus, the solution for the orthotropic sandwich panel considered here is 

represented by case 2.   

Case1: Isotropic plates 

In this case, D11=D22=D and µ =1. Hence, equation (8.19) can be simplified as: 

2 2 4 4 (8.24)
X

IV m π
+ 2 

m π 
X

II + 
4 

X 2m 
= 0 

2 m 2 2 ma a 

The solution of equation (8.24) has the following form: 

π 
m x2 

m x2 π π π 

X 2m 
= A e

m x2 − m x2 

+ D
m x2 

− m x2 (8.25)π π 

e a aa + B + C  e  e a 
m m m m

a a 

Observing that the deflection and its derivatives approach zero at a large distance from 

the x1 axis, we have Am=Bm=0. Therefore, the solution of equation (8.16) can be 

represented by the following sine series: 

∞ π π− m x2 π (8.26)
( ,w x  x  2 ) = ∑(C + D

m x2 )e a sin  
m x1 

H 1 m m 

m=1 a a 

 ∂w 
Exploiting the condition of symmetry, i.e., 


 

dx2 
 

x2 =0 

= 0 , we have Cm=Dm. Therefore, 

we can write equation (8.26) in the following form: 

∞ π π− m x2 π (8.27)
( ,w x  x  2 ) = ∑C (1 + 

m x2 )e a sin  
m x1 

H 1 m 

m=1 a a 
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The above equation can be used to calculate the deflection of a plate at a point outside the 

loading area. Consider the case of a uniformly distributed line load of intensity p0 over a 

length c along the x1 axis as shown in Figure 8-4. The load distribution can be 

represented by a trigonometric series and the constants of the Fourier expansion of the 

load are given as: 

ξ1 +c
2 π 4 p0 sin 

mπξ1 sin 
m c  (8.28)

p = 
2 p0 ∫ξ1 − 

sin 
m x1 dx1 =

π 
m

a c
2 a mπ a 2a 

The load can then be expressed in form of a sine series as: 

∞ π π 14 p0 ∑ 1 
sin 

mπξ1 sin 
m c  

sin 
m x  (8.29)

p = 
π m=1 m a 2a a 

Since the load is equally divided between the two halves of the plate, it follows that  

 2 (8.30)∂ ∂2 w ∂ w  
v( )x2 =0 = −D + 

2 x2 ∂x2 


∂x1

2 ∂x2 x2 =0 

∞ π m x  1 π0= −
2 p ∑ 1 

sin 
mπξ1 sin 

m c  
sin 

π m=1 m a 2a a 

The substitution of equation (8.27) for w in equation (8.30) gives: 

2Dπ 3 

∑C m
3 m x  1 = 

2 p ∞ π m x  1 
(8.31)∞ π 0 ∑ 1 

sin 
mπξ1 sin 

m c  
sin 

π 
3 m

a m=1 a π m=1 m a 2a a 

Therefore, Cm is obtained as 

3 π (8.32)
0C = 

p a 
sin 

mπξ1 sin 
m c  

m 4 4Dm π a 2a 

The deflection of the plate outside the loading area is obtained by substituting Cm into 

equation (8.27): 

−m x2p a
3 ∞ 1 

sin 
mπξ1 sin 

m c  
(1 +

m x  2 π (8.33) 
w = 0

4 ∑ 
π π 

)e a 

π 

sin 
m x  1 

4
Dπ m=1 m a 2a a a 

The previous solution can be used to obtain the deflection of a long plate under a 

uniform load of intensity p0 distributed over a rectangular area with sides equal to c and d 

as shown in Figure 8-5. 
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Figure 8-5 Uniform rectangular load 
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To this end, consider a load of magnitude p0cdξ2 over an infinitesimal area (see Figure 

8-5) at a distance ξ2 from the x1 axis. The infinitesimal load can be expressed in form of 

a sine series as: 

4 p ∞ mπξ1 sin 
mπ c mπ x1 

(8.34)
p dξ = 0 dξ 2 ∑ 

1 
sin sin0 2 π m= 1 m a 2a a 

The deflection produced by the infinitesimal load p0dξ2 at points outside the 

loading area is obtained by substituting p0dξ2 for p0 and x2-ξ2 for x2 in equation (8.33). 

The deflection produced by the entire load over the rectangular area is obtained by 

integrating the resulting equation with respect to ξ 2 from - d
2 

to + d 

p a  

2
:  

3 ∞ 1 
sin 

mπξ mπ c mπ x1 
(8.35) 

w = 0

4 ∑ 1 sin sin ×
4Dπ m= 1 m a 2a a 

d  − mπ (2 x2 − d ) − mπ (2 x2 + d )   2a  2a d  
 

mπ
+ x2 − 

2 
 e 2 a −


 

mπ
+ x2 + 

2 
 e 2 a 

 
 

 

The above equation is applicable to plate deflection outside the loading area. 

Case 2: Orthotropic plates 

The solution for an orthotropic plate can be found with a similar procedure used 

for the isotropic case. By defining the following parameters (Timoshenko and 

Woiwonowksi-Krieger 1974): 

(8.36) 

D
λ = 4 

D22 α = 
aλ µ + µ 2 − 1 β = 

aλ µ − µ 2 − 1 
11 π π 

the solution of equation (8.19) has the following form: 

mx2 
mx2 − mx2 

− mx2 (8.37)
β βX 2m 

= A  e  α + B  e  + C  e  α + D  e  
m m m m 

By observing that the deflection and its derivatives approach zero at a large distance from 

the x1 axis, we have Am=Bm=0 and equation (8.37) can be simplified as 

− mx2 
− mx2 (8.38)

βX 2m 
= C  e  α + D  e  

m m 
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Equation (8.18) becomes: 

− mx2 
− mx2  (8.39)∞  π 

w x  x  2 ) = ∑ 
C  e  α + D  e  β  sin  

m x1 
H 1( ,  m m  

m   a 

 ∂ w 
From symmetry, it can be concluded that along the x1 axis, 


 

dx2 
 

x2 = 0 

= 0 . Hence, 

β
D = − C  and we can write equation (8.39) in the form: m mα 

(8.40)∞ 
α β π 

w x  x  2 ) = ∑ Cm  e 
− mx2 

−
β 

e 

− mx2 
 sin  

m x1 
H 1( ,  

m  α 
 a 

Consider the case of a uniformly distributed line load of intensity p0 over a length c along 

the x1 axis as shown in Figure 8-4. The load distribution can be represented by a 

trigonometric series and the constants of the Fourier expansion of the load are given as: 

ξ1 + c
2 π 4 p0 sin 

mπξ1 sin 
m  c  (8.41)

p = 
2 p0 ∫ξ1 − 

sin 
m x1 dx  1 =

π 
m

a c
2 a mπ a 2a 

The load can then be expressed in form of a sine series as: 

∞ π π 14 p0 ∑ 
1 

sin 
mπξ1 sin 

m  c  
sin 

m  x  (8.42)
p = 

π m= 1 m a 2a a 

Since the load is equally divided between the two halves of the plate, it follows that  

2 (8.43)∂  ∂ 2 w ∂ w  
v( )x2 = 0 = −

∂ x2 

 D22  ∂ x2

2 
+ B 

2 x2 

 ∂ x1  x2 = 0 

0 ∑ 
π π 1 

π
= −  

2 p ∞ 1 
sin 

mπξ1 sin 
m  c  

sin 
m  x  

m= 1 m a 2a a 

The constant Cm can be found by substituting equation (8.40) into (8.43) 

α p a
4 (8.44)

0C = 
m 4 3 2 22π m D11 (α − β ) 

Therefore, equation (8.40) becomes 

∞ 4  
β π0( ,w x  x  2 ) = ∑ 

α p a 
2 2 

− mx2 β − mx2  (8.45) 

H 1 4 3  am 2π m D11 (α − β )  e α −
α 

e  sin  
m  x  1 

  
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The above equation can be extended to find the deflection of a plate due to a load 

uniformly distributed over a rectangular area as shown in Figure 8-5.  The deflection 

produced by the infinitesimal load p0dξ2 at points outside the loading area is obtained by 

substituting p0dξ2 for p0 and x2-ξ2 for x2 in equation (8.45). The deflection produced by 

the entire load over the rectangular area is obtained by integrating the resulting equation 

with respect to ξ2 from - d
2 

to + d 
2

: 

2 

w = 
p0a ∞ 1 

sin 
mπξ mπ c (8.46)

1 sin ×
3 ∑ 4 

a 2aπ D D22 m=1 m11 

 
e 

β0 sin 
mπ x1α sin 

mx2 + β0 cos 
mx2 

 −mx1  
0 

 a α0 β0   

where α0 and β0 are defined as: 

(8.47)aλ 2 aλ 2α0 = β0 = 
π 1 − µ π 1 + µ 

The above equation is applicable to plate deflection outside the loading area. 

8.2.3 Navier’s Solution 

Navier obtained the solution for the governing differential equation, equation (8.14), 

for a plate with four simply supported edges and subjected to a transverse loading by 

expanding the displacement and the lateral load into double sine series: 

∞ ∞ π (8.48)
w x1( ,  x ) = ∑∑W sin  

m x1 sin  
nπ x2 

2 mn 
m=1 n=1 a b 

∞ ∞ π (8.49)
p x( ,  x ) = ∑∑P sin  

m x1 sin  
nπ x2 

x 3 1 2 mn  
m=1 n=1 a b 

where a and b are the dimensions of the plate in the x1 and x2 directions, as shown in 

Figure 8-6. 

126 



p0
0 

x3, w 

x2 

2
c 

2
c 

2
d 

2
d 

0 

ξ1 

ξ2 

a 

b 

Plan View 

Figure 8-6 Coordinate system and boundary conditions for Navier’s method 

It should be noted that equations (8.48) and (8.49) satisfy the boundary conditions of the 

problem.  The unknown Wmn can be calculated by substituting equations (8.48) and (8.49) 

into (8.14) and then solving for Wmn: 

P (8.50)
mnW = mn 4 2 2 4
m  n  n  π 4 


 

D11 

m + 2B
a  b  

2 
+ D22 

b
4 4 2

a  
By substituting (8.50) into (8.48), an analytical solution for the deflection of an 

orthotropic plate is obtained as follows: 

mn( ,  x ) = 
1 ∞ ∞ P 

sin  
mπ x1 sin  

nπ x2 
(8.51) 

π
w x1 2 4 ∑∑ 4 2 2 n4  a b m=1 n=1 


 

D11 

m 
4 

+ 2B
m  n  

+ D22 
b4  2

 a  a  b  2 

 

The coefficients Pmn for the rectangular load shown in Figure 8-6 are obtained from: 
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4 p0 
ξ +d / 2  ξ1 +c / 2  mπ x1 nπ x2 dx  dx  2 

(8.52)
P = sin sin mn ∫ξ 

2 

+d / 2  ∫ξ +c / 2  a b 
1 

2 1ab 

The displacement w(x1,x2) is found by evaluating equation (8.52) and substituting the 

obtained Pmn into equation (8.51). The expressions for the moments are obtained by 

substituting w(x1,x2) into equation (8.10). 

The solution for the deflection of an isotropic plate can be found from equation 

(8.51) by having D11 = D22 = D. 

8.3 Analytical Results 

Version 4 of the program Mathematica is used to evaluate the Levi’s and Navier’s 

solutions for the deflection and internal forces in a honeycomb panel that has the same 

cross section as the test panel.  The coordinates and boundary conditions used in the 

Levi’s solution are shown in Figure 8-5 and those for the Navier’s solution are shown in 

Figure 8-6. The boundary conditions are not exactly the same as those in the test panel 

for the sake of simplicity.  To evaluate the effect of the material orthotropy, the solutions 

for orthotropic and isotropic plates are compared.  The orthotropic solution uses the 

material properties given in Table 8-1, and the isotropic solution uses only the elastic 

modulus in the direction x1 given in Table 8-1. 

8.3.1 Results from Levi’s solution 

For this analysis, the dimensions of the loading area are assumed to be 12x12 in. 

The span is 48.5 in. The maximum displacement at the center of the panel (i.e. at 

x1=24.25 in. and x2=0 in. in Figure 8-5) due to a load of 26 kips is obtained with equation 

(8.46) for the orthotropic plate and with equation (8.35) for the isotropic plate.  Strictly 

speaking, equations (8.46) and (8.35) are only applicable to plate deflection outside the 

loading area. However, the dimensions of the loading area are small compared to the 

overall plate dimensions.  For this reason, this limitation is ignored here.  The Levi’s 

solution converges extremely rapidly.  The difference in displacement by using five terms 
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and ten terms of the series is only 0.008%.  For most practical purposes, a few terms of 

the series are sufficient to obtain an accurate solution. 
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Figure 8-7 shows the displacement along section A-A (Figure 8-1).  As expected, the 

orthotropic panel is softer than the isotropic panel, because the orthotropic panel is 

weaker in bending about the x1 axis.  The maximum displacement for the orthotropic 

plate is 26% larger than that for the isotropic plate.  Figure 8-7 shows that the 

displacement along section A-A (Figure 8-1) approaches zero rapidly with increasing 

distance from the loading plate. This trend is more pronounced for the orthotropic plate. 

This implies that the load is distributed over a smaller width in the orthotropic plate than 

in an isotropic plate.  For a panel subjected to a 26-kip load, the displacement at 43.75 in. 

from the center of the load in the direction x2 is 7.5 times smaller than the maximum 

displacement.  At 90 in. from the center of the load, the displacement is negligible. 

Figure 8-8 shows the displacement along section B-B (Figure 8-1).  The plot again shows 

the softer behavior of the orthotropic plate. 
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Figure 8-7 Displacement along section A-A at 26 kips 
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Figure 8-8 Displacement along section B-B at 26 kips  

Although the Levi’s solution converges extremely fast, it requires very involved 

mathematical manipulation.  This is especially true for the case of orthotropic plates.  In 

addition, the calculation of the derivative of the displacement, which are required to find 

the internal moments and forces, exhibits convergence problems in vicinity of the center 

of the load.  This is probably due to the fact that equations (8.46) and (8.35) are not valid 

in the loading area. The Navier’s solution is less general and converges less rapidly than 

the Levi’s solution. However, the Navier’s method involves simpler mathematical 

manipulation and the solution found can be used for calculating the plate internal forces 

in the loaded region.  For this reason, the Navier’s solution is used to calculate the 

internal forces and the results are presented in the next section. 

8.3.2 Results from Navier’s solution 

The panel is assumed to be simply supported along four edges.  Szilard (1974) 

claims that the convergence of this solution is relatively fast provided that the ratios a/c 

and d/b (where a, b, c and d are shown in Figure 8-6) are small.  Here, a is 48.5 in., d and 

c are assumed to be 12 in. and b is assumed to be 10 times a. Further increase of b does 

not lead to a noticeable change of the results. The aim is to simulate a finitely long panel 
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as provided by the Levi’s solution. 
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with the Navier’s and Levi’s solutions for the orthotropic plate.  The Levi’s solution is 

obtained using 5 terms of the series in equation (8.46), whereas the Navier’s solution is 

obtained using 12 terms of the series in equation (8.51).  In Figure 8-9, it is not possible 

to distinguish the two curves because they almost exactly superimpose on each other. 

The maximum displacements obtained with the Levi’s and Navier’s solutions at a 26-kip 

load are 0.037816 and 0.037903 in., respectively.  The difference is only 0.64%.  Figure 

8-10 shows the displacements along section B-B (Figure 8-1) under a 26-kip load from 

the two solutions.  The difference between the two solutions is also negligible along this 

section. 
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Figure 8-9 Displacement along section A-A at 26 kips 
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Figure 8-10 Displacement along section B-B at 26 kips  

The three dimensional plot shown in Figure 8-11 obtained with the Navier’s 

solution emphasizes the fact that the displacement for the orthotropic plate decreases to 

zero very rapidly with increasing distance from the center of the load.  Figure 8-12 and 

Figure 8-13 show the displacements obtained with the Navier’s solution along section A-

A and section B-B (Figure 8-1) of a panel subjected to a load of 26 kips.  The maximum 

displacements under a load of 26 kips are 0.0379 in. and 0.0303 in. for the orthotropic 

plate and the isotropic plate, respectively.    
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Figure 8-11  3D plot of the displacement at 26 kips  
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Figure 8-12  Displacement along section A-A at 26 kips 



0 10 20 30 40

0.005

0.01

0.015

0.020.04 

0.03 
D

is
p

la
ce

m
en

t 
w

 (
in

.)
 

0.02 

0.01 

0.00 

Orthotropic 

Isotropic 

x

0  10  20  30  40  48.5  

1 (in.) 

Figure 8-13  Displacement along section B-B at 26 kips 

For calculating the bending moments, 50 terms are needed in the Fourier series. 

The panel bending moment, mx1, along section A-A (Figure 8-1) is shown in Figure 8-14. 

The maximum moment per unit width is 7.35 kip-ft. for the orthotropic panel and 6.13 

kip-ft. for the isotropic panel. Figure 8-15 indicates that the moment mx2 is smaller than 

mx1 and approaches zero faster than mx1 with increasing distance x2 from the center of the 

load. Moreover, the moment mx2 is larger in the isotropic case than in the orthotropic 

case because the isotropic plate is stiffer in the x2 direction. 
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Figure 8-14 Moment mx1 along section A-A at 26 kips 

8 

6 

x

4 

2 

0 

-100 -50 0 50 100 

2 (in.) 

Orthotropic 

Isotropic 

Figure 8-15 Moment mx2 along section A-A at 26 kips 
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The next section presents a parametric study performed using the Navier’s 

method to determine the effective bending width for the GFRP sandwich panel 

considered here. 

8.4 Effective Bending Width 

8.4.1 Introduction 

In this section, the Navier’s solution is used for a parametric study to determine the 

effective bending width for several GFRP panels with different geometries.   

The effective bending width used here is defined by Szilard (1974).  According to 

this definition, the effective width b’ for the bending of a plate is obtained by equating 

the actual moment area for mx1 with that of a fictitious rectangular moment diagram that 

has the same maximum moment as mx1 as shown in Figure 8-16. 
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x1 
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2
 

b/2 

loading area 
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Figure 8-16 Effective bending width 

Using the above definition, the effective bending width b’ is given by the following 

formula: 
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(8.53) 

2
b 

m dx  2x1∫− 

2 
b 

b ' = 
mx1,max 

8.4.2 Test Panel 

First the effective width of a honeycomb panel that has the same cross section as the 

test panel is considered.  To this end, the moments calculated with the Navier’s solution 

in Section 8.3.2 is used.  With these moments, equation (8.53) yields b’=38.5 in. (3.21 ft.) 

for an orthotropic panel and b’=45.1 in. (3.76 ft.) for the isotropic panel.  Hence, the 

condition of orthotropy reduces the effective bending width. 

8.4.3 Parametric study 

In this section, a parametric study is performed to calculate the effective bending 

widths using the Navier’s solution for different panel and loading area dimensions, while 

the cross-sectional properties of the panel are fixed. With respect to the dimensions 

defined in Figure 8-16, b is assumed to be 10 times a. The results are given in Table 8-2. 

In the table, (i) stands for an isotropic panel and (o) for an orthotropic panel.  It can be 

seen that the effective bending widths for the orthotropic panels are on the average 13.4% 

smaller than the effective bending widths for the isotropic panels. 

Table 8-2 Effective bending width calculated with Navier’s solution 

d 
a 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

'b 
a 

(o) 0.65 0.69 0.76 0.84 0.91 0.99 1.05 1.12 1.18 1.24 1.30 

'b 
a 

(i) 0.75 0.79 0.89 0.98 1.07 1.15 1.22 1.29 1.36 1.42 1.48 

If we ignore the different support conditions, the above results can be used to estimate the 

effective bending widths for the test panel which had a 12x12 in. loading area and for the 

actual bridge deck subjected to an HS25 truck.  dFor the former, = 0.25, and for the
a 

latter, d = 0.41.
a 
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EQUATION CHAPTER 9 SECTION 1

9 FINITE ELEMENT ANALYSES OF TEST PANEL 

9.1 Introduction 

As mentioned in Section 8.1, the Kirchhoff-Love theory gives accurate results only 

if the ratio of the smallest lateral dimension of the plate to its thickness is at least ten.  To 

obtain a more accurate assessment of the behavior of the test panel and to account for the 

actual boundary conditions used in the test, the panel is analyzed with the finite element 

method (FEM) in this chapter.  The finite element analysis (FEA) considers the loading 

conditions of the initial static test, i.e., with the two spans of the panel loaded 

simultaneously.  To exploit the symmetry condition of the two-span test panel, only one 

span is considered and the panel is assumed to be fixed along one edge, simply supported 

along the opposite edge, and free along the other two edges in the FEA.  

9.2 Model Description 

Finite element analyses are performed with a 3D mesh using Version 6-3.1 of the 

program ABAQUS.  Two types of 3D models are developed for this purpose.  The panel 

model has a span of 48.5 in. (center-to-center distance of the risers in the original test 

panel) and a width of 100 in. 

The first model, Model A, uses 8-node quadratic thick-shell elements.  The boundary 

conditions and mesh discretization are shown in Figure 9-1.  Except for the shear moduli, 

the whole panel is modeled with the equivalent orthotropic material properties of a 

homogenized sandwich panel as presented in Table 8-1.  The thick shell element 

implemented in ABAQUS accounts for the shear deformation.  The shear moduli, G13 

and G23, are assumed to be the core shear moduli shown in Table 3-2.  Model A is very 

simple and computationally very efficient.  Consequentially, it is useful for parametric 

studies to determine the effective bending widths of a panel under different geometric 

and boundary conditions.  Nevertheless, it is not capable of calculating the interface shear 

stresses between the face and the core of a panel.  These stresses can cause debonding 
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failure, and are, therefore, important to evaluate.   

Fix boundary 

Simply supported 

boundary 

Figure 9-1 Boundary conditions and mesh discretization for Model A 

For the above reason, a second model, Model B, is also considered.  The boundary 

conditions and mesh discretization are shown in Figure 9-2.  This model distinguishes the 

three distinct layers of a panel, i.e. the two faces and the core.  The material properties for 

each layer are given in Table 3-2.  The core is modeled using four layers of 20-node 

quadratic brick elements.  The faces are modeled with 8-node quadratic shell elements. 

The shell elements are connected to the brick elements using the tie option of the 

program. 

Fix boundary 

Simply supported 

boundary 

Bottom shell 

Top shell 

Brick elements 

Figure 9-2 Boundary conditions and mesh discretization for Model B  
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Distance from the center of the load

For both models, the load exerted by each loading plate in the test is considered as a 

uniform traction. 
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9.3 Comparison of Numerical and Experimental Results 

In this section, the data collected in the initial static test are compared to the results 

obtained with the FEA.  All the values from the FEA are given at the nodal points.  The 

displacement along section A-A (see Figure 8-1) under a 20-kip load is shown in Figure 

9-3. It can be seen that Model A is slightly softer than Model B, because in Model A, the 

cross-sectional area of the faces is neglected for shear, whereas in Model B, the shear 

moduli of the faces, Gf13 and Gf23, are assumed to be 237 ksi. 

Displacement at 20 kips - Section A-A 

0.000 

-0.010 

-0.020 

-0.030 

-0.040 

-0.050 

0 

Initial Static Test 

model B 

model A 

57.25 114.5 

Distance from the support 

Figure 9-3 Displacement along section A-A (Figure 8-1) at 20 kips 

As shown in Figure 9-4, the load-displacement curve obtained with Model B agrees 

well with the experimental result.  The displacements from the experiment are the 

adjusted displacements that do not include the panel settlements at the supports.  A 3D 
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representation of the displacement, w, of Model B is shown in Figure 9-5.  The localized 

bending phenomenon is well shown and closely simulates the local bending exhibited by 

the test panel.  This is due to the soft core.  Figure 9-3 shows that Model A has a slightly 

more pronounced localized bending behavior than Model B.   

The load-strain curves from the strain gages glued on Span 1 of the test panel are 

compared to the numerical results in Figure 9-6 through Figure 9-10.  The gage numbers 

are identified in Figure 7-6. It can be seen that the numerical and experimental results 

show a good correlation. The strains in the x2 direction obtained with the two finite 

element models appear to be smaller than those from the experiment as shown in Figure 

9-11. This is probably due to a localized effect introduced by the loading plate that 

cannot be exactly captured with the FE models. 
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Figure 9-4 Comparison of numerical result to experimental load-deflection curves 
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Figure 9-5 3D plot of the displacement at 20 kips (Model B) 
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Figure 9-6 Load-strain (ε11) curves of the gages under load 1   
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Load vs strain (ε11) at 9 in. from load 1 
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Figure 9-7 Load-strain (ε11) curves at 9 in. from load 1  
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Figure 9-8 Load-strain (ε11) curves at 17.5 in. from load 1  

143 



Load vs strain ( ) at 37.5 in. from load 1 ε11 

0 

5 

10 

15 

20 

25 

L
o

a
d

 (
k
ip

s
) 

Gage 8 Gage 17 

A
B 

BOTTOM STRAIN TOP STRAIN 

-0.0009 -0.0006 -0.0003 0 0.0003 0.0006 0.0009 

Strain 

Figure 9-9 Load-strain (ε11) curves at 37.5 in. from load 1  
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Figure 9-10 Load-strain curves (ε11) near the interior riser of Span 1  
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Load vs strain ( ) under the load 1 ε22 
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Figure 9-11 Load-strain (ε22) curves of the gages under load 1   

Figure 9-12 and Figure 9-13 show the shear stresses obtained from Model B at the 

top face-core interface under a load of 20 kips. It can be seen that the shear stress is 

highly concentrated near the loading plate. 
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Figure 9-12 Shear stress τ13 at the top of the core 
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Figure 9-13 Shear stress τ23 at the top of the core 

Similar to the FE analyses of the beams as presented in Chapter 6, the shear stress, 

τ13, shows a peak at the edge of the steel loading plate as shown in Figure 9-14.  As 

explained before, this peak is caused by the localized bending of the panel.  Outside the 

loading plate, the shear stress is nearly constant.  The maximum shear stress, τ13, is 88.3 

psi and the average shear stress in the constant stress zone is 53 psi. It is noted that the 

shear stress is not symmetric in the graph because of the asymmetric support conditions. 
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Figure 9-14 Shear stress τ13 at 20 kips along section B-B 
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9.3.1 Distribution of Interface Shear 

The shear stress at the interface between a face and the core triggers the delamination 

failure and, consequentially, its distribution is important to examine.  Model B can be 

used to calculate the interface shear stress between the core and a face.  The boundary 

conditions and dimensions of the panel considered here are the same as those of the test 

panel. Figure 9-15 shows the shear stress τ13 from the FEA at the top face-core interface 

under a load of 20 kips. The figure indicates that the shear stress decreases very quickly 

away from the load.  At about 25 in. from the center of the load, the shear stress τ13 is 

11% of τ13,max, and it goes to zero at about 43 in. from the center of the load. 
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Figure 9-15 Shear stress τ13 at the top of the core 

9.4 Comparison of the Shear Strengths of the Test Beams and Test Panel  

Similar to the beam tests reported in Chapter 5, the panel test shows that the 

governing failure mode of the panel is the delamination of the face from the core.  The 

interface shear strengths of the beams estimated from the test results using different 

methods are shown in Table 6-1.  As shown in Table 6.1, the average interface shear 
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stresses at failure in the constant shear zone estimated with the FEA were 380 psi for Test 

1, 310 psi for Test 2, 190 psi for Test 3, and 550 psi for Test 4. Thus, the average shear 

strength of all four beams was 357 psi.  At a load of 20 kips, the average interface shear 

stress in the constant shear zone of the panel  obtained from the FEA is 53 psi, which is 

15% of the average shear stress of the beams at failure. 

In phase 1 of the fatigue test (from 0 to 15,000 cycles), the panel was loaded to a 

maximum load of 40 kips.  At 40 kips, the interface shear stress in the shear span is 

estimated to be 106 psi according to the above FEA, which is 30% of the average shear 

strength of the beams.  This is a very low value and it is not expected to induce 

debonding under the limited number of fatigue load cycles.  Therefore, the premature 

delamination of the test panel in Span 2 during the initial fatigue load cycles was most 

likely caused by defects introduced in the fabrication process. This is confirmed by the 

fact that no delamination occurred in Span 1 during these cycles. 

After 1.5 million load cycles, Span 1 delaminated at a static load of 62 kips as shown 

in Figure 7-28. Under a load of 62 kips, the interface shear stress in the constant shear 

zone of Span 1 is estimated to be 164 psi according to the FEA. 

It is well known that GFRP has a lower fatigue resistance than Carbon and Aramid 

FRP. ACI 440 (2000) suggests that stresses in GFRP materials be limited to 20% of the 

ultimate strength under service load conditions.  Nevertheless, no information is available 

with regard to the fatigue endurance of the face-core interface. 

9.5 Effective Bending Width 

9.5.1 Introduction 

The analytical results from the plate theory show that the effective bending width of 

an orthotropic panel is 13.4% smaller than that of an isotropic panel.  However, the 

analytical solution only considers simple boundary conditions and does not consider the 

shear deformation of the soft core.  This section presents a study performed with finite 
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element analysis to determine how the panel boundary conditions and the shear 

deformation affect the effective bending width.  The numerical result is used to determine 

the effective bending width and compare with that obtained from the test data and that 

used in the preliminary design evaluation in Chapter 4. 

Model A is used here because it is very simple and computationally efficient, and, 

consequentially, more suitable for parametric studies.  The material properties of the 

panel are given in Table 8-1.  The shear deformation of the panel is taken into account by 

using the shear moduli of the core given in Table 3-2. 

9.5.2 Test Panel 

Figure 9-16 shows the moment mx1 at nodal points along section A-A (as identified 

in Figure 8-1) for a panel subjected to a load of 20 kips. 
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Figure 9-16 Moment mx1 along section A-A 

The maximum moment per unit width, mx1, calculated with the finite element 

model is 4.73 kips-ft. Using calculated moments along section A-A, equation (8.53) 

gives an effective bending width, b’, of 27.9 in. (2.33 ft.). In order to compare the 
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theoretical effective bending width with the experimental value, the plane section 

remaining plane assumption is used to calculate the bending moment from the 

experimental strain measurements.  Accordingly, the substitution of equation (8.7) into 

(8.9) leads to  

H E11 (ε +υ ε  )x  dx  
(9.1) 

11  21 22 3 3mx1 = ∫−H 

2

2 1 −υ υ12 21 

υ21 = υ 
E11 (9.2)

12 
E22 

At a load of 20 kips, the maximum strains ε11 and ε22 at the bottom of Span 1 of the 

test panel were 0.000302 and 0.000439, respectively. By assuming a linear strain 

distribution along the depth of the panel and using the material properties in Table 8-1, it 

is possible to integrate equation (9.1) and evaluate the maximum moment: 

1273000 3.75 0.000302 0.000439 
= 3 3mx1,max 

1 − 0.301× 0.189 ∫−3.75
( 

3.75 
x3 + 0.189 

3.75 
x3) x  dx  

(9.3) 

Therefore, the experimental maximum moment per unit width, mx1, is 4.87 kips-ft., which 

is only 3% higher than the numerical result. 

Equation (9.1) shows that the strains in both directions contribute to the moment mx1, 

and, therefore, affect the effective bending width. Substituting equation (9.1) into 

equation (8.53), we have: 

b H
2 2 

2 ,( (x x  ) +υ ε  ( x x  ))x  dx  dx  
(9.4) 

3  21 22 2 , 3 3 3 2∫ ∫−H 
ε11  −b 

2 2b ' ε = 
H 2

max  ∫−H 
(ε ( x2 , x ) +υ ε  ( x2 , x )) x  dx  3 

 
11 3 21 22 3 3along x 2  2  

Equation (9.4) expresses the effective bending width as a function of the strains and 

Poisson’s ratio. The contribution of the strain in direction x2 is very small for two 

reasons. First, in equation (9.1), ε22 is multiplied by the Poisson’s Ratio υ and,21

therefore, its effect is decreased by 81%.  Secondly, the FE analysis shows that the 

distribution of ε22 is different from that of ε11. ε22 approaches zero extremely quickly and 
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0.0004 

becomes negative at about 12 in. from the center of the load as shown in Figure 9-17. 

Therefore, the contribution of ε22 is neglected here. 

Center of the load 

S
tr

a
in

0.0003 

0.0002 

0.0001 

0.0000 

ε 11 

ν21ε 22 

ν21ε 22+ ε 11 

0 28.625 57.25 85.875 114.5 

x2 (in.) 

Figure 9-17 Strains ε11 and ε22 along section A-A (Figure 8-1) 

Assuming a linear variation of ε11(x2,x3) along the depth of the panel, the function 

that defines the variation of ε11(x2,x3) along the depth of the panel is given as: 

ε ( ,  
top 

x2 

bot ( )
x x3) =

ε11 ( )  − ε11 x2 H H (9.5) 
x3 for  − < x3 <11 2 

H 2 2 

top ( )  bot ( )where ε11 x2  is the strain at the top of the panel and ε x2 is the strain at the bottom 11 

of the panel. In equation (9.5), the compressive strain is considered as negative. 

Substituting equation (9.5) into (9.4) and integrating with respect to x3 from -H/2 to H/2, 

we obtain the following expression for the effective bending width, which is based on the 

strain values at the top and bottom of a panel: 

top bot 

2 
b  11 ( )  − ε ( ) dx  

(9.6)ε x2 11 x2  2∫− 

2
b 

b ' ε = 
top ( x ) − ε bot ( x2 )2 11 max 

along x 2 

ε11 

Using ε11 obtained with the FEA in the above equation, we have b’ε equal to 29.4 in. 
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(2.45 ft.), which is 8% higher than the width b’ evaluated directly from the bending 

moments. 

S
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The strain variations at the top and bottom of the panel along section A-A (as 

identified in Figure 8-1) of Span 1 are shown in Figure 9-18 and Figure 9-19.  With the 

experimental strain values, equation (9.6) leads to an effective bending width, b’ε, of 

28.6 in. (2.38 ft.). 

Table 9-1 summarizes the numerical and experimental results on the effective 

bending width. The numerical results agree very well with the experimental results. In 

Table 9-1, b’ is the effective bending width calculated with the mx1 obtained from the 

FEA and b’ε is the effective bending width calculated with ε11. 

0  25  50  
Plate 

0.00000 

-0.00025 

-0.00050 

FEA 

Initial Static Test 

Experimental 

Distance from the center of load 1 

Figure 9-18 Strains ε11 on the top of the panel along section A-A of Span 1 
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Figure 9-19 Strains ε11 on the bottom of the panel along section A-A (Figure 8-1) of 
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Table 9-1 FE and experimental effective bending widths

 b’ (ft.) b’ε (ft.) 

FEA 2.33 2.45 

Experimental  2.38 

9.5.3 Parametric Study 

This section examines the influence of the panel boundary conditions and the shear 

deformation in the soft core on the effective bending width. Instead of using the 

dimensions of the loading plates used in the panel test, the actual foot print of a HS25 

truck is considered in the analyses. Hence, results of this study can be used as a guidance 

for actual design. In the AASHTO LFRD Specifications (1998), the foot print of a wheel 

load is assumed to be a rectangle with a width of 20 in. and length l given by: 

IM  (9.7)
l = 2.28γ 

1 + 
100 

 P 
 

where γ is the load factor, IM is the dynamic-load allowance, and P is the wheel load. 

For the type of truck load and deck considered here, γ is 1.75, IM =30, and P=20 kips. 

Therefore, the contact area for the wheel load is 20x19 in. Hence, with respect to Figure 
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8-16, c=20 in. and d=19 in. Furthermore, considering the dimensions of the actual deck, 

a is assumed to be 48.5 in. and b is assumed to be 525 in.  

Effect of the Shear Deformation 

To examine the effect of the shear deformation due to the soft core, we consider a 

panel with two opposite edges simply supported and the other two edges free.  First, the 

panel is analyzed as a thin plate with Model A.  The maximum moment per unit width, 

mx1, under a load of 20 kips is 4.18 kip-ft. and effective bending width calculated is 3.72 

ft. Second, the panel is analyzed as a thick plate.  The maximum moment per unit width, 

mx1, under a load of 20 kips is 4.81 kip-ft. and the effective bending width calculated is 

3.25 ft. The above results show that the effective bending width based on the thick plate 

theory is 87% of that based on a thin plate. 

To check the results obtained with the Kirchhoff-Love theory in Chapter 8, the 

results obtained with the finite element model based on the thin plate assumption are 

considered. The maximum moment per unit width, mx1, under a load of 20 kips is 4.18 

kip-ft. according to the finite element model and 4.16 kips-ft. according to the Navier’s 

solution. The effective bending width calculated with the finite element model is 3.72 ft. 

and with the Navier’s method is 3.86 ft. The results show good agreement. 

Effect of Boundary Conditions 

To examine the influence of the panel boundary conditions, a panel with one edge 

fixed, the opposite edge simply supported and the other two edges free is analyzed with 

Model A using the thick plate assumption.  The maximum moment per unit width, mx1, 

under a load of 20 kips is 3.67 kip-ft. and the calculated effective bending width is 2.86 

ft. Hence, compared to the previous results of a simply supported panel, fixing one edge 

reduces the effective bending width by 11%. 

Furthermore, a panel with two opposite edges fixed and the other two free is loaded 
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with a load of 20 kips. The maximum moment per unit width, mx1, is 2.24 kip-ft. and the 

effective bending width is 2.69 ft. In this case, the effective bending width is 17% 

smaller than that of a simply supported panel. 

9.5.4 Evaluation of Design Assumptions on Effective Widths  

Effective Bending Width 

The effective bending width assumed in the design evaluation in Chapter 4 is 4 ft., 

while that obtained from the finite element analysis is 2.86 ft. (Section 9.5.3). However, 

the design is still conservative because the evaluation was based on a point load at 

midspan, whereas, in reality, the panel is loaded with a truck wheel of finite dimensions. 

Furthermore, the design evaluation was based on simply supported boundary conditions, 

whereas the FEA considers one side fixed and the other simply supported. 

For a simply supported panel subjected to the design wheel load of 26 kips, assuming 

a point load and an effective bending width, b’, of 4 ft. leads to a design moment of 6.6 

kip-ft. Based on the finite element analysis, for a panel fixed on one side and simply 

supported on the other three, the maximum bending moment per unit width is 4.8 kip-ft. 

Therefore, the design of the panel is conservative. 

Effective Width for Shear 

The effective shear width, ws, was assumed to be 7 ft. in the design evaluation in 

Chapter 4. The shear stress at the interface between the face and the core for a 7-ft.-wide 

strip can be calculated with equation (4.20) by assuming b=ws. For a beam subjected to a 

int load of 26 kips, equation (4.20) gives an interface shearτ  of 22 psi. The shear stress13

has been calculated with finite element analysis using Model B for a load of 26 kips and a 

loading area equal to the foot print of an HS25 truck.  In the constant shear zone, the 

interface shear stress obtained is 49 ksi, which is 2.2 times the shear stress assumed in the 

design evaluation. Hence, the effective shear width should be 3.1 ft., with which 
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int equation (4.20) will lead to an interface shear τ  of 49 psi.13

In spite of the above observation, the shear strength assumed initially is very 

conservative. The shear strengthening detail introduced by Kansas Structural Composites, 

Inc. (KSCI) has increased the interface shear strength significantly. The shear strength of 

the weakest beam tested was 160 psi as shown in Table 6-2, while the shear strength 

assumed in the design evaluation is 80 psi. Using a shear strength of 160 psi and an 

effective width of 3.1 ft., equation (4.21) leads to an Ultimate Shear Load Capacity, Ps, of 

133 kips. This satisfies the design requirement in that 45% of Ps is higher than the 

maximum factored load of 56.5 kips. Considering a service wheel load of 26 kips, the 

factor of safety against delamination failure is about 5. 

Furthermore, the panel test results indicate that the panel continued to carry 

additional load after delamination had first occurred.  This is because of the redistribution 

of the shear stress in the panel. 

Design Considerations 

The finite element analyses indicate that the deflection and bending stress 

requirements can be easily met by the GFRP panel.  However, past research as well as  

results of this study shows that the load carrying capacity of GFRP sandwich panels is 

governed by the interface shear strength between the core and the faces.  Even if the 

bending stress is low compared to the tensile strength of the material, the panel might be 

unsafe because the level of the interface shear stress could be too high compared to the 

interface shear strength. 

Currently, the design of this type of panels does not explicitly account for the 

interface shear strength and, in particular, the fatigue endurance of the interface bond. 

Hence, improved design provisions that account for the interface shear should be 

developed. Nevertheless, little information is available with respect to the fatigue 

endurance at the face-core interface. In view of this, it is suggested that the interface 
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shear stress be limited to 20% of the interface shear strength under service loads, as 

suggested by ACI 440 (2000) to prevent the creep rupture or fatigue failure of GFRP bars 

in general. Furthermore, to ensure a consistent shear strength, good quality control 

should be exercised in the manufacturing process. 
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10 SUMMARY AND CONCLUSIONS 

10.1 Summary 

In this report, the design and load-carrying capacity of the glass fiber reinforced 

polymer (GFRP) deck on the O’Fallon Park bridge have been evaluated. The deck panels 

were manufactured and installed by Kansas Structural Composites, Inc. (KSCI). The 

studies conducted here include the laboratory evaluation of the strengths and stiffness of 

four GFRP beams, the crushing capacities of panel specimens, and the strength, stiffness, 

and fatigue endurance of a full-size two-span continuous deck specimen.  Furthermore, 

the test results obtained are used to validate analytical and finite element models, which 

have been developed to yield general design recommendations. 

The deck design was based on the 16
th

 Edition of the AASHTO Specifications 

(1996), the AASHTO LFRD Specifications (1998), past research data, and the special 

provisions stipulated in the contractual document of the City and County of Denver 

(2002). 

Four beams were tested to evaluate the influence of the face thickness on the load 

resisting behavior of a beam. The beams had a sandwich construction with top and 

bottom faces and a 6.5-in.-high honeycomb core. Three of them were 13-in. wide and one 

12-in. wide. The latter was due to manufacturing irregularity. Two had a face thickness of 

0.375 in. and two had 0.500-in. faces. The beams were loaded to failure under a 3-point 

bending configuration to evaluate the stiffness and load-carrying capacity. 

Four approximately 13x12-in. panel specimens were subjected to compressive loads 

to find the ultimate crushing capacity.  Manufactured together with the beam specimens, 

two crushing-test specimens had a face thickness of 0.375 in. and two had 0.500-in. 

faces. 

Analyses were conducted using the Timoshento beam theory and finite element 
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models to study the flexural behavior and failure mode of the beams.  An interface finite 

element model based on nonlinear fracture mechanics was employed to study the 

delamination between the faces and the core of a beam at the ultimate load.  Based on the 

test and analysis results, a panel section was selected by KSCI for the O’Fallon Park 

bridge deck. 

A full-size, two-span continuous deck panel that was 114.5-in. long, 120-in.wide, 

and 7.5-in. thick with 0.375-in. faces was tested under static loads and fatigue load 

cycles. The deck specimen had the same design as the O’Fallon Park bridge deck. The 

panel was supported on three reinforced concrete risers and anchored to the supports 

using mechanical anchor bolts. The aim of the test was to study the load-carrying 

capacity and fatigue endurance of the GFRP panel and mechanical anchors.  Prior to the 

fatigue test, a static test was performed to evaluate the load-resisting behavior of an 

undamaged panel. In the fatigue test, the panel was subjected to 1.5 million load cycles 

till delamination occurred in both spans.  Once the fatigue test was completed, the panel 

was loaded each span at a time to failure. 

The deck panel has been analyzed using the Kirchhoff-Love plate theory and finite 

element models, which have validated with the test results. These analyses are to 

investigate the load distribution and determine the effective bending widths of a panel 

subjected to the wheel load of an HS 25 truck. The influence of the material orthotropy, 

shear deformation, and boundary conditions on the effective width has also been 

investigated. 

Based on the results of the aforementioned tests and analyses, design 

recommendations are provided. 

10.2 Conclusions 

The following major conclusions can be drawn from the studies conducted here: 
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1. The beam tests have demonstrated that the deflection limit stipulated in the 

design provisions of the City and County of Denver (2002) is satisfied. 

2. The governing failure mode of all four beams was the delamination of the 

upper face from the core.  The beams in Tests 1, 2, and 4 failed in a very brittle 

manner and that in Test 3 in a ductile-like manner. The ductile-like behavior 

was due to premature progressive delamination caused by the poor bonding 

between the upper face and the core. 

3. The beam tests have shown a very large scatter in the ultimate load capacities. 

This high variability is due to the workmanship and it underscores the 

importance of quality control in the manufacturing process. 

4. In spite of the scatter of the results, the new shear strengthening method 

introduced by the manufacturer did significantly improve the load-carrying 

capacities of the beams. 

5. Both the finite element analyses and Timoshenko beam theory agree well with 

the beam test results. It has been found that for the given depth-to-span ratios 

of the beams, shear deformation plays a significant role. 

6. The nonlinear finite element analysis has shown that the shear stress at the 

interface between the soft core and the upper face of a beam triggers the 

delamination failure. The indentation of the soft core increases the interface 

shear stress at the edge of the loading plate.  The peak shear stress near the 

loading plate decreases with the increase of the thickness of the upper face. 

7. The initial static test on the deck model has indicated that the midspan 

deflection of the panel satisfies the deflection requirement in the design 

provisions of the City and County of Denver. 
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8. In the initial static test, the strain readings from the top gages of the test panel 

have indicated a significant strain gradient near the edge of a loading plate. 

Like the beam tests, this is due to the indentation of the soft core and it causes 

a localized increase of the interface shear stress. 

9. The initial static test has indicated that the mechanical anchor that attached the 

GFRP panel to the concrete supports did not work very well. Some of the 

anchor bolts on an external support slipped when each of the two spans was 

subjected to a load up to 22 kips. Because of this observation, the anchor bolts 

have been switched to epoxy anchor for the O’Fallon Park Bridge. 

10. The fatigue test has shown that Span 2 had earlier delamination (around 

14,000 load cycles) than Span 1. Span 2 had delamination after 1.5 million 

load cycles – 15,200 cycles with a peak load of 40 kips, 355,000 cycles with a 

peak load of 22 kips, and 1,129,800 cycles with a peak load of 31 kips. 

11. The final static test has shown that the failure of the deck panel is ductile-like. 

In spite of the delamination induced by the fatigue load cycles, both spans 

continued to carry increased loads up to about 100 kips. The ultimate failure 

of both spans involved progressive delamination and the fracture of the upper 

face near the edge of the loading plates. 

12. The analytical solution based on the Kirchhoff-Love plate theory has shown 

that the effective bending width of an orthotropic panel is on the average 

13.4% smaller than that of an isotropic panel.  Furthermore, finite element 

analyses have indicated that the shear deformation of the soft core can further 

decrease the effective bending width by 13%, and that the effective bending 

width is also affected by the support conditions of a panel. 

13. Finite element analyses have shown that the effective bending width of the 

test panel is 2.33 ft., which agrees very well with the experimental value of 
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2.38 ft. The test panel was loaded with 12x12-in. plates. Using the same 

model, it has been shown that the effective bending width under the wheel 

load of an HS 25 truck is 3.2 ft. The calculated effective width for shear stress 

distribution is also close to this value. Based on these results and the minimum 

interface shear strength estimated from the beam tests, it can be concluded 

that the test panel satisfied the strength requirements in the design provisions 

of the City and County of Denver. 

14. At present, the design of this type of GFRP panels is based on the flexural 

criterion, whereas this study and past research have indicated that the 

governing failure mode is the delamination of a face from the core. The 

interface shear stress is the key factor that triggers the delamination failure. 

Hence, this should be a major consideration in design. From the fatigue 

endurance standpoint, it is recommended that the maximum interface shear be 

no more than 20% of the shear strength under service loads. In the absence of 

test data, this recommendation is based on the general recommendation to 

prevent the creep rupture or fatigue failure of GFRP materials. 
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