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[1] Quantification of global land evapotranspiration (ET)
has long been associated with large uncertainties due to
the lack of reference observations. Several recently
developed products now provide the capacity to estimate
ET at global scales. These products, partly based on
observational data, include satellite-based products, land
surface model (LSM) simulations, atmospheric reanalysis
output, estimates based on empirical upscaling of eddy-
covariance flux measurements, and atmospheric water
balance datasets. The LandFlux-EVAL project aims to
evaluate and compare these newly developed datasets.
Additionally, an evaluation of IPCC AR4 global climate
model (GCM) simulations is presented, providing an
assessment of their capacity to reproduce flux behavior
relative to the observations-based products. Though
differently constrained with observations, the analyzed
reference datasets display similar large-scale ET patterns.
ET from the IPCC AR4 simulations was significantly
smaller than that from the other products for India (up to
1 mm/d) and parts of eastern South America, and larger in
the western USA, Australia and China. The inter-product
variance is lower across the IPCC AR4 simulations than
across the reference datasets in several regions, which
indicates that uncertainties may be underestimated in the
IPCC AR4 models due to shared biases of these
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1. Introduction

[2] Land evapotranspiration (ET) is a common component
in the water and energy cycles, and provides a link between the
surface and the atmosphere. Accurate global-scale estimates
of ET are critical for better understanding climate and
hydrological interactions. Local scale ET observations are
available from the FLUXNET project [Baldocchi et al.,2001].
However, dense global coverage by such point measurements
is not feasible and the representativeness of point-scale in-situ
measurements for larger areas is a subject of active research.

[3] To address this limitation, several alternative global
multi-year ET datasets have been derived in recent years.
These datasets include satellite-based estimates, land surface
models driven with observations-based forcing, reanalysis
data products, estimates based on empirical upscaling of
point observations, and atmospheric water balance esti-
mates. The LandFlux-EVAL project (see http://www.iac.
ethz.ch/url/research/LandFlux-EVAL) aims at evaluating
and comparing these currently available ET datasets. The
effort forms a key component of the Global Energy and
Water Cycle Experiment (GEWEX) LandFlux initiative, a
GEWEX Radiation Panel program that seeks to develop a
consistent and high-quality global ET dataset for climate
studies. Knowledge of the uncertainties in available ET
products is a prerequisite for their use in many applications,
in particular for the evaluation of climate-change projections
[e.g., Boé and Terray, 2008; Seneviratne et al., 2010]. We
provide here an analysis of 30 observations-based multi-
year global ET datasets for the 1989—1995 time period,
focusing on inter-product spread in various river basins. In
addition, we analyze ET in 11 coupled atmosphere-ocean-
land GCMs from the IPCC Fourth Assessment Report
(AR4). A complementary analysis for a three-year period
(1993-1995) by Jimenez et al. [2011] focuses on sensible
and latent heat fluxes in a subset of twelve satellite-based,
LSM and reanalysis datasets.

2. Data and Methods

[4] The analyzed datasets are subdivided into four cate-
gories (Table 1). In the ‘diagnostic datasets’ category, we
include datasets that specifically derive ET from combina-
tions of observations or observations-based estimates,
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Table 1. Overview of Employed ET Datasets
Category Dataset Reference Information
Observations-Based Datasets
Diagnostic datasets UCB Fisher et al. [2008] Priestley-Taylor, ISLSCP-II
(SRB, CRU, AVHRR)
MAUNI Wang and Liang [2008] Empirical, calibrated with
Ameriflux, ISLSCP-II
(SRB, CRU, AVHRR)
PRUNI Sheffield et al. [2010] Penman-Monteith ET,
ISCCP, AVHRR
MPI Jung et al. [2010] Empirical upscaling of
FLUXNET, CRU,
GPCC, AVHRR
CSIRO Zhang et al. [2010] Penman-Monteith-
Leuning ET
AWB Mueller et al. [2010] Atmospheric water balance

Land Surface Models

GSWP LSMs: GS-COLA,

GS-NOAH, GS-NSIPP,
GS-VISA, GS-ISBA, GS-BUCK,
GS-CLMTOP, GS-HYSSIB, GS-LAD,
GS-MOSAIC, GS-MOSES2, GS-SIBUC,
GS-SWAP

GLDAS LSMs: GL-NOAH,

GL-CLM, GL-MOSAIC

(GPCP, ERA-Interim)

Dirmeyer et al. [2006] 13 GSWP LSM simulations,
forced with ISLSCP-II

and/or reanalysis data

Rodell et al. [2004]

EI-ORCH Krinner et al. [2005] ORCHIDEE LSM with
ERA-Interim forcing
CRU-ORCH ORCHIDEE LSM with
CRU-NCEP forcing
VIC Sheffield and Wood [2007] LSM
Reanalyses ERA-INT Dee and Uppala [2008] ERA-Interim Reanalysis
MERRA Bosilovich [2008] Reanalysis
M-LAND (R. Reichle et al., Assessment MERRA-Land Reanalysis
and enhancement of MERRA
land surface hydrology estimates,
submitted to Journal of Climate, 2010)
NCEP Kalnay et al. [1996] Reanalysis
JRA25 Onogi et al. [2007] Reanalysis
Statistics (Mean, IQR,
Standard Deviation) of
Ensemble of Single
Observations-Based
Category Reference Datasets Reference Datasets (30 in Total)

Global Climate Models
IPCC AR4 ECHAMS, INMSM, IPSL,
HADGEM, NCAR, HADCM,
MRI, GISS, MIROC-MED,

CCCMA, GFDL

Meehl et al. [2007] AR4 simulations (20c3m)
from 11 global

climate models

together with relatively simple or empirically-derived for-
mulations. The remaining categories provide ET estimates
as a byproduct. The second category includes LSM products
driven with observations-based surface meteorological data,
while the third includes several atmospheric reanalyses.
These first three categories are referred to collectively as
‘reference datasets’ in the context of assessing the IPCC
AR4 estimates. IPCC AR4 simulations from 11 GCMs form
the fourth category. An overview of the datasets can be
found in Table 1. For a detailed description, the reader is
referred to the auxiliary material.'

[s] The subdivision of the datasets in the first three cate-
gories is somewhat arbitrary, since they are all based to some
degree on observations and modeling assumptions. Thus, it
cannot be inferred a priori that one category of datasets may be
closer to actual ET. In addition, several datasets are not inde-

'Auxiliary materials are available in the HTML. doi:10.1029/
2010GL046230.

pendent, since they use common calibration or forcing data-
sets, and/or common model assumptions (ET parametrization).

[6] The analyses are performed for the common period
1989-1995. The calculation of the interquartile ranges
(IQR) and standard deviations presented below are based on
the categories (see Table 1), giving each dataset equal
weight. Only land pixels that are common to all datasets
(excluding Greenland and the Sahara, where ET values are
generally low) are considered for the analyses.

3. Results and Discussion

3.1. Annual Means and Global Patterns

[7] Figure la displays the mean annual land ET values of
each analyzed dataset, as well as the means and the standard
deviations within each category. The values are around
1.59 + 0.19 mm/d (46 + 5 W m ?), a value close to the
reanalyses estimates given by Trenberth et al. [2009] for
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Figure 1. Mean global land ET values for each dataset (a) with mean and standard deviation for each category (numbers).
Mean, relative interquartile range (IQR) and difference of mean to mean of reference datasets (Ref.) of the (b—d) diagnostic
datasets, (e—g) LSMs, (h—j) reanalyses, and (k—-m) IPCC AR4 simulations. (n) Mean and (o) relative IQR of the reference
datasets and (p) difference of relative IQRs IPCC AR4 to reference datasets. Hatched areas in Figures 1d, 1g, 1j, and 1m
show a nominal 5%-significance level as heuristic descriptive indicator (Wilcoxon Rank-Sum test).
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Figure 2. (top) Deviations of each dataset from the reference datasets’ mean (displayed on the bottom as ‘ref”) over 1989—
1995 (multi-year means) for the selected river basins (1) Amazon, (2) Mississippi, (3) Central European basins, (4) Volga,

(5) Changjiang, (6) Nile, (7) Murray-Darling. The datasets

are grouped into diagnostic datasets (Diagn), LSMs (LSMs),

reanalyses (Rean) and IPCC AR4 simulations (IPCC). P-R values are marked with red stars and dashed lines. (bottom right)

Location of river basins.

two different time periods. The standard deviation of the
IPCC AR4 simulations (0.16 mm/d or 4.6 W m?) is lower
than those of the reference datasets (standard deviations
ranging from 0.17 to 0.19 mm/d or 4.9 to 5.6 W m™?). The
standard deviation of the GSWP LSMs is still smaller
(0.12 mm/d or 3.6 W m ?) than that of the IPCC AR4
simulations.

[8] Global patterns of ET for 1989—-1995 are displayed in
Figures 1b—1p. The mean values of the four categories (first
column) reveal high congruence (for example high ET in the
tropics, and lower ET in higher latitudes), and nearly no
regions with significant differences (5% Level, Wilcoxon
Rank-Sum Test) are found in respective comparisons with
the mean of all reference datasets (third column), except for
the IPCC AR4 category. In this category, the ET values
compare well with the reference datasets in many regions
(Figures 1k—10), but ET values are significantly lower in the
IPCC AR4 simulations in India and South America, and
significantly higher in semi-arid regions such as western
Australia, western China and the western USA. Overall, the
IPCC AR4 simulations appear to underestimate ET gra-
dients within continents (e.g., in North and South America,
in Asia north and south of the Himalaya, and in Australia),
which could be related to the generally coarse resolution of
the models.

4

[9] The relative IQR (IQR divided by the median, second
column) of the LSMs is lower than those of the other cat-
egories in Australia and in tropical regions, probably
because many of the LSMs share a common forcing
(GSWP, GLDAS), but higher in, e.g., most of Europe. The
IQR of the diagnostic datasets is, compared to the other
reference datasets, high in, e.g., Australia, and southern and
central Africa, but much smaller in Europe.

[10] The IPCC AR4 simulations display higher inter-
model deviations than the reference datasets in semi-arid
regions such as Australia, India, South Africa, and parts of
the Tibetan plateau (Figures 11 and lo). Accordingly, the
IQR of the models in these regions (Figure 1p) is much
higher. On the other hand, some regions show markedly less
inter-model spread across the IPCC AR4 simulations than
would be expected based on the uncertainties inferred from
the reference datasets (e.g., tropical Africa, East Asia, cen-
tral Europe, eastern USA). Thus, climate models may share
common biases in these regions, either related to biases in
forcing (precipitation, clouds, radiation) or in the represen-
tation of land hydrology.

3.2. Basin-Scale Analysis

[11] Multi-year ET values of all analyzed datasets are
displayed in Figure 2 as the deviation from the reference
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Cluster analysis of multi-year mean ET 1989-1995 (global)
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Figure 3. Hierarchical cluster analysis of global ET values, averaged over 1989-1995, using Euclidean distance matrix.
Diagnostic datasets (red), LSMs (green), reanalyses (yellow) and IPCC AR4 simulations (grey).

datasets’ mean for selected basins (Mississippi, Amazon,
central European basins, Volga, Nile, Changjiang, Murray-
Darling). The catchment definitions from Hirschi et al.
[2006] are used for the computation (see Figure 2, bottom).
Plots for individual seasons (May to June (MAM), June
to August (JJA), September to November (SON), and
December to February (DJF)) are provided in the auxiliary
material. Datasets are sorted into the four categories (sep-
arate bars). Additionally, ET estimated from the difference
between precipitation (P) derived from the Global Precip-
itation Climatology Project (GPCP) and runoff (R) from
local measurements is shown for multi-year means (ET =
P — R is not generally valid for shorter time scales) in the
Mississippi, central European, Volga, Changjiang and
Murray-Darling basins. The P — R values can be seen as a
long-term constraint on ET (indicated with red lines where
available), although multi-year anomalies of terrestrial
water storage cannot be excluded in some regions. Overall,
the P — R values are found to be close to the reference
datasets in the Mississippi, central European and Murray-
Darling basins.

[12] The absolute intra-category spreads are largest in the
Amazon basin, where the highest ET rates occur. The second
largest spreads are found in the Murray-Darling basin during
SON and DJF, most pronounced in the [PCC AR4 simula-
tions (see auxiliary material). Comparing the four dataset
categories, the intra-category spreads are similar. However,
the values can differ largely between basins. In the Chang-
jlang basin for example, the reanalyses and IPCC AR4
simulations display notably higher ET rates than the other
dataset categories (up to 0.75 mm/d on average during
MAM; see auxiliary material). The intra-category spreads of
the IPCC AR4 simulations are much larger than the other
categories in the semi-arid Nile and Murray-Darling basins.
ET is water (precipitation) limited in these regions, and since
the calculation of ET in the IPCC AR4 simulations is based
on modeled precipitation (as compared to observed precip-
itation in the case of reference datasets), the high variability

of ET may be partly explained by the large uncertainties in
modeled precipitation.

[13] Despite overall similarities of the ET values within
these analyzed dataset categories, individual datasets stand
out in some regions and seasons. For example, during MAM
and in the annual mean, the NCEP reanalysis exhibits above
average ET values in the Mississippi, central European,
Volga and the Amazon basins. The GFDL IPCC simulation
stands out in the Amazon basin during SON (auxiliary
material). Note that outliers among the reference datasets
are not necessarily erroneous. Indeed, congruence across ET
datasets may be induced by the use of common data forcing
or model algorithms, rather than the correct representation
of ET, as several of the considered products are not inde-
pendent (see next section).

3.3. Cluster Analysis

[14] In order to study the inter-relationship between
the individual datasets, a hierarchical cluster analysis of the
multi-year mean ET values is performed (Figure 3). The
cluster analysis sorts the datasets into groups in a way that
the degree of association between two datasets belonging to
the same group is maximal. The criterion used for our
analysis is the Euclidean distance between datasets on each
land grid cell. Datasets in the same branch of the cluster tree
share similar global patterns. The strongest dataset cluster is
built by the GSWP simulations (with GS-COLA being the
only GSWP model outside the cluster). Most of the [IPCC
models also form a common branch in the cluster tree.
However, the diagnostic datasets and reanalyses are sepa-
rated into two different main branches of the cluster
tree. This indicates that these datasets, although based on
observations, exhibit distinct spatial patterns. All the
reanalysis datasets are constrained by different exogenous
data and some of them are on different main branches of the
tree. Note also that simulations using the same model but a
different forcing (Mosaic, driven with both GSWP and
GLDAS forcing) are separated into two main branches.
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These findings suggest that forcing can be critical for the
resulting ET patterns.

4. Conclusions

[15] This study provides an overview and evaluation of
41 global land ET datasets for the 1989-1995 time period.
Comparing [PCC AR4 GCM simulations with datasets
which include some observational information (reference
datasets), similarities can be found regarding their global
patterns and level of uncertainty (interquartile ranges) in
most regions. In their global average, the IPCC AR4 simu-
lations show a smaller spread than the categories and groups
that are partly based on observations, except for LSMs from
the GSWP, which are driven with common forcing data. In
addition, climate models display narrower inter-model range
than the reference datasets in some regions, which may
suggest shared biases. However the uncertainty of the
observational datasets prevents evaluation of the magnitude
of this bias.

[16] To reduce uncertainty in ET estimates, besides
improving ET models, further collection of ‘ground truth’
observations to validate and force the models continues to
be essential, especially in data-poor regions. More refined
analyses may allow a reduction of the uncertainty range in
observations-based ET products, by identifying whether
given outliers can be excluded based on physical con-
siderations [e.g., McCabe et al., 2008]. Such analyses
should nonetheless also consider the lack of independence
among certain products, which may lead to an underesti-
mation of ET uncertainty. This is well illustrated by the
analysis of the GSWP simulations, which, e.g., form a
strong cluster in the cluster analysis performed for global ET
values of all datasets. Further analyses of the datasets col-
lected as part of the LandFlux-EVAL project will allow
addressing some of these questions.
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