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S U M M A R Y

Approximately seven years of time-variable gravity data from the satellite mission Gravity

Recovery and Climate Experiment (GRACE) are available to quantify present-day mass varia-

tions on and near the Earth’s surface. Mass variations caused by the continental water cycle are

the dominant signal component after subtracting contributions from atmosphere and oceans.

This makes hydrology a primary area of application of GRACE data. To derive water storage

variations at the scale of large river basins, appropriate filter techniques have to be applied

to GRACE gravity fields given in a global spherical harmonic representation. A desirable

filter technique minimises both GRACE data error and signal leakage across the border of

the region of interest. This study evaluates the performance of six widely used filter methods

(isotropic filters, anisotropic filters and decorrelation methods) and their parameter values to

derive regionally averaged water mass variations from GRACE data. To this end, filtered time

series from GRACE for 22 of the world’s largest river basins were compared to continental

water mass variations from a multimodel mean of three global hydrological models (WGHM,

GLDAS and LaD). Filter-induced biases for seasonal amplitudes and phases of water storage

variations, as well as satellite and leakage error budgets, were quantified for each river basin

and explained in terms of storage variations in and around the basin. The optimum filter types

and filter parameters were identified for each basin. The best results were provided by a decor-

relation method that uses GRACE orbits for the filter design. Our ranking between all filter

types and parameters depended on the geographical location, shape and signal characteristics

of the specific river basin. Based on a multicriterial evaluation of satellite and leakage error,

as well as an error assessment of the hydrological data, the filter selection and parameter opti-

misation results were shown to be reliable for 17 river basins. The results serve as a guideline

for the optimal filtering of GRACE global spherical harmonic coefficients for hydrological

applications.
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1 I N T RO D U C T I O N

Global monthly gravity field solutions from the US–German satel-

lite gravity mission Gravity Recovery and Climate Experiment

(GRACE) trace mass redistributions close to the Earth’s surface

(Reigber et al. 2005; Tapley et al. 2004). Assumptions as defined

by Chao (2005) and Wahr et al. (1998) enable the transformation of

gravity variations into time series of global maps of surface mass

anomalies. Due to their integrative nature, global coverage and pre-

viously unrivalled accuracy, GRACE-derived mass variations give

insight into processes within the Earth’s subsystems. This knowl-

edge helps to improve understanding and modelling of geophysical

mass transfers within the Earth’s system. For example, recent studies

∗Now at: EADS Astrium GmbH, Munich, Germany.

†Now at: Bonn University, Bonn, Germany.

have considered estimations of ice mass loss within polar regions

(Chen et al. 2008; Wouters et al. 2008), observations of oceanic

circulations (Dobslaw & Thomas 2007), components of the con-

tinental water cycle (Boronina & Ramillien 2008; Swenson et al.

2008; Niu et al. 2007) and interactions between these subsystems

(Chambers et al. 2007; Ramillien et al. 2008).

Water mass variations within the continental hydrological cycle

are a major signal recovered from the GRACE gravity data after

removal of signals from tides, atmosphere and oceans. Numerous

studies show an overall good agreement between variations of total

continental water storage (TWS) from global hydrological models

and from GRACE, especially for large river basins (for a recent

overview see Güntner 2009). Ramillien et al. (2005) and Schmidt

et al. (2006) compared output from the WaterGAP Global Hy-

drology Model (WGHM) and the Land Dynamics (LaD) model

to GRACE data and found a good general correspondence. Syed

et al. (2008) confirmed this agreement for the Global Land Data
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Assimilation System (GLDAS). Schmidt et al. (2008b) found sim-

ilar dominant seasonal and inter-annual TWS periods for GRACE

and simulated data of GLDAS, LaD and WGHM for the Amazon,

the Ganges and the Mississippi river basins. However, the degree of

agreement between GRACE and hydrological models clearly varies

with the region and river basin of interest (e.g. Ramillien et al.

2005). Except for a few regions (e.g. Swenson et al. 2006), there is

a lack of independent TWS observation data at large spatial scales

that are consistent with GRACE. Thus, in spite of the uncertainties

inherent in hydrological models, simulation data are currently the

only way to evaluate TWS variations from GRACE for large areas.

A method of deriving time series of total regionally-averaged

mass variations from global GRACE gravity fields represented as

coefficients of spherical harmonics (SH) has been suggested by

Wahr et al. (1998). GRACE measurement and processing errors,

which are often referred to as satellite errors, mostly distort SH

coefficients of high resolution. One way to reduce noise in the

monthly solutions is to constrain (or regularise) the coefficients

(e.g. towards a mean field) in the course of GRACE data processing

(e.g. Save et al. 2008; Watkins et al. 2008; Lemoine et al. 2007).

But the need for regularisation characteristics vary widely between

different scientific applications of GRACE data (Kusche 2007). As

a result, unconstrained solutions are mostly published by the pro-

cessing centres, making the application of a post-processing filter

technique indispensable. Filtering aims at the suppression of noisy

high-resolution coefficients of the gravity field, that is, smooth-

ing the original data to a lower spatial resolution. Furthermore,

decorrelation techniques can be applied to remove striping artefacts

of GRACE gravity data, which can be interpreted as realisation

of anisotropically correlated noise in the coefficients (Swenson &

Wahr 2006). In this paper, both smoothing and decorrelation tech-

niques are subsumed under the term filtering.

As a drawback, filtering implies the leakage of signals from out-

side the region of interest into the resulting time series as well

as the non-unity weighting of the signal variability inside the re-

gion of interest (Swenson & Wahr 2002; Klees et al. 2007). Here-

after, both effects will be referred to as leakage. According to

Swenson & Wahr (2002), leakage varies between different filter

types. Klees et al. (2007) listed three simplified cases of leakage

scenarios: (1) the signal (TWS anomaly) outside the area of inter-

est is of the same sign as the signal inside, (2) the signal outside

is zero, and (3) the signal outside is of a different sign than the

signal inside. Using a Gaussian smoother of different filter widths,

Klees et al. (2007) concluded that the first case would lead to the

lowest total leakage error and the third case to the highest leakage

error. Since the signal intensities outside and inside of a river basin

vary widely between different regions due to varying hydrologi-

cal characteristics, the leakage error also depends on the region of

interest.

Consequently, in order to select an appropriate filter method, the

user has to balance between remaining satellite errors and the spatial

resolution (i.e. leakage error), and has to find an optimal balance,

specifically, for each river basin they intend to analyse. Filter types

developed so far differ in their assumptions on signal-noise prop-

erties of the true GRACE-derived mass variations. Some studies

evaluate specific filter types. For example, Swenson & Wahr (2002)

developed two anisotropic methods and compared them with an

isotropic Gaussian filter by evaluation of signal leakage. Han et al.

(2005) showed that anisotropic smoothing is necessary to consider

the degree and order dependence of GRACE coefficient errors. Seo

et al. (2006) described error reductions within GRACE water-mass

variations when using a time-dependent noise-minimizing filter in-

stead of the Gaussian method. Schrama et al. (2007) determined

the radius of the Gaussian smoother with an empirical orthogonal

function (EOF) analysis and by comparing it with GPS load mea-

surements. A recent decorrelating filter method and an overview of

several GRACE filter techniques was given by Kusche (2007). In

order to compensate for the effect of amplitude damping by filtering,

Velicogna & Wahr (2006) introduced a scaling factor to recover the

full hydrological signal in time series of TWS variations. Similarly,

Chen et al. (2007) used a scale factor to readjust amplitude damping

effects caused by the Gaussian filtering of GRACE data relative to

TWS from GLDAS simulations.

An optimised spatial resolution of GRACE data by use of an ad-

equate filter algorithm is especially crucial for hydrological studies,

where a separation of water-mass variations of different river basins

is of high interest for water balance studies. The transport of water

masses can be concentrated to small regions like the river network

and its inundation areas with low signal correlations to other mass

transport processes. In addition, the hydrological signal of interest

is composed of mass variations in several water storage compart-

ments of the continental water cycle (such as snow, surface water

or groundwater), which differ in their modes of temporal variability

or spatial correlation lengths (Güntner et al. 2007). Hence, par-

ticular hydrological features have to be considered when selecting

appropriate GRACE filter techniques with small leakage and satel-

lite errors for applications in continental hydrology. Nevertheless,

a comprehensive evaluation of various filters from this perspective

is missing in the literature so far. In particular, the following ques-

tions arise. (1) Which filter is optimal for which scale, location or

shape of a river basin of interest? (2) Which filter is superior for

which regional signal properties, that is, for different sources of

water mass variations in continental hydrology? (3) What are the

filter properties in terms of TWS amplitude falsification and phase

shifts? (4) Which filter removes striping artefacts sufficiently well?

In this study, we address the first three questions from the per-

spective of hydrological applications such as water balance analysis

or hydrological modelling. To this end, we evaluate GRACE filter

methods by simulating data from global hydrological models, which

at present provide the only alternative data set of TWS variations

for large areas.

2 M E T H O D S A N D DATA

To evaluate different filter types, time series of continental water

storage variations from GRACE (Section 2.2) were evaluated using

the three global hydrological models WGHM, GLDAS and LaD

(Section 2.3). In the absence of alternative observation data at the

relevant scale, hydrological model data were considered the most

realistic information on continental water mass variations. An anal-

ysis of differences between the models was undertaken to uncover

their uncertainties (Section 3.1). To reduce model-specific errors

in the evaluation data set, an ensemble mean of the three models

was used for the filter analysis. It was assumed that the reduced

GRACE signal used in this study is governed by hydrological pro-

cesses, and that the GRACE data are corrupted by satellite errors

but not by other geophysical processes. The different filter methods

(Section 2.1) were applied to compute time series of water stor-

age variations for selected large river basins, after converting the

hydrological fields into a spherical harmonic representation. To as-

sure consistency, GRACE and model data were filtered in the same

way. The similarity of measured and modelled TWS time series

was evaluated by a correspondence criterion, which is described
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Evaluation of GRACE filter tools 1501

Table 1. Overview of the tested filter methods I–VI.

Method Variable parameter Reference

I rg Jekeli (1981)

II �max Swenson & Wahr (2002)

III G l, σ 0 Swenson & Wahr (2002)

IV f Seo et al. (2006)

V wa, ne Swenson & Wahr (2006)

VI x Kusche (2007)

in Section 2.4. Computations were repeated for each filter method

with varying filter parameters. The optimal filter method of deriv-

ing water mass variations was selected for each river basin from the

maximum of the correspondence criteria, which is expected when

the total error (leakage and satellite error) in the filtered GRACE

data is minimal.

2.1 Filter methods

In this study, six post-processing filter methods for derivation of

regionally averaged water mass variations from GRACE’s global

gravity field solutions were evaluated. The smoothing of the gravity

field can be interpreted by a weighted spatial averaging for a region

of every point on the globe in order to reduce noise that disturbs

the signal components on higher spatial scales. A short description

of the isotropic (degree dependent) filters, the anisotropic (degree

and order dependent) filters and the two anisotropic decorrelation

methods used in our study, is given below. For details on the filter

methods, the reader should refer to the respective original publica-

tions. For each filter method, the parameters that define the degree

of smoothing strength are explained below (see a list in Table 1).

(I) The widely used isotropic Gaussian filter was proposed by

Jekeli (1981) as a way of smoothing out the Earth’s gravity field. Its

weighting function is derived from the Gaussian probability density

function, which has its highest weight in the centre and diverges to

zero with increasing distance from the kernel. The form parameter of

the symmetric bell-shaped weighting function may be expressed as

filter width r g (eq. 59 in Jekeli 1981). The variable r g represents the

radius at which the filter weighting function declines to 50 per cent

of its maximum value, and it is used to tune this degree-dependent

smoothing method.

(II) Another filtering method was developed by Swenson & Wahr

(2002) and applied with degree- and order-dependency for this

analysis. The idea behind this filter design is to apply less smoothing

to GRACE coefficients with relatively small errors that are relevant

to a signal within the region of interest. Hence, a spherical harmonic

representation of the basin function is used to compute the filter

weights. No direct assumption about the signal is introduced. The

user may tune this method by deciding for a total maximum satellite

error of basin average �max (eq. 45 in Swenson & Wahr 2002).

To approximate this a priori fixed maximum satellite error, the

filter weights are computed iteratively from a propagation of the

smoothed GRACE coefficient errors to the basin average.

(III) Another degree- and order-dependent technique by Swenson

& Wahr (2002) minimises the sum of GRACE satellite error and

signal leakage. The satellite error is propagated from the GRACE

coefficient errors. Signal leakage is estimated by an exponential

signal model, which is parameterised by the auto-correlation length

G l and standard deviation σ 0 of the expected geophysical signal

(eq. 41 in Swenson & Wahr 2002).

(IV) Seo et al. (2006) proposed a time-dynamic filter that op-

timises the signal-to-noise ratio of each GRACE coefficient indi-

vidually. We applied the method B4 of their study, which uses the

GRACE SH coefficients themselves as a signal estimate. Seo et al.

(2006) derived a monthly filter version from the monthly GRACE

coefficient errors. For the present study, a static filter was computed

from the variance of the monthly coefficient errors. These variances

were modified with a dimensionless error factor f , as a means of

tuning the filter’s degree of smoothing.

(V) Swenson & Wahr (2006) published an empirical decorrela-

tion method that has to be followed by a subsequent application of

one of the filter methods explained above. To reduce the correlation

between coefficients of the same order but increasing degrees, they

fit and remove a quadratic polynomial in a moving window from

the coefficients, and they do so separately for even and odd degrees.

The moving window is cantered at the coefficient to be filtered.

No details on the window size are provided by Swenson & Wahr

(2006); therefore, its design orients on Press et al. (1992) for the

present study. The size of the window has to be decreased (e.g. with

a Gaussian function) for increasing degrees in order to avoid too

much signal damping. Consequently, one has to define four param-

eters for the decorrelation process: the initial and the final window

size, wa and we, as well as the degree of the first and last coeffi-

cient to be filtered, na and ne. For computations represented below,

na = 2 and we = 3 were fixed. Discrete variations for wa = [10, 20,

30, 40, 50] and ne = [10, 20, 30] were tested. Thereafter, a global

filter optimisation described by Chen et al. (2006), who proposed

to maximise the ratio of the spatial signal root mean square (RMS)

for ocean versus land, was applied. The three optimised versions

of filter V were concluded from a combination of ne = [30] with

wa = [10, 20, 30], which were used for further investigations.

(VI) Another decorrelation method, by Kusche (2007), makes

use of the GRACE orbital geometry and can be interpreted as an

anisotropic filter. This method imitates the regularisation of GRACE

data processing, using a priori diagonal signal and dense error co-

variance matrices. The latter are derived synthetically from GRACE

orbits. The filter’s degree of smoothing may be tuned by a regulari-

sation parameter a = 10 x of the signal covariance matrix (eq. 22 in

Kusche 2007). Three filter versions with x = 12, x = 13 and x =

14 were applied in this study.

2.2 GRACE data

Monthly basin-averaged surface-mass variations were derived from

GRACE-only global gravity field-model time series generated at

GFZ German Research Centre for Geosciences (GRACE Level-2

products, version GFZ-RL04, Schmidt et al. 2008a). These data

were obtained from the GFZ Information System and Data Center

for a period ranging from 02/2003 until 07/2007 (excluding un-

available months 06/2003 and 01/2004) up to degree and order 120.

They consist of unconstrained gravity fields (Flechtner 2007). Ef-

fects of the atmosphere and oceans are removed at the GRACE data

centre by applying the appropriate model data. For this study, water

mass variations are derived relative to a mean field for the years

2003–2006, and trends were removed from the time series. Coeffi-

cients from degree 2 were used, and degree 1 coefficients were set

to zero. This is adequate because degree-1 coefficients are also ex-

cluded from the hydrological model data used for comparison. The

accuracy of GRACE gravity fields varies in time and space. Schmidt

et al. (2008a) quantified the global average error of derived water

mass variations to 13–15 mm of a water mass equivalent column

(w.eq.) for a circular area with a radius of 800 km. For filter pa-

rameterisations, estimates of GRACE error covariances were taken
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from calibrated coefficient errors, which are published together with

GFZ-RL04 fields.

2.3 Hydrological data

Continental water-storage data provided by three global hydrologi-

cal models were used for the analyses.

The WaterGAP Global Hydrology Model (WGHM, Döll et al.

2003) is a conceptual global model that simulates the continen-

tal water cycles, excluding the regions of Antarctica and Green-

land. Modelled water storages include interception, soil water, snow,

groundwater and surface water. For this study, data sets were avail-

able from 01/2003 until 12/2007 from the most recent version of

the model (Hunger & Döll 2008). WGHM was forced by monthly

climate data from European Centre for Medium-Range Weather

Forecasts (ECMWF) and precipitation data from GPCC (Global

Precipitation Climatology Centre). Output were of 0.5◦ resolution

and were calibrated by tuning a runoff coefficient parameter against

observed river runoff at 1,235 discharge stations worldwide. Water

storage simulated with WGHM has recently been analysed at the

global scale by Güntner et al. (2007).

The GLDAS (Rodell et al. 2004) may incorporate a vari-

ety of land-surface models. For this study, the ‘National Cen-

ters for Environmental Prediction/Oregon State University/Air

Force/Hydrologic Research Lab Model’ (NOAH, Ek et al. 2003)

was used. GLDAS was forced by precipitation data from NRL (U.S.

Naval Research Laboratory) as well as a number of atmospheric con-

ditions from different sources, such as ECMWF and Global Data

Assimilation System (GDAS, Rodell et al. 2004). Model tuning

was realised by assimilation of skin temperature observations from

the Television Infrared Observation Satellite (TIROS, Rodell et al.

2004). GLDAS-NOAH represented simulations for snow, canopy

and soil water storages covering the period from 03/2000 until

04/2008 on a 0.25◦-grid between latitude 60◦S and 90◦N. The LaD

model was developed as a land-surface model by Milly & Shmakin

(2002a) to simulate global water and energy balances with Inter-

national Satellite Land Surface Climatology Project (ISLSCP) data

for radiation, precipitation, surface pressure, temperature, humidity

and wind speed. The variability of soil, groundwater and snow stor-

ages was modelled over all continents, excluding Antarctica and

Greenland, with a spatial resolution of 1◦. The model was tuned

by an adjustment of seven parameters of land properties, for ex-

ample, surface albedo, thermal conductivity or surface roughness

length (Milly & Shmakin 2002b). Validation of the model output

was undertaken by observation-based discharge measurements for

large river basins (Milly & Shmakin 2002a). For this study, the LaD

model version, LadWorld–Gascoyne, was available from 01/1980

to 07/2007.

Model strategies, tuning concepts and input data vary widely be-

tween the three models used here. GLDAS and LaD were developed

as land-surface models with physically based model equations that

describe both water and energy fluxes. The sub-grid variability of

hydrological processes within these models is either ignored (LaD)

or captured by additional parameters or functions (GLDAS). In con-

trast, WGHM is a water-balance model with conceptual equations

that are a simplified representation of water transport processes on

large scales. In a station-based calibration, WGHM parameters that

are not directly observable are varied until a sufficient agreement

of modelled and observed river discharge is achieved. Similarly,

LaD is calibrated by river discharge applying spatially distributed

parameters. In contrast, data assimilation in GLDAS denotes the

direct integration of spatially distributed satellite measurements as

parameter or system states into the model by Kalman-filtering.

In addition, it has to be noted that the three models represent

different water storage compartments on the continents. While soil

water and snow storage changes are simulated by all models, only

WGHM simulates the water transport and storage in surface wa-

ter bodies and only LaD includes an ice component. Moreover,

GLDAS–NOAH does not include groundwater in its model struc-

ture. Due to the small variability of canopy interception water, its

absence in LaD can be neglected.

Errors in input data, model structure and parameters propagate

to errors in the model output. Due to the different concepts and data

used by GLDAS, LaD and WGHM, their errors are expected to be

of different spatial and temporal characteristics, which are analysed

by differences in TWS in Section 3.1.

To reduce uncertainties caused by specific errors of individual

models, multimodel ensembles and, in particular, the ensemble

mean, are often used in hydrology, oceanography and atmospheric

sciences as a more robust estimate of the system state or of forecast

fields (e.g. Hagedorn et al. 2005; Tebaldi & Knutti 2007; Regonda

et al. 2006). In this study, comparisons of GRACE with simu-

lated hydrological data was undertaken with a multimodel mean of

WGHM, GLDAS and LaD, hereafter named as Average of Three

Global Hydrological Models (A3HM). In order to compute the

A3HM, global fields of total continental water storage were cal-

culated for each hydrological model by adding up all simulated

storage compartments. The TWS data of each model were averaged

to monthly means and re-gridded to a common 0.5◦ resolution.

Then, for each month, the mean of the three model data sets was

calculated to give the A3HM monthly time series. Antarctica and

Greenland were excluded from the analysis. See Table 2 for global

signal intensity of A3HM compared to the other models. A3HM

data were transformed into time series of spherical harmonic coef-

ficient sets, up to degree and order 150. To ensure consistency of

A3HM and GRACE data, monthly basin-average TWS variations

around the mean were computed with the same filter methods as

the GRACE data. The common period of analysis in this study was

02/2003–07/2007.

For the regional analysis, the 22 biggest river basins world-

wide, with catchment areas greater than 730 000 km2,were selected

(Fig. 1). As example basins of different climate zones, the Amazon,

the Indus, the Nile and the Ob river basins were analysed in more

detail.

Table 2. Global weighted-RMS of TWS variations (in millimeters of a water mass equivalent column) for the global hydrological models WGHM,

GLDAS, LaD and the multimodel mean A3HM (col. 2–5) are derived from unfiltered data sets after application of a Gaussian filter with 500 km

half-length. Columns 6–8 show relative differences of wRMS values between the hydrological models.

wRMS [mm] Relative difference

WGHM GLDAS LaD A3HM (GLDAS-WGHM)/GLDAS (GLDAS-LaD)/GLDAS (LaD-WGHM)/LaD

Unfiltered 60.8 97.8 62.4 64.4 0.38 0.36 0.03

Gaussian (500 km) 15.5 20.7 16.0 16.3 0.25 0.23 0.03

C© 2009 The Authors, GJI, 179, 1499–1515
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Figure 1. The 22 largest river basins worldwide (with an area greater than 730 000 km2).

2.4 Correspondence criteria

In hydrology, the Nash–Sutcliffe coefficient (NSC, Nash & Sutcliffe

1970) is a widely used parameter to measure the performance of

simulated time series against observations. The coefficient is de-

fined by the sum of squared differences between predicted (P) and

observed (O) values, normalised by the sum of squared deviations

of the observations to their mean, during the period of interest with

n time steps:

N SC = 1 −

n
∑

i=0

(Oi − Pi )
2 ·

[

n
∑

i=0

(Oi − Ō)2

]−1

, (1)

where Ō is the mean of the observations over the examined period.

NSC ranges from 1 (indicating perfect fit) down to −∞. A value

lower than zero denotes that the model is worse than if Ō was used

as a predictor. Therefore, results with values <0 were discarded

in this study. NSC not only evaluates consistency in phase, like the

correlation coefficient (CC), but also in amplitude and absolute level

of simulated versus observed time series. This is demonstrated in

Fig. 2 by comparing two sine waves that only differ either in phase

(x-axis in Fig. 2a) or in amplitude (x-axis in Fig. 2b). In this study,

NSC was used as a correspondence criterion to evaluate several

filter techniques by comparing measured (filtered GRACE data)

and simulated (filtered modelled data) time series.

For stronger smoothing, the amplitudes of seasonal TWS varia-

tions usually are reduced more strongly, due to an increasing leak-

age effect. At the same time, the satellite error would decrease in

GRACE time series, while it is zero for any filter parameter in the

hydrological time series. If the modelled hydrological data compre-

hend no simulation error, and if they represent the only remaining

seasonal signal in GRACE, the leakage error would be the same

in both time series, and they would become more similar to each

other for stronger smoothing. This may misleadingly cause higher

NSC values for higher filter parameter values. Therefore, a measure

of the leakage effect was introduced by weighting NSC with an

attenuation factor w, which accounts for strong signal attenuation

due to filtering. Hence, w was computed from the summed squared

difference (ǫ∗ =
∑n

i=0(P∗
i − Pi )

2) between the filtered (P) and un-

filtered (P∗) time series of simulated hydrological data normalised

Figure 2. Nash–Sutcliffe coefficient (NSC) versus correlation coefficient

(CC) for two sine waves that differ in (a) phase or (b) amplitude.

by the squared sum of the unfiltered time series (σ ∗ =
∑n

i=0 P∗
i

2).

Finally, we get

wN SC =

(

1 −
ǫ∗

σ ∗

)

∗ N SC. (2)

To evaluate the reliability of the results obtained with wNSC, an

alternative correspondence measure, the index of agreement (see

Willmot 1984) was used. This measure also evaluates phase and

amplitude differences between modelled and observed time series.
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1504 S. Werth et al.

3 R E S U LT S A N D D I S C U S S I O N

3.1 Uncertainties of the hydrological model data

Since GRACE provides the only large-scale observation data of

continental water storage change, global hydrological models pro-

vide the only means of evaluating GRACE methods for the esti-

mation of TWS variability. In this respect, errors and differences

in hydrological models need to be carefully considered. In Sec-

tion 2.3, it was shown that model structure, forcing data and strate-

gies for parameter tuning, differ considerably between WGHM,

GLDAS and LaD. Maps of TWS variability for the hydrologi-

Figure 3. RMS of monthly variability of TWS from (a) WGHM, (b)

GLDAS and (c) LaD during 2003–2006 (unfiltered).

Figure 4. RMS of monthly differences of TWS variability between WGHM,

GLDAS and LaD during 2003–2006 (unfiltered).

cal models (Fig. 3) expose the consequences of these different

concepts.

The spatial distribution of the TWS variability in WGHM tends

to exhibit linear patterns, reflecting the presence of the surface

water storage compartment in the model, including rivers and their

inundation areas (see Fig. 3a). In contrast, TWS variability from

GLDAS and LaD is more gradually distributed in space (Fig. 3b

and c) in line with larger correlation lengths of soil–water storage

(and groundwater for LaD), which dominates TWS in these models.

Furthermore, GLDAS amplitudes of TWS variations are larger than

those of the other two models. Thus, for the 0.5◦-cell-wise RMS-

differences between the models (Fig. 4), the largest differences occur

for GLDAS versus WGHM or LaD, whereas WGHM and LaD are

more similar to each other. The differences in the simulated TWS

variability between the models may amount to 300 mm w.eq., which

is close to the signal magnitude itself. In the difference maps of

Fig. 4, the linear patterns caused by surface water storage in WGHM

not present in the other models, are obvious again. The largest

differences occur within the river basins of the Amazon, Congo,

Ganges, Mekong, Yukon, St. Lawrence and Ob rivers. Thus, a main

difference in TWS variability between the models can be attributed

to the fact that different storage compartments with different spatial

characteristics are represented in the models.

However, the cell comparisons between models, as shown in

Fig. 4, may be misleading if basin-average water storage variations

and water balances are of interest. This is the case when consider-

ing the lower resolution GRACE data. Relative differences between

models decrease on the river basin or global scale, for example, after

computing basin averages or reducing the resolution of TWS data

by applying a GRACE-filter method. Relative model differences of

global (latitude) weighted RMS of TWS reduce after a Gaussian

filtering of 500 km, when compared to unfiltered data (Table 2).

Nevertheless, much smaller differences in signal magnitudes be-

tween WGHM and LaD, than of both models relative to GLDAS,

remain even after global averaging (Table 2).

In contrast, temporal correlations of TWS time series are very

high between the hydrological models (Fig. 5). WGHM and LaD

are nearly perfectly correlated on all land areas (Fig. 5b), except

for a small region in the Himalayas and some linear river courses

(e.g. Lena river). The first deviation may be due to differences in

the snow algorithms and the latter due to the absence of surface

water routing in LaD. This process causes longer residence times

and, thus, delayed storage depletion within river basins for WGHM.
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Evaluation of GRACE filter tools 1505

Figure 5. Correlation of monthly TWS between WGHM, GLDAS and LaD

during 2003–2006.

But correlation maps for WGHM versus GLDAS (Fig. 5a) and

WGHM versus LaD (Fig. 5c) indicate good temporal correlations

for the major river basins (e.g. Amazon, Zaire, Ganges, Mississippi,

or large parts of Ob, Yenisei and Lena) despite large differences

in amplitudes of TWS variations as shown in Fig. 4. Dry areas,

such as North Africa, central North America, central Australia and

central Asia, are not well correlated in time between the models,

but the TWS change signals are very small (compare to Fig. 3) or

negligible in these areas. Low correlations for regions with large

TWS variability only appear in small areas of Scandinavia, East-

Siberia and the northeast of North America.

To conclude, differences of TWS variations between the three

global hydrological models are quite large when evaluated at the

grid scale. These differences are mainly due to different model

structures in terms of water storage components represented in

each of the models. In previous studies (e.g. compare Güntner

2009; Werth & Güntner 2008), no model was shown to be most

consistent relative to GRACE-derived TWS variations. Neverthe-

less, global hydrological models represent the most comprehensive

and state-of-the-art data on continental water-cycle processes on

large scales. Therefore, they are the only data source to evaluate

GRACE-derived estimations of TWS variability. Relative differ-

ences between the models reduce on the scale of river basins and

are relevant for comparisons to GRACE data. Furthermore, the

models show a good temporal agreement, especially within regions

of large TWS variations. For this study, the model mean A3HM

provided a compromise between the three independent model reali-

sations of different concepts. A3HM averaged out particular model

errors due to individual model structures and input data sets. Only

a few systematic errors that may prevail in all input data sets, such

as those due to the generally small number of precipitation stations

in specific regions (e.g. parts of Africa, South America or Central

Asia), cannot be reduced in this way. In evaluating GRACE filter

methods, A3HM currently provides the most adequate estimation

of water storage variations on the continents.

3.2 Filter evaluation

3.2.1 Filter effects on seasonal amplitude and phase

Different filter methods cause different GRACE error reduction

and leakage effects when applied to different river basins. To

understand reasons for such differences, filtered time series with

non-decorrelating filter methods and different filter parameters are

shown in Figs 6–8 (a–d) for GRACE (top) and A3HM (bottom)

derived TWS variations. Examples are given for three river basins

(Amazon, Indus, Ob) to illustrate the effects of different climate

zones with diverse hydrology and different regimes of TWS varia-

tions. The Amazon exhibits a strong signal that dominates northern

South America (Fig. 6, dotted time series). The signal of a sur-

rounding area of the Amazon basin (defined by a latitudinal and

longitudinal buffer of 8◦ around the catchment boundaries) exhibits

a much smaller signal with a slight phase shift (triangles). The ap-

plication of filters with a weaker smoothing strength (blue-coloured

time series) generates erroneous time series in terms of GRACE and

nearly undamped time series in terms of A3HM. Stronger smooth-

ing (pink-coloured time series) leads to higher TWS amplitude

attenuation due to the small signal in the surrounding areas. The

amplitude damping is stronger for filter I compared to filter IV and

most prominent for filter II with small parameter values, as well as

for filter III, with very small signal variance parameter values. Phase

shifts of the surrounding areas are too small to have a noticeable

influence on the seasonal phase of the filtered Amazon time series.

In contrast to the Amazon basin, higher differences between the

model-based and GRACE-derived TWS data occur for the Indus

river basin. Also, the smaller size of this basin leads to more erro-

neous GRACE time series for weaker smoothing, and differences

between the filter methods become more evident (Fig. 7). The Indus

basin is influenced by a strong signal in surrounding regions with

opposite seasonal phase. For example, the closely located Ganges

River has a strong signal caused by the Indian summer monsoon,

whereas Indus water storage variations are more influenced by snow

accumulation and melt. Furthermore, the eastern desert in the Indus

basin exhibits low TWS variability. Thus, a strong leakage effect
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1506 S. Werth et al.

Figure 6. Time series of TWS variations for the Amazon river basin after applying the non-decorrelating filter methods: (a) I, (b) II, (c) III and (d) IV. For

different values of the filter parameter, the graphs colour gradually changes from blue (weak smoothing) to pink (strong smoothing). From the two parameters

of filter III, G l is colour-coded and σ 0 graphs, with maximal and minimal values, are exemplarily indicated in subfigure (c). See further explanations in the

main text.

Figure 7. Same as Fig. 6 but for the Indus basin.

of the surrounding areas causes strong phase shifts towards the sur-

rounding signal when using filter IV and I, with strong smoothing.

This occurs with filter III, as well, with signal variance parameters

(50 or 20 mm w.eq.) that are too small. In contrast, for filters II

and III (the latter with signal variance parameters greater than 100),

only amplitude damping can be observed.

The Ob basin (Fig. 8) is surrounded by regions with equal phase

and similar amplitude (see Fig. 3). Hence, signal leakage is less

dominant. The similar hydrological signal characteristics of sur-

rounding river basins (e.g. Volga, Yenisei) balance signal truncation

inside the Ob basin. Therefore, filters I and IV cause, overall, very

little amplitude damping. Filter IV even exhibits slightly increased

amplitudes for some parameters compared to the unfiltered A3HM

signal. On the other hand, amplitude damping of filters II and III

becomes strong for very small parameters of II and small signal

variance parameters of III. For the Ob basin, phase shifts are a neg-

ligible filter effect. Compared to the Amazon, the more erroneous

GRACE time series for lower smoothing are explainable by other

factors, such as the more complex shape, or smaller size, of the Ob

river basin.

These three examples show that phase shifts and amplitude atten-

uation of TWS time series differ between the river basins depending
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Evaluation of GRACE filter tools 1507

Figure 8. Same as Fig. 6 but for the Ob basin.

on the applied filter methods, the signal properties inside and outside

the basin, and the basin size or shape. If phase shifts between the

time series outside and inside a basin are of negligible size, the leak-

age scenarios established by Klees et al. (2007) are comprehensible.

For example, the small signal of the Amazon’s surrounding region

biases the TWS time series of the Amazon basin more strongly than

does the time series of the Ob basin when influenced by a signal

of similar size outside the Ob basin. But when a marked phase

shift between the signal outside and inside the basin is present, the

three leakage scenarios vary between months because the ratio of

the signal outside the basin to the signal inside the basin varies.

Therefore, phase shifts occur in the filtered time series of such re-

gions. This applies especially to high (strong) parameters of filters

I and IV (smoothing), as shown for the Indus basin. In such cases,

the application of amplitude scaling or bias correction factors as

proposed by Velicogna & Wahr (2006) and Klees et al. (2007) will

not recover the hydrological signal after filtering.

A summary of seasonal phases and amplitudes for the 22 river

basins and their surrounding areas is given in Table 3. Phase shifts

and amplitude differences as an effect of filtering are shown in

Table 4. To make them comparable, the different filter methods were

parameterised in such a way that they generate the same RMS of

monthly satellite error (propagated from the coefficient errors) as a

Gaussian smoother of 500 km radius. If phase shifts of the surround-

ing region are large, and if amplitudes are of similar magnitude as

the signal inside the basin, an impact of the phase of the surround-

ing signal is clearly visible in the filtered time series (e.g. Amur,

Indus). A much smaller signal amplitude in the surrounding region

compared to the basin itself results in strong amplitude damping

(e.g. Ganges, Tocantins, Zambezi). Both effects are simultaneously

visible for a few basins (e.g. Amur, Indus, Parana). Also, the size

and sign of both effects vary between the filter methods. Some

basins (e.g. Amur, Lena, Nelson, Nile) exhibit phase shifts of dif-

ferent signs. For other basins, the size of amplitude damping differs

largely between filter methods of equal satellite error reduction

(e.g. Danube, Ganges, St. Lawrence, Tocantins). Due to a weak an-

nual signal of the Orange basin (see seasonal amplitude of Orange

in Table 3), leakage tends to increase the annual amplitude for this

basin. Probable reasons for the different filter effects will be given

in the next section.

Table 3. Seasonal amplitude (A, col. 2) and phase (�, col. 3)

of TWS variations for the 22 river basins, derived from the

ensemble model mean A3HM. Respectively, seasonal ampli-

tude difference (�A, col. 4) and phase shift (��, col. 5) are

computed for an 8◦ surrounding region.

Basin Surr. region

Basin A � �A ��

[mm] [day] [mm] [day]

Amazon 136 −23 −119 −32

Amur 10 154 −4 −54

Danube 47 −1 −15 +13

Ganges 125 −182 −75 −3

Indus 14 −65 +27 −126

Lena 26 36 −17 −3

Mackenzie 34 9 −8 −2

Mississippi 26 5 −16 +43

Nelson 23 26 +8 −16

Niger 77 165 −59 +19

Nile 37 −182 −34 −32

Ob 50 −2 −26 −6

Orange 1 −40 +18 +21

Parana 76 −5 −20 −7

St. Lawrence 85 3 −49 +12

Tocantins 230 −15 −129 −17

Volga 73 −3 −41 +1

Yangtse 39 −146 +9 −31

Yenisei 32 9 −16 −9

Yukon 43 9 −17 +1

Zaire 23 8 −19 +180

Zambezi 103 −19 −60 +7

3.2.2 Correspondence of GRACE to hydrology data

The different filter methods and smoothing rates were evaluated

with the wNSC correspondence criteria (explained in Section 2.4)

against A3HM data (Table 5). Example results for the Amazon and

Ob basins are shown in detail in Fig. 9. Applying the Gaussian filter

for the Amazon basin, averaged time series are very sensitive to

damping when evaluated by wNSC. A radius of 300 km results in

the highest wNSC value, that is, the best correspondence of GRACE

and A3HM data. This radius is similar to the results of Schrama
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1508 S. Werth et al.

Table 4. Filter-induced bias of the seasonal amplitude (�A, col. 3–8) and phase (��, col. 9–14) for 22 river basins and six

filter methods (I-VI). Parameters for each filter were set to give the same propagated satellite error (ǫsat in col. 2) as a Gaussian

smoother of 500 km radius. Results were computed from A3HM data. See Table 3 for seasonal amplitude and phases of the

unsmoothed signal.

�A [mm] �� [day]
ǫsat

Basin [mm] I II III IV V VI I II III IV V VI

Amazon 10 −18 −2 −6 −18 −47 +1 −2 +0 +0 −1 −2 +0

Amur 11 −3 +0 −4 −3 −9 −1 −29 +7 +8 −40 −64 −7

Danube 15 −3 −15 −1 −1 −17 −2 +5 +1 +4 +2 +9 +3

Ganges 14 −27 −19 −22 −43 −49 −6 −3 −1 −2 +1 −3 −2

Indus 18 −2 −7 −7 +2 +7 −5 −94 −41 −67 −91 −117 −29

Lena 10 −3 −1 −7 +6 −8 +0 +1 +1 +6 −9 −5 +3

Mackenzie 12 +5 −1 −3 −9 −1 +2 +0 −1 −1 +4 +1 +1

Mississippi 10 −1 +0 −1 −7 −7 +0 +2 −1 +1 +17 +1 −1

Nelson 12 +1 −4 +1 −5 −4 +1 −3 +2 +1 +6 −14 +4

Niger 14 −8 −9 −15 +2 −23 +2 +1 −1 −2 −1 +2 +0

Nile 15 −4 −4 −1 −17 −9 +0 −4 −7 −4 +8 −5 −5

Ob 10 −3 −1 −7 −2 −24 +1 +0 +0 −1 +2 +5 +0

Orange 19 +3 +7 +5 +4 +5 −1 +21 −167 −171 +11 +20 −119

Parana 14 −10 −31 −29 −16 −20 −11 +2 +9 +8 +7 +3 +4

St. Lawrence 14 −17 −16 −16 −47 −42 −2 +6 −1 +4 +4 +6 +1

Tocantins 22 −42 −145 −27 −45 −89 −22 −4 +2 −3 −4 −6 −4

Volga 12 −12 −7 −9 −10 −33 −2 +1 +0 +2 +4 +4 +1

Yangtse 13 +2 −4 −1 −11 −5 +0 −8 +2 −3 +1 −9 +0

Yenisei 10 +0 +0 +1 +7 −15 +2 −1 +0 −2 −2 −2 −1

Yukon 13 +4 +3 −7 +6 −8 +17 −1 −3 −3 −3 −1 −2

Zaire 13 −1 −1 +0 +4 −8 +1 −5 −2 −3 −19 −5 −5

Zambezi 16 −17 −22 −25 −21 −38 −2 +2 +2 +2 +1 +2 +1

Table 5. Weighted NSC (wNSC) evaluation of GRACE filter types with A3HM data: highest wNSC for each filter type and

corresponding filter parameter values in brackets. Bold wNSC values indicate the overall optimal filter method for each basin.

Weighted Nash–Sutcliffe-Coefficient (wNSC)

I II III IV V VI

Basin (rg[km]) (�max[mm]) (σ 0[mm], G l[km]) (f ) (wa) (x)

Amazon 0.82 (300) 0.84 (11) 0.87 (250,300) 0.83 (1) 0.70 (30),II 0.86 (13)

Amur 0.27 (300) 0.35 (25) 0.31 (300,100) 0.26 (2) 0.15 (30),I 0.21 (13)

Danube 0.63 (300) 0.69 (27) 0.70 (250,1000) 0.66 (0.6) 0.46 (30),II 0.75 (12)

Ganges 0.81 (300) 0.81 (17) 0.88 (300,500) 0.77 (1) 0.76 (30),II 0.91 (12)

Indus 0.15 (400) 0.29 (21) 0.33 (200,1000) 0.25 (2) 0.11 (30),III 0.32 (13)

Lena 0.49 (300) 0.42 (13) 0.49 (300,1000) 0.49 (2) 0.50 (20),IV 0.49 (12)

Mackenzie 0.60 (400) 0.59 (13) 0.65 (150,200) 0.60 (1) 0.42 (30),II 0.60 (12)

Mississippi 0.61 (400) 0.59 (13) 0.64 (150,1000) 0.54 (1) 0.60 (30),I 0.66 (12)

Nelson 0.31 (500) 0.29 (30) 0.33 (200,1000) 0.22 (0.4) 0.30 (30),II 0.51 (12)

Niger 0.85 (300) 0.88 (23) 0.89 (200,200) 0.86 (0.7) 0.78 (30),IV 0.89 (12)

Nile 0.56 (400) 0.58 (14) 0.61 (150,900) 0.43 (0.5) 0.57 (30),II 0.59 (13)

Ob 0.76 (300) 0.73 (13) 0.80 (100,900) 0.74 (4) 0.43 (30),IV 0.81 (13)

Orange 0.29 (600) 0.09 (41) 0.32 (20,1000) 0.17 (7) 0.38 (20),I 0.28 (14)

Parana 0.67 (500) 0.48 (16) 0.69 (200,1000) 0.63 (2) 0.58 (30),II 0.73 (12)

St. Lawrence 0.37 (200) 0.15 (20) 0.24 (20,1000) 0.24 (0.1) 0.22 (30),I 0.21 (14)

Tocantins 0.78 (400) 0.78 (34) 0.85 (300,900) 0.80 (0.7) 0.69 (30),II 0.85 (12)

Volga 0.70 (300) 0.66 (15) 0.75 (100,900) 0.70 (1) 0.50 (30),II 0.78 (13)

Yangtse 0.74 (400) 0.71 (17) 0.79 (300,700) 0.69 (2) 0.62 (30),III 0.82 (12)

Yenisei 0.60 (400) 0.57 (12) 0.63 (50,500) 0.63 (16) 0.42 (30),IV 0.66 (14)

Yukon 0.50 (300) 0.59 (16) 0.59 (150,100) 0.52 (1) 0.24 (30),IV 0.57 (12)

Zaire 0.41 (400) 0.47 (12) 0.49 (100,300) 0.47 (2) 0.41 (30),III 0.51 (13)

Zambezi 0.75 (300) 0.81 (27) 0.81 (300,200) 0.82 (0.7) 0.64 (30),III 0.82 (12)

et al. (2007), who selected a globally optimal Gaussian filter radius

of 275 km by comparison with GPS load measurements. The wNSC

correspondence rapidly decreases for smaller and higher radii than

300 km. The degree-only dependency of filter method I does not

take into account differences in accuracy for coefficients of equal

degree but different order. Therefore, method I may either filter

coefficients with an acceptable signal-to-noise ratio too strongly or

may not sufficiently filter coefficients containing large errors. Thus,

basin average values are either affected by signal leakage from

surrounding areas or by large errors.The Amazon basin is located

close to the ocean (which inheres a signal close to zero) both to its

east and to its west. To its north, it borders on the equator (where a
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Evaluation of GRACE filter tools 1509

Figure 9. Weighted NSC (wNSC) performance of different filter types (I–VI) and grades of smoothing strengths for: (a) the Amazon and (b) the Ob river

basins. Bold lines in blue: Gaussian (I), red: basin optimised (II), purple: signal model optimised (III), green: SNR optimised (IV), yellow: decorrelation VI.

Light coloured lines: decorrelation V (additionally applied to I-IV) with ne = 30 for all displayed graphs. Grey lines: seasonality removed before computation

of wNSC for all filters. See a filter description in Section 2.1.

shifted seasonality of water storage occurs further north). Therefore,

basin averages for the Amazon are quite sensitive to leaking signals

or amplitude damping (as shown previously) for large filter radii.

This causes high parameter sensitivity of filter I.

Filter II and IV also exhibit a distinct sensitivity to filter param-

eters. In the case of filter II, the correspondence to hydrological

model data is poor for maximum admitted satellite errors smaller

than about 5 mm in both river basins. In this case, parameter values

that are too low (i.e. strong smoothing) increase signal leakage (i.e.

amplitude damping). Smoothing with filter II, for admitted maxi-

mum satellite errors in the range of 8–15 mm, performs well for

both basins. Maximum wNSC values of II are slightly higher than

optimum results of I for the Amazon, and are somewhat lower than

optimum results of I for the Ob basin. These results follow from

the design of filter II, which preferably preserves coefficients that

contain important signals of the examined basin and, thus, reduces

signal leakage. Furthermore, the anisotropic design of II (compared

to the isotropic Gaussian) distinguishes between the orders of co-

efficients with the same degree, which enables a finer adjustment

of the filter weights. The filter II design is of particular benefit for

the Amazon basin, where signal separation from the surrounding

areas is important for preventing amplitude damping, as described

above. This strategy of filter II is of less advantage for the Ob basin,

where leakage of I is compensated by similar signals in surrounding

areas (as described previously). This also explains the lower filter

parameter sensitivity of II for the Ob basin.

The optimal error factor of the anisotropic filter IV is f = 1 for

Amazon and f = 4 for Ob. This implies that the correlated GRACE

coefficient errors are properly estimated within the Amazon basin,

whereas they are regionally underestimated within the Ob region.

Optimal error factors for IV differ between the river basins because

the quality of GRACE coefficient error assessment varies region-

ally (see also Horwath & Dietrich 2006). The optimised filter IV

is nearly as good as each of the other optimised filter types for the

Amazon. Again, due to similarly large signal characteristics around

the Ob basin, signal damping by leakage is small when using fil-

ter IV. The positive leakage for some smoothing rates of that filter

increases TWS amplitudes, as shown in the previous section. There-

fore, larger parameter values for IV hardly damp regionally averaged

time series and only reduces errors. This also leads to a smaller
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parameter sensitivity of that filter for the Ob basin than for the

Amazon.

By contrast, the anisotropic filter type III is comparatively insen-

sitive in terms of wNSC values to parameter variations. Correlation

lengths greater than 300 km, and standard deviations greater than

100 mm, provide wNSC values that differ less than 0.04 in both river

basins. Sensitivity of the standard deviation parameter is higher than

that of the correlation length parameter. This confirms Swenson &

Wahr (2002), that an exponential signal model is a good approxi-

mation for estimating the leakage error, and that it does not strongly

depend on the exact estimation of its parameter values, as long as σ 0

and G l are not too small. Compared to the other filters, III provides

the highest wNSC results for the Amazon and the second highest

for the Ob basin.

For the Amazon basin, decorrelation by V (thin coloured lines

in Fig. 9) does not improve the correspondence between filtered

GRACE and hydrological model time series for any of the four

filter types discussed above. This follows from the low efficiency

of V in equatorial regions. Signals of these regions are dominant

in near-sectorial coefficients (with similar degree and order), which

are corrected incompletely by that method (Swenson & Wahr 2006).

Decorrelation with filter V does not give better results than the four

nondecorrelating methods for the Ob basin. Outside the equatorial

region, improvement by decorrelation filter V only occurs for the

Lena, Orange, Mississippi, Parana and St. Lawrence basins.

The alternative decorrelation method VI for a = 1012 gives a

wNSC value close to the filter III optima for the Amazon (black

dashed line in Fig. 9). Results of VI for a = 1013 are superior to all

filter methods for the Ob basin. A low parameter sensitivity of VI

is visible for both river basins.

Schaefli & Gupta (2007) showed that the NSC is very sensitive to

seasonality. Since seasonality is the most dominant signal in most

river basins, wNSC was re-computed after removing the seasonal

signal from the time series. These results are shown by the grey

graphs in Fig. 9 for all filter types, respectively (including the op-

timal filter V with wa = 30). The wNSC values become smaller

due to relatively high errors in the small non-seasonal water stor-

age signal of GRACE and the models. But the highest wNSC is

likely to occur for similar filter parameter values when compared

to results that include the seasonal signal. This shows that the op-

timum filter technique for a specific river basin is more a function

of filter properties in combination with the geographical character-

istics of the region of interest, than a function of the selected time

period or of TWS temporal dynamics. Thus, the results obtained

here can be expected to be of broad relevance for hydrological

studies.

A summary of filter comparison for all 22 basins is given in

Table 5, with the highest wNSC value and the corresponding fil-

ter parameter value for each filter type. The optimal filter type for

each basin is indicated by bold numbers. Among the basins, differ-

ent filter methods with different filter parameter values appear to

be optimal. GRACE basin-average TWS time series with optimum

filtering generally have a high correspondence to A3HM, except

for Amur, Indus, Nelson, St. Lawrence and Orange. For the latter

five basins, the error map (Fig. 4) shows large differences of TWS

variability between the hydrological models for the St. Lawrence

basin only; but temporal correlations between the models are poor

for large areas inside all of the five basins (Fig. 5). Hence, large

uncertainties in the hydrological model data may lead to uncertain

results for the filter optimisation for these basins. For filter I, the

highest wNSC occurs for radii from 300 to 400 km for nearly all

river basins. This indicates that the spatial resolution of GRACE-

derived TWS variations is mostly better than 500 km. The opti-

mised maximum satellite error of filter II tends to be larger than the

10 mm water equivalent. This illustrates the limitations in accuracy

of GRACE TWS estimates due to GRACE measurement errors.

Furthermore, optimal correlation lengths of filter III vary consid-

erably between the river basins. Lower correlation lengths may be

due to the importance of surface water storage concentrated in a

small spatial domain, as pointed out by Güntner et al. (2007). Filter

V provides optimal filter results for only two river basins (Lena,

Orange). Parameter optimisation of V is not straightforward, be-

cause the four filter parameters (wa, we, na and ne) may have to

be adjusted individually for each basin in addition to the parameter

of the subsequently applied filter method. Method VI provides the

highest wNSC for 16 river basins, and its performance is also in

the same range as the best alternate filter methods for the remain-

ing basins. The anisotropic decorrelation method of VI seems to

efficiently preserve the hydrological signal while reducing GRACE

satellite errors. In addition, VI exhibits low filter-parameter sen-

sitivity. This supports the method’s strategy of deriving an error

covariance matrix from satellite orbits in order to decorrelate the

coefficients in the filter process. Finally, the computations were re-

peated for the Index of Agreement (Willmot 1984). This measure

of correspondence between GRACE and hydrological model data

generally confirms the results as provided previously (not shown).

For all filter methods, a final estimation of biases of the seasonal

amplitude and phase in the TWS time series after application of

the optimised filter, is provided in Table 6, based on A3HM data.

For both amplitudes and phases, biases are reduced for many river

basins in comparison to Table 4, where a standard Gaussian filter, or

filter of equivalent smoothing strength, were applied. This indicates

a successful optimisation of the filter type and parameter. Large

phase shifts remain for the Indus and Orange basin only. For most

of the other basins, filters III and VI had the smallest seasonal phase

shifts and amplitude damping.

3.2.3 Multicriterial error analysis

For an alternative evaluation of the filter methods with hydrolog-

ical data, satellite and leakage errors of the different filters were

evaluated in a multicriterial way (Fig. 10). The leakage error was

derived as an RMS of differences between filtered and unfiltered

A3HM time series in monthly TWS variations. The satellite error

was derived as an RMS from a monthly propagation of the cali-

brated coefficient errors into the basin averages. The total error is

given by the squared sum of both error components. Hence, the

point closest to the origin in Fig. 10 provides the smallest total error

and indicates the optimum filter type according to the error budget.

The error budgets of the Amazon (Fig. 10a) and the Ob (Fig. 10d)

basin show a well defined ranking between the filter methods. The

decorrelation method VI is superior in reducing the total error.

The second best error budget is provided by filter III. Furthermore,

the more complex the shape (e.g. Nile) or the smaller the size of a

river basin (e.g. Indus), the larger is the total error and the smoother

are the error graphs in Fig. 10. For the Indus and the Nile basin,

leakage for low smoothing rates amounts to several millimetres.

Also, for these critical basins’ characteristics, filters VI and III,

respectively, provide the filter versions with the best error budgets,

though versions of method II are located close to the optimum as

well. The method V exhibits high leakage errors in the error plots

of all basins, which explains the wNSC results from above. Hence,
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Evaluation of GRACE filter tools 1511

Table 6. Filter-induced bias of the seasonal amplitude (�A, col. 2–7) and phase (��, col. 8–13) for 22 river basins and the six

optimised filter methods (I–VI) as listed in Table 5. Results were computed from A3HM data. See Table 3 for seasonal amplitude

and phases of the unsmoothed signal.

�A [mm] �� [day]

Basin I II III IV V VI I II III IV V VI

Amazon −7 −4 +0 −4 −27 −1 −1 +0 −1 +0 +0 +0

Amur −2 +0 +0 +0 −8 −1 −11 +3 +5 −12 +23 −7

Danube −2 −5 −2 −4 −10 −3 +3 +0 +2 +2 +10 +2

Ganges −13 −12 −5 −13 −25 −4 −1 +0 −1 +0 −3 −1

Indus −5 −5 −4 −4 +0 −5 −74 −27 −24 −26 −105 −29

Lena −1 −2 +0 +5 −3 +0 +2 +2 +2 −4 −11 +3

Mackenzie +5 −2 +1 +1 +2 +2 +0 −1 +0 −1 −2 +1

Mississippi −1 −1 +0 −1 −3 +0 +1 −1 +0 +3 −1 +0

Nelson +1 −1 +0 −2 −9 −1 −3 +0 +2 +1 −9 +4

Niger −2 −2 +0 +5 −9 +2 +1 +0 +0 −1 +1 +0

Nile −3 −3 −1 −6 −5 −1 −3 −5 −3 +3 −1 −1

Ob +0 −2 +0 +3 −18 +1 +0 +0 +0 +0 +6 +0

Orange +4 +0 +1 +4 +4 +2 +21 +11 −181 +12 +18 −138

Parana −10 −14 −8 −12 −20 −6 +2 +4 +3 +5 +6 +3

St. Lawrence −4 −6 −37 +0 −42 −14 +2 +0 +4 +0 +6 +3

Tocantins −31 −21 −10 −16 −55 −7 −3 −2 −2 −1 −4 −3

Volga −6 −7 −3 −2 −27 −2 +1 +0 +2 +1 +5 +1

Yangtse +1 −2 +0 −7 −6 +0 −5 +1 +0 +0 −2 +0

Yenisei +1 −1 +0 +3 −9 +2 −1 −1 −2 +0 −2 −2

Yukon +10 +4 +6 +8 +1 +13 −1 −3 −3 −1 −1 −2

Zaire −1 −1 +1 +6 −4 +1 −5 −1 −3 −18 −6 −5

Zambezi −6 −1 +0 −1 −21 +2 +1 +1 +1 +0 +1 +1

method V is not a generally efficient filter approach for deriving

basin-averaged TWS variations from GRACE gravity fields.

In summary, the order of the filters in terms of their total error

budget in Fig. 9 closely matches the filter type ranking by the wNSC-

evaluation (Table 5). For most cases, the decorrelation method VI

provides the best error budget. For a similar satellite error reduction

in the GRACE data, the leakage error of VI is much smaller com-

pared to the other filter methods. This explains the small seasonal

amplitude damping and phase shifts for this method in many river

basins (Table 4). A list of TWS satellite, leakage and total error for

the 22 river basins after application of the optimised decorrelation

method VI, is provided in Table 7. The comparison of these total

error values with estimations of seasonal TWS amplitudes from

A3HM (Table 3) indicates that the estimation of GRACE-derived

seasonal water mass variations is not reliable for the Amur, Indus,

Nelson and Orange basins, as the error exceeds the signal magni-

tudes. This coincides with the small correspondence of GRACE and

A3HM-derived time series of TWS variations for these river basins

in Table 5.

Besides method III in the Indus basin, the best filter methods

found for each river basin in the previous section, by the wNSC-

evaluation (black circles in Fig. 10), are very close to the minimum

satellite and leakage error budget. This result confirms the broader

validity of the optimum filter selection procedure.

3.2.4 Sensitivity to errors in amplitude of the hydrological data

In Section 3.1 it was shown that the differences in TWS variations

between the hydrological models consist of amplitude differences

rather than phase shifts. Consequently, the influence of amplitude

errors in the hydrological data on the wNSC-evaluation of filter

parameter and methods has to be estimated. Therefore, a second

wNSC-evaluation is undertaken in this section. Ahead of filtering

and wNSC evaluation, the monthly A3HM grid data are multiplied

by a factor of 1.5. This factor is estimated as an average maximum

difference between A3HM and GRACE TWS amplitudes. Subse-

quently, the wNSC-evaluation is repeated. Normalised differences

of the optimised filter parameters relative to the ones optimised with

the original A3HM data (Table 5) are shown in Fig. 11. The results

for the Nelson and St. Lawrence basins are excluded because wNSC

values below zero were obtained and, therefore, no optimised pa-

rameter values could be achieved. Differences for the other basins

mainly occur for parameters of filter III, which exhibits a low sen-

sitivity for its filter parameter concerning filter performance (see

Fig. 9). Parameter selection of VI also shows differences (Amur,

Ob, Orange, Zaire), but here as well, the sensitivity of filter perfor-

mance is low (see Section 3.2.2). Parameter differences of I, II and

IV are either zero or are of expected evaluation uncertainties of one

or two parameter step sizes (100 km, 2 mm and a factor of 1, re-

spectively). Hence, except for the Nelson and St. Lawrence basins,

these results prove that a possible error in the amplitude of the hy-

drological data would have small effects on the selection of optimal

filter parameters by the wNSC-evaluation. This robustness of filter

parameters is mainly due to the identical filtering of both data sets

(GRACE and hydrological data) for the wNSC evaluation, in combi-

nation with an accounting of leakage errors by the weighting factor

w in wNSC. This approach prevents a simple fitting of GRACE to

hydrological amplitudes, since amplitude damping affects both data

sets.

4 C O N C LU S I O N S

The results show that filter types and their corresponding parame-

ters have to be selected carefully in order to derive basin-averaged

time series of water storage variations from GRACE spherical har-

monic data. The different smoothing effects of the different filter

methods lead to varying balances of satellite and leakage errors

in each river basin. We could determine the individual best filter
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1512 S. Werth et al.

Figure 10. Error budget as hydrological leakage error (RMS differences of filtered and unfiltered A3HM time series) versus GRACE satellite error (RMS of

propagated monthly coefficient errors) of TWS variations of : (a) the Amazon, (b) Indus, (c) Nile and (d) Ob river basins. Applied filter methods are shown

by lines in blue: Gaussian (I), red: basin optimised (II), purple: signal model optimised (III), green: SNR optimised (IV). Light coloured lines: decorrelation

filter V. Yellow line: decorrelation filter VI. Black circles indicate the individual optimised filter parameter from Table 5 and the bold black circles indicate the

respective optimal filter method. See a filter description in Section 2.1.

methods for deriving basin-averaged water mass variations for the

22 largest river basins worldwide. When being evaluated by global

hydrology, optimal parameters of the individual filter types vary for

different basin sizes, shapes, and locations, as well as for signal

type and intensity. Filter type VI provides generally good results.

The differences of signal characteristics, like seasonal amplitude

and phase, inside and outside a region of interest, highly influences

the efficiency of a filter method. If phase shifts due to signals out-

side the river basin affect the TWS estimation, a bias or amplitude

correction by a scale factor will not adequately recover the signal.

Instead, a previous selection of an optimal filter type is expected

to allow for a best possible bias correction. Additionally, for many

filter types, the selection of an optimal parameter for the specific

location and shape of the basin or process is necessary.

The decorrelation method VI was be the most efficient approach

for the set of river basins analysed in this study. Only for basins of

generally poor agreement between GRACE and hydrological data

(Amur, Orange and St. Lawrence), was there a considerably higher

correspondence provided by other filter methods. The usage of

GRACE orbit-configurations to design a synthetic error covariance

matrix sufficiently reduces the satellite error while preserving most

of the hydrological signal for most of the river basins—even if they

exhibit a small size or complex signal characteristics (e.g. Danube).

To conclude, the general and global adaptability with moderate pa-

rameter sensitivity makes method VI the most reliable of the six

analysed filter tools.

The isotropic Gaussian filter technique (I), or filter methods with

little information on total error characteristics (II, IV, V), does not

sufficiently address globally varying conditions for the extraction of

basin-averaged TWS variations. Strong smoothing filter versions of

method II and III tend to have more pronounced amplitude damp-

ing, while filters I and IV generally lead to phase shifts in the

time series. Thus, the particular parameter values for these filter

methods must be chosen carefully. It was shown that filter I gives

acceptable results if the signal around the basin exhibits equal char-

acteristics (Ob, Lena). If the river basin is characterised by a strong

signal of TWS variability and is of large size and circuit shape,

like the Amazon, leakage effects may be small if the parameter of
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Evaluation of GRACE filter tools 1513

Table 7. 22 basin individual standard deviation of monthly

satellite and leakage error for decorrelation VI optimised

filtering (see Table 5 for respective parameter).

ǫsat ǫleak ǫges

Basin [mm] [mm] [mm]

Amazon 9.4 2.4 9.7

Amur 11.1 2.6 11.4

Danube 21.6 4.5 22.1

Ganges 17.1 4.2 17.6

Indus 18.6 7.6 20.1

Lena 10.0 1.3 10.1

Mackenzie 12.3 2.2 12.5

Mississippi 11.0 1.6 11.1

Nelson 16.2 5.6 17.1

Niger 18.3 2.0 18.4

Nile 14.0 7.5 15.9

Ob 8.9 1.5 9.0

Orange 12.9 4.7 13.7

Parana 16.3 5.8 17.3

St. Lawrence 10.3 16.7 19.6

Tocantins 32.0 12.3 34.3

Volga 11.2 2.6 11.5

Yangtse 14.9 1.4 15.0

Yenisei 8.0 2.8 8.5

Yukon 16.3 11.6 20.0

Zaire 11.9 5.3 13.0

Zambezi 20.7 3.6 21.0

filter I is chosen carefully. But if the signal around the basin is of

different characteristics because of such factors as the vicinity of

oceans (Ganges, Yukon), deserts (Nile, Indus) or smaller signals in

surrounding regions (Danube), leakage may reach high values for

filter I. Furthermore, the leakage effect may be time-dependent in

cases in which surrounding areas are characterised by a different

seasonal water storage regime. In this case, method I is inappropri-

ate. The principle of method II is only advantageous when its pa-

rameter values are optimised and the river basin of interest exhibits

a complex shape or small size (e.g. Niger, Yukon and Zambezi).

Method III can efficiently deal with similar (e.g. Ob) or different

(e.g. Nile) signal characteristics outside the area of interest, as well

as with small or complex basin shapes (Niger, Zambezi). It provides

good filter results for half of the river basins due to its efficient leak-

age estimation with an exponential signal model. Because of high

leakage effects, the decorrelation method V only provides satisfac-

tory filter results in some basins (Orange, Lena). However, when us-

ing method V for decorrelation additional smoothing, and therefore

parameter optimisation, is necessary. A nonpractical basin-based

(instead of global) optimisation of the decorrelation parameter, in

addition to the parameter of the superimposed filter method, may

lead to improved results for that method. The conclusions above

have been supported by reduction of amplitude and phase differ-

ences, total error budget maps and an amplitude sensitivity test.

It should be remembered that the results are derived from com-

parisons with model-based hydrological data, which might con-

tain structural errors within specific basins. Such errors are caused

by mis-modelled or missing processes, within any model, erro-

neous mode-forcing data or parameters. However, global hydrolog-

ical models provide the only source of alternative TWS data sets

for evaluating GRACE data. The ensemble mean A3HM was used

as a compromise between three widely used hydrological models

(GLDAS, LaD and WGHM) in order to evaluate GRACE filter pa-

rameters with the best possible accuracy, at present. Furthermore,

the applied models mainly differ in amplitudes of TWS and it is

shown that an amplitude error has a small effect on the filter evalu-

ation. Only for the Indus, Amur, St. Lawrence, Orange and Nelson,

may filter parameter type and selection be unreliable. A rather low

correspondence between modelled and GRACE-derived data sets is

due to temporal uncertainty of simulated TWS variability for these

basins. The results in terms of optimum filters were shown to be

robust, both for seasonal and non-annual TWS dynamics, in river

basins. Nevertheless, for other applications, such as those with a

focus on spatial patterns or secular trends, another prioritisation of

filter methods may be more appropriate.

Hence, the discussion of adequate filter methods will likely con-

tinue as long as there is no breakthrough in accuracy for GRACE

or GRACE Follow-On gravity field models. Filter types and param-

eters, as derived in this study, are particularly useful for GRACE

data analysis within hydrological applications, such as monitoring

of water mass exchange on the continent, studies of inter-annual

variability in the hydrosphere, or using reliable water storage data

as input for assimilation into large-scale hydrological models. The

results obtained here can also be used as a guideline for filter

selection for areas that were not specifically considered in this

study.

Figure 11. Parameter differences for Gaussian (I, blue), basin optimised (II, red), signal model optimised (III, light and dark purple), SNR optimised (IV,

green), decorrelation V (grey) and decorrelation VI (black) filter methods for 20 river basins. Parameter differences are derived from wNSC-evaluations with

A3HM versus a modified A3HM version of one-and-a-half times increased signal amplitudes: �p = p(A3HM) − p(1.5*A3HM). In the graphic, differences

are normalised by the maximum parameter values chosen in this study (see legend).
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