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Abstract: Increased computing power has made it possible to run simulations of the Weather Research
and Forecasting (WRF) numerical model in high spatial resolution. However, running high-resolution
simulations requires a higher-detail mapping of landforms, land use, and land cover. Often, higher-
resolution data have limited coverage or availability. This paper presents the feasibility of using
CORINE Land Cover (CLC) land use and land cover data and alternative high-resolution global
coverage land use/land cover (LULC) data from Copernicus Global Land Service Land Cover Map
(CGLS-LC100) V2.0 in high-resolution WRF simulations (100 × 100 m). Global LULC data with a
resolution of 100 m are particularly relevant for areas not covered by CLC. This paper presents the
method developed by the authors for reclassifying land cover data from CGLS-LC100 to MODIS
land use classes with defined parameters in the WRF model and describes the procedure for their
implementation into the model. The obtained simulation results of the basic meteorological parame-
ters from the WRF simulation using CLC, CGLS-LC100 and default geographical data from MODIS
were compared to observations from 13 meteorological stations in the Warsaw area. The research
has indicated noticeable changes in the forecasts of temperature, relative humidity wind speed,
and direction after using higher-resolution LULC data. The verification results show a significant
difference in weather predictions in terms of CLC and CGLS-LC100 LULC data implementation.
Due to the fact that better results were obtained for CLC simulations than for CGLS-LC100, it is
suggested that CLC data are first used for simulations in numerical weather prediction models and
to use CGLS-LC100 data when the area is outside of CLC coverage.

Keywords: land use/land cover; CLC; CGLS-LC100; SRTM; GIS; WRF; meteorological forecasts

1. Introduction

The Earth’s surface, heated by the sun, reflects and transfers the absorbed solar
radiation to both the deeper layers and the air. Thus, the air heats up from the surface of
the Earth. However, the Earth does not heat evenly. Everyone has certainly noticed that on
a bright warm day, stones and sand on the shore of a lake sometimes heat up so strongly
that they become hot. In contrast, the water in the lake never reaches that temperature.
Uncovered fields or slopes of hills facing the sun heat up much more strongly than a
meadow covered with lush grass or a forest. Moreover, the air above these places will not
be equally heated. Though it is hot in a concrete-covered city center, the air over a nearby
green meadow is much cooler. The vegetation, soils, land use, presence of water bodies,
and topography all influence heat flux exchanges between city surfaces and the overlying
air. The proper description of the exchange of heat between a surface and the overlying
atmosphere in terms of cities is critical for diurnal variation in boundary layer temperature,
humidity, depth, and turbulence [1]. Studies of climate elements in urban areas prove that
urbanization modifies almost all meteorological parameters in relation to their natural
courses [2–7]. Recognizing the significant influence of locally occurring surfaces on the
distribution of temperature and humidity in a city, the researchers decided to adapt land
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cover and land use in a WRF numerical weather prediction model [8–10] to the more recent
100 × 100 m resolution data and evaluate the impact of this implementation on the forecast
verification of basic meteorological parameters. The team developing the Weather Research
and Forecasting (WRF) model emphasizes that a more accurate consideration of the local
conditions of the study area allows for the elimination of significant errors in forecasts [11].
The representation of the land use/land cover (LULC) data in the model was improved
through the representation of the surface parameters (described in the model by such
parameters as albedo, emissivity, roughness, soil heat capacity, surface thermal inertia, and
soil moisture availability) so that more realistic results of atmospheric processes can be
obtained [12]. The physical properties of the surface, as well as its color and degree of
wetness, determine the value of its albedo, which is a measure of the reflectivity of a surface,
i.e., the ability of a surface to reflect electromagnetic radiation, including solar radiation.
The surface can also differ in terms of its emissivity, which is a measure of the ability of
a surface to emit electromagnetic radiation in the infrared range. Surfaces with higher
emissivity release more heat into the atmosphere [1]. The rate at which a surface reacts to
changes in temperature is described by surface thermal inertia. Soil heat capacity affects the
rate at which soil absorbs and releases heat. Soil moisture availability is a measure of water
in the soil, and it contributes to the ability of heat storage and air humidity. Roughness
length affects the interaction of heat, moisture, and momentum from the surface to the
atmosphere [13].

The LULC data have a wide range of applications from monitoring land cover and land
use changes, among others, to land use planning or tracking progress in sustainable devel-
opment [14] by monitoring changes in forests, croplands, surface water, and urbanization.
The LULC data can vary in resolution, coverage, compilation method, and validity [15].
These data can be obtained through various methods such as field surveys and satellite
or aerial imageries and are then classified into an adopted category. These categories can
vary considerably by region, which can result in inconsistencies between classifications.
Each class can also differ in terms of its physical properties [16,17]. The result of satellite
imagery classification in land cover and land use classes and its thematic accuracy can vary
due to the method adopted for classification. The classification can be conducted entirely
manually (visual interpretation) [18] or semi-automatic (i.e., digital image processing and
machine learning) [19–21]. The current research shows that machine and deep learning
methods are effectively used not only in LULC semi-automatic classification or deriving
various land use attributes, but also in the successful prediction of their changes [15,19,21],
which is important for sustainable development (resources managing), land use planning,
and management decisions.

Due to the physical properties of LULC data that influence the formation of weather
processes, these data are used to improve numerical weather prediction models. The
authors of this paper, in their previously conducted research [22], implemented land use and
land cover data from Corine Land Cover (CLC) [18,23–25] into the WRF model. However,
the coverage of these data for Europe ends at the eastern border of Poland; therefore, in
the research presented here, the authors tested the application of high-resolution global
LULC data from Copernicus Global Land Service Land Cover 100 m (CGLS-LC100) product
V2.0 [26–28] in WRF simulations. To the authors’ knowledge, no studies have yet been
conducted on the impact of implementing high-resolution global land cover data at 100 m
resolution on the results of a WRF model of the same resolution. The aim of this study is to
evaluate the impact of the implementation of CLC and CGLS-LC100 data on the forecast
results of basic meteorological parameters (temperature, relative humidity, wind speed and
direction) to select a data source that achieves the highest forecast accuracy.

Improvements in forecast accuracy and studies of the impact of LULC changes on the
forecast of basic meteorological parameters have forced researchers to increase the resolu-
tion of the model’s computational grids. The research has shown that merely increasing
the resolution of the model grids had a positive effect on forecast results [22,29]. In the
WRF model, 30 arc sec. resolution data can be used as default LULC data (900–1000 m)
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from the USGS or MODIS data [10]. The USGS LULC data were developed by the United
States Geological Survey, and are based on high-resolution global imagery from April 1992
to March 1993 [20]. MODIS data, on the other hand, were developed by the University of
Boston based on global Moderate Resolution Imaging Spectroradiometer data from January
to December 2001 and are divided into 21 categories [16,30]. CLC data are most often
used in research on the implementation of alternative LULC sources in the simulation of
numerical weather prediction models for the European region [31–38]. Research related
to Western Europe shows that meteorological variables differ significantly between WRF
simulations depending on the land cover dataset [36]. The results of studies for northern
Italy [31] show the sensitivity of mean wind speed forecasts (at 10 m), temperature (at
2 m), and the detection probability of precipitation events in the WRF simulations on two
different sets of LULC data: CLC with SRTM and USGS data. That study shows that
for CLC and SRTM simulations, wind speed forecasts are more consistent with observa-
tions due to the fact that CLC and SRTM data lower the wind speed by introducing more
friction and higher roughness in the simulation domain. Furthermore, the probability of
precipitation detection was higher and more consistent with observations. Due to the CLC
implementation, the sensible and latent heat flux over the simulation domain changed
and influenced temperature forecasts, which caused its overestimation. Studies focusing
on different LULC data for Berlin [38] and two Austrian regions [39] have shown that
due to the high heterogeneity of LULC data in urban areas, higher-resolution LULC data
simulations perform better in air temperature forecasts.

In studies on the results of WRF simulations using default and CLC data, the authors
compared the results of default simulations from the USGS to CLC simulations [31–38]. It
is worth noting that since the WRF model version 3.8 was released in 2016, more recent
MODIS data have been included as default LULC data in the WRF model [40]. According to
the paper’s authors, the USGS LULC database is quite outdated, especially for simulations
in urban or suburban areas where there has been significant urban development in the last
30 years. Therefore, comparing the results of WRF model simulation with USGS LULC
data to simulations with high-resolution LULC data from CLC improves the results of the
model more than the case when comparing the outputs of the WRF model simulations
received on MODIS LULC data to those received on LULC data from CLC.

Most articles on the influence of local conditions on NWP (Numerical Weather Predic-
tion) results focus on the effect of changing LULC on basic parameters such as tempera-
ture [38,41,42] and humidity. The subject of wind speed and direction analysis has been
addressed less frequently [31,43–47]. The forecast of wind direction is largely dependent
on the conditions of placement of the meteorological station. Theoretically, a given mete-
orological station can meet the WMO’s requirements for the location of a meteorological
station [48], but the corridors that aerate the city can significantly disturb the distribution
of wind and the data obtained from a mesoscale model, with a resolution of 4 to 1 km, will
be highly generalized. Even though forecasting the surface wind speed and direction in an
urban area can be quite problematic, there have been recent articles whose authors have fo-
cused on analyzing the impact of changing the LULC on the forecast of even more complex
phenomena, such as convective phenomena [37]. The influence of LULC on the prediction
of the distribution and concentration of urban air pollutants is also not insignificant [29,49].

As reported by [13], the use of alternative global LULC data in the form of Global
Land Cover (GLC2015) data [50] with a spatial resolution of 300 m for the Xinjiang region
in China helped to improve the results of basic meteorological parameters. The simulation
results using the alternative data were compared to those obtained from the simulations
using the default data from the USGS. Furthermore, the simulation results were compared
with observations from meteorological stations. In this paper, the following meteorological
parameters were studied for the summer period: air temperature at 2 m, ground tempera-
ture, wind speed, and humidity. The obtained verification results of the WRF model forecast
of the basic meteorological parameters indicate that the representation of the coverage and
use of the study area is better in the GLC2015 data than in the USGS data [13].
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In this article, the authors described the implementation of LULC CGLS-LC100 data
into the WRF model according to MODIS classes. Moreover, the impact of using LULC
LC100 data from CGLS and CLC on the results of 100 m resolution simulations for the
Warsaw region was evaluated. Simulations using the above high-resolution data were
compared with observations and simulation results obtained using default LULC data
from MODIS.

2. Materials and Methods
2.1. Geographical Data and Methodology

The authors used data from CLC 2018 [18,23–25] and CGLS-LC100 V2.0 [26–28] to
analyze the impact of implementing high-resolution geographic data on LULC into the
WRF numerical weather prediction model. To perform simulations with high-resolution
LULC data (CLC, CGLS-LC100), high-resolution terrain topography data from the Shuttle
Radar Topography Mission (SRTM) were used [51,52]. The results of the high-resolution
simulations were compared with observations from weather stations and contrasted with
the results obtained in simulations with default data, i.e., LULC from MODIS (the modified
IGBP 21-category, 30 arc-seconds) and GMTED2010 topography (The USGS Global Multi-
resolution Terrain Elevation Data with a horizontal resolution of 30 arc-seconds) [53].

To implement the CGLS-LC100 data into the WRF model, the authors proposed a
method for reclassifying the CGLS-LC100 data into MODIS classes defined in the WRF
model. The process of implementing data on LULC into the WRF model can be divided
into three stages, as shown in Figure 1. These stages for the implementation of CGLS-LC100
data were as follows: the first stage involved the acquisition of global data on LULCs
from CGLS; the second stage consisted of the reclassification of CGLS-LC100 data into
MODIS classes; and, finally, the third stage involved the conversion of raster data into
a binary format supported by the WRF model. For stage two of the implementation of
high-resolution global CGLS-LC100 data into the WRF model, the authors developed a
method to reclassify LULC classes from CGLS-LC100 to classes defined in the WRF model.
In the WRF model, individual LULC classes have defined albedo, emissivity, roughness
length, soil heat capacity, thermal inertia, and soil moisture [17].
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Figure 1. The procedure for implementing LULC data into the WRF model (based on Reference [28]).

These parameters are defined for USGS classes and MODIS classes. CGLS-LC100 data
are the CGLS Land Cover Map at 100 m data based on the PROBA-V satellite for epoch
2015 with 23 classes (22 discrete classes and 1 class for areas wherein no input data are
available). The authors proposed their own reclassification method of GLC CGLS 23 classes
defined according to the Land Cover Classification System (LCCS) scheme of the Food and
Agriculture Organization [54,55] into 21 MODIS IGBP [16] classes (21 discrete classes and
1 class of unassigned areas) based on the relationship of the overlap between the analyzed
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MODIS and GLC CGLS classes. The process of the reclassification of the CGLS-LC100
classes to MODIS classes is presented in Table 1.

Table 1. Reclassification procedure of CGLS-LC100 classes to MODIS classes.

LC-100 Code Land Cover Class (CGLS-LC100) MODIS Code MODIS Class

111 Closed forest, evergreen needle leaf 1 Evergreen Needleleaf Forest
112 Closed forest, evergreen broad leaf 2 Evergreen Broadleaf Forest
113 Closed forest, deciduous needle leaf 3 Deciduous Needleleaf Forest
114 Closed forest, deciduous broad leaf 4 Deciduous Broadleaf Forest
115 Closed forest, mixed 5 Mixed Forest
116 Closed forest, unknown 3 Deciduous Needleleaf Forest
121 Open forest, evergreen needle leaf 1 Evergreen Needleleaf Forest
122 Open forest, evergreen broad leaf 2 Evergreen Broadleaf Forest
123 Open forest, deciduous needle leaf 3 Deciduous Needleleaf Forest
124 Open forest, deciduous broad leaf 4 Deciduous Broadleaf Forest
125 Open forest, mixed 5 Mixed Forest
126 Open forest, unknown 3 Deciduous Needleleaf Forest
20 Shrubs 7 Closed Shrublands
30 Herbaceous vegetation 10 Grasslands

40 Cultivated and managed
vegetation/agriculture (cropland) 12 Croplands

50 Urban/built up 13 Urban and Build-Up
60 Bare/sparse vegetation 16 Barren or Sparsely Vegetated
70 Snow and Ice 15 Snow and Ice
80 Permanent water bodies 21 Lakes
90 Herbaceous wetland 11 Permanent Wetlands
100 Moss and lichen 16 Barren or Sparsely Vegetated
200 Open Sea 17 Water Bodies
0 No input data available 255 Unclassified

To implement stage three, the reclassified LULC CGLS-LC100 data were transformed
into binary data [46]. The data format was changed using GDALL [12]. In the WRF model,
the geogrid data concerning LULC are processed in the WRF Processing System (WPS).
In the WPS, the geogrid module interpolates the geographic data to the resolution of the
computational domains. The nearest neighbor method was used to interpolate the CGLS-
LC100 categorical data of LULC classes to the model grids. To initialize the WRF model
data calculation with CGLS-LC100, CLC, or default data, it is necessary to declare this at
the WPS list. The order of the declaration of the geographical data to be used by the WPS is
important because when the area is out of the coverage of the first set of data, the model
is using the second one, or if the areas are adjacent, the module completes the missing
area with the data from the second set [22]. The process of implementing CLC data into
the WRF model was presented in a previous article [22] by the authors. The visualization
of the overclassified LULC CLC and CGLS-LC100 classes to MODIS classes is shown in
Figure 2. It is worth highlighting that different classification methods were used to compile
those LULC data from the satellite data. CLC data are based on manual classification,
and CGLS-LC100 data are based on pixel-based (spectral) classification. The thematic
classification accuracy of CLC data is above 85%, and CGLS-LC100 is above 80%. The area
of Figure 2 includes the area of the city of Warsaw, which was taken as the study area.

For the analyzed synoptic situations, a detailed analysis of the forecast errors at
individual measuring stations and aggregate analyses of the errors for individual days
were carried out. The values of the average forecast errors for all analyzed synoptic
situations and meteorological measuring stations were determined. The data extraction
and calculation of the verification indices characterizing the quality of the forecasts were
performed in Python language [56].



Remote Sens. 2023, 15, 2389 6 of 25Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 26 
 

 

  
(a) (b) 

Figure 2. Visualization of LULC data for the Warsaw area from the: (a) CLC; (b) CGLS-LC100. 

For the analyzed synoptic situations, a detailed analysis of the forecast errors at indi-
vidual measuring stations and aggregate analyses of the errors for individual days were 
carried out. The values of the average forecast errors for all analyzed synoptic situations 
and meteorological measuring stations were determined. The data extraction and calcu-
lation of the verification indices characterizing the quality of the forecasts were performed 
in Python language [56]. 

To verify the quantitative meteorological forecasts, the following statistics were cal-
culated: mean error (ME), mean absolute error (MAE), root-mean-square error (RMSE), 
mean squared error (MSE), bias error (BIAS), Pearson correlation coefficient (R), and nor-
malized root-mean-square error (nRMSE) (Table 2). To verify the results of the numerical 
modelling of weather forecasts, hourly data from a network of road meteorological sta-
tions [49] and airport meteorological stations within Warsaw were used (Figure 3). 

Table 2. Definition of the statistical indicators [57–59]. 

Indicators Definition 
Mean error (ME) ME = ∑ ( ) 
Mean absolute error (MAE) MAE =  ∑ | | 
Root-mean-square error (RMSE) RMSE = ∑ ( )   
Mean squared error (MSE) MSE = ∑ ( )  

Pearson correlation coefficient (R) R =  ∑ (  )(  )∑ (  ) ∑ (  )  

Bias error (BIAS) BIAS =  ∑∑  

Normalized root-mean-square error (nRMSE) nRMSE = ∗ %∑  

Figure 2. Visualization of LULC data for the Warsaw area from the: (a) CLC; (b) CGLS-LC100.

To verify the quantitative meteorological forecasts, the following statistics were calcu-
lated: mean error (ME), mean absolute error (MAE), root-mean-square error (RMSE), mean
squared error (MSE), bias error (BIAS), Pearson correlation coefficient (R), and normalized
root-mean-square error (nRMSE) (Table 2). To verify the results of the numerical modelling
of weather forecasts, hourly data from a network of road meteorological stations [49] and
airport meteorological stations within Warsaw were used (Figure 3).

Table 2. Definition of the statistical indicators [57–59].

Indicators Definition

Mean error (ME) ME =

n
∑

i=1
( f i−oi)

n

Mean absolute error (MAE) MAE =

n
∑

i=1
| f i−oi |

n

Root-mean-square error (RMSE) RMSE =

√
n
∑

i=1
( fi−oi)

2

n

Mean squared error (MSE) MSE =

n
∑

i=1
( f i−oi)

2

n

Pearson correlation coefficient (R) R =

n
∑

i=1

(
fi−
−
f
)(

oi−
−
o
)

√
n
∑

i=1

(
fi−
−
f
)2
√

n
∑

i−1

(
oi−

−
o
)2

Bias error (BIAS) BIAS =
1
n

n
∑

i=1
fi

1
n

n
∑

i=1
oi

Normalized root-mean-square error (nRMSE) nRMSE = RMSE∗100%
1
n

n
∑

i=1
oi
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Figure 3. Network of meteorological stations of the City Cleaning Board within the city of Warsaw
accepted for the study (in black circles) and airport meteorological stations (based on reference [60]).

The network of road meteorological stations consists of automatic meteorological
measurement stations located in the strip of national roads, which allow the forecasting of
atmospheric phenomena occurring in the road area, especially the phenomenon of glaze, to
support seasonal road maintenance decision-making processes. The number of stations
installed in each road section depends strictly on the microclimatic conditions of the road
sections by maintaining, as far as practical, standards of representativeness of the meteoro-
logical measurements; hence, they characterize local-to-microscale conditions [61,62]. The
network of measuring stations in the Warsaw agglomeration consists of eighteen measuring
stations, as shown in Table 3. Because not all measuring stations carry out measurements
of wind speed and direction, for this study, we used eleven stations, from which measure-
ments of all four analyzed meteorological parameters were available. Other data used to
verify the results of numerical modeling of weather forecasts were obtained from airport
meteorological stations Okecie (EPWA) with coordinates: 52◦9′46′′N, 20◦57′40′′E [49] and
Babice (EPBC) with coordinates: 52◦16′0′′N, 20◦55′0′′E.
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Table 3. Coordinates list of locations of automatic weather stations of the City Cleaning Board.

No. Station Name Coordinates No. Station Name Coordinates

1 Bielany 52◦17′32.675′′N
20◦58′22.367′′E 10 Most Polnocny 52◦20′7.439′′N

20◦57′41.219′′E

2 Czecha 52◦13′32.231′′N
21◦9′57.347′′E 11 Plochocinska 52◦18′23.88′′N

20◦57′05.84′′E

3 Drewny 52◦7′38.892′′N
21◦5′48.407′′E 12 Pulawska 52◦19′38.963′′N

21◦1′45.227′′E

4 Izbicka 52◦10′45.551′′N
21◦13′58.368′′E 13 Radzyminska 52◦9′12.6′′N

21◦1′5.231′′E

5 Jelonki 52◦13′6.995′′N
20◦54′33.912′′E 14 Siekierkowska 52◦16′45.797′′N

21◦4′9.691′′E

6 Jerozolimskie 52◦12′14.615′′N
20◦56′26.555′′E 15 Torwar 52◦12′9.252′′N

21◦3′57.887′′E

7 Krakowska 52◦10′30.719′′N
20◦56′39.803′′E 16 Wilanow 52◦13′23.412′′N

21◦2′39.623′′E

8 Lazurowa 52◦14′46.5′′N
20◦53′52.044′′E 17 ZOO 52◦15′14.147′′N

21◦1′19.596′′E

9 Modlinska 52◦20′7.439′′N
20◦57′41.219′′E 18 Zolnierska 52◦15′31.56′′N

21◦8′32.885′′E

2.2. Study Area and Synoptic Situations

The area of the capital city of Warsaw was taken as the study area. This city is located
in the central-eastern part of Poland (Figure 4). Built-up and urbanized area account for
almost 60% of the total city’s area. This influences the formation of conditions characteristic
for urban weather in Warsaw. Among other things, ten ventilation corridors of the city are
observed in the Warsaw area. The impact of anthropogenic factors is important in weather
modeling. Urban forecasting requires increasing the computational resolution of the model
and, thus, also provides appropriate geographic data that will be used by the model. As for
the larger computational domains of the WRF model for Warsaw, their area often includes
the non-CLC area as well.
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For the area of Poland, CLC data are available, yet, unfortunately, their coverage ends
at the eastern border of Poland. This motivated the article’s authors to research the use of
alternative sources of high-resolution CGLS-LC100 data, whose coverage also includes the
area in the east of Poland.

For the analysis, a random period was selected, during which there was eastern
advection in Warsaw conditioned by the distribution of baric systems (Figure 5). This was
the period from 22 June 2020, 00:00 UTC, to 27 June 2020, 00:00 UTC. During the first part
of the term (22–24 June 2020), the weather in Warsaw was shaped between the eastern part
of the anticyclone over France and the bordering rear part of the cyclone over the Black
Sea. The occurring unstable air mass, additionally aided by convergent airflow, favored the
formation of a convergence line (22 June 2020). During the day, Cu and Cb clouds were
present over Warsaw.

In the following days (23–24 June 2020), the formation of a cold front of an occluding
system could be observed, along which thunderstorms commonly occur in summer. In the
filling gulfs and away from the center of the low, the cloud systems of the occluded fronts
have less vertical extension and are strongly stratified. It is worth noting that this front was
associated with an upper low whose center moved from the Baltic Sea over western Poland
to the Czech Republic.

In the second part of the analyzed period (25–27 June 2022), the high-pressure center
from Western Europe moved over the northern Baltic Sea and farther through the Baltic
countries to western Russia. During this period, Warsaw was under the influence of
the western edge of the mentioned anticyclone. In summer, at the western edge of the
anticyclone with high temperature, humidity, and thermodynamic instability, storms often
occur in the formation of convergence lines. Furthermore, in diffuse pressure fields and on
the western edges of inactive anticyclones, when the air mass in the ground layer heats
up, and the humidity of this mass increases, with significant air mass instability, when
there are conditions for strong daytime heating of the ground air layer, and high humidity
persisting at an altitude of several kilometers and the absence of inversion and isothermal
layers, thunderstorms form in homogeneous air masses.

With reference to the previously mentioned eastern inflow over the Warsaw area,
it is worth noting that from the practical use of numerical weather forecast models by
the synoptics, it appears that with eastern inflows over the Polish area, the models are
characterized by lower forecasting capabilities than with western inflows, which may be
caused, among other reasons, by a smaller number of observations and radiosonde data
from Eastern Europe. It is worth noting that the formation of convergence lines is the most
surprising weather pattern and is generally not well forecasted. In general, convergence
lines are not always predicted in numerical weather forecast models, especially those with
low spatial resolutions. The local factors that favor convergence lines (landforms, local
pressure differences, small changes in atmospheric conditions at different altitudes and
sea breezes) are difficult to account for in numerical models, leading to imperfections in
their forecasting. Forecasting convergence lines requires synopticians to keep a close eye
on the development of atmospheric processes to be able to warn the concerned institutions
in time about the possibility of their occurrence because if there are thunderstorms on the
convergence line, then it is called a squall line.

It is interesting to note that on 26 June 2020 (Figures 5 and 6), there was a line of
convergence over Warsaw, which was not forecasted by the WRF model. Therefore, the
model results deviated significantly from the actual conditions. According to the model,
the daytime temperature was expected to have a normal diurnal distribution, and the obser-
vational data show that there was a pronounced drop in temperature after the convergence
line passed. Squall lines are narrow zones with thunderstorms, precipitation, and squalls
with characteristics like those of cold fronts, but which are local and short-lived results of
thunderstorm activity. They often form in the warm and unstable sectors of low-pressure
systems before cold fronts or on the edge of high-pressure systems where incoming cold air
pushes warmer air upwards, causing convective phenomena to develop. In other words,



Remote Sens. 2023, 15, 2389 10 of 25

the term describes an unstable air mass characterized by increased turbulence and the
development of convection with corresponding cloudiness.
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Figure 6. Examples of the results of daily temperature distributions from three variants of the model
simulation on different geographical data and the results of measurements from meteorological
stations (meteo stations) on 26 June 2020 at the analyzed meteorological stations: (a) Bielany; (b)
Modlinska; (c) Most Polnocny; (d) Okecie.

2.3. WRF Model

The WRF model is a non-hydrostatic mesoscale weather forecast model. The model
has been designed and developed continuously for more than 22 years, among others,
by the National Oceanic and Atmospheric Administration (NOAA), National Centers for
Environmental Prediction (NCEP), National Center for Atmospheric Research (NCAR),
Air Force Weather Agency (AFWA), Forecast Systems Laboratory (FSL), Federal Aviation
Administration (FAA), and the United States Air Forces (USAF) [8]. The WRF model
output accuracy depends on the accuracy of the input data, the topography of the terrain,
geographical data, the quality of the parametrization of the physical processes it models,
the model version, and synoptic situations. For the purposes of this study, WRF model
version 4.2.1 was used. The WRF model set-up for the conducted studies is presented in
Table 4. The WRF model was run on the data (first approximation fields and boundary
conditions) of the superior Global Forecast System (GFS) model with a resolution of 0.25◦

(~28 km) [64]. Due to the higher spatial resolution of the regional and mesoscale WRF
simulations compared to the GFS, downscaling was carried out using multiple nesting.
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Table 4. The WRF model configuration used in the experiment for computational domains (D).

Parameters D1 D2 D3

Spatial resolution 2.5 × 2.5 km 500 × 500 m 100 × 100 m
Surface layer scheme Revised MM5 Revised MM5 Revised MM5
Planetary boundary layer (PBL) scheme YSU none none
Radiation scheme RRTMG RRTMG RRTMG
Microphysics WSM6 WSM6 WSM6
Cumulus none none none
Land surface Noah Noah Noah
Topographic datasets SRTM/GMT2010 SRTM/GMT2010 SRTM/GMT2010
Land use CLC/CGLS-LC100/MODIS CLC/CGLS-LC100/MODIS CLC/CGLS-LC100/MODIS

It is worth noting that the spatial resolution of the global model is sufficient to provide
data for regional, mesoscale, and even microscale models. For comparison, synoptic
stations in Poland are spaced approximately every 50 km. The spatial resolution of the
model used for the simulation was 2.5 km for the first domain (D1), 500 m for the second
(D2), and 100 m for the third (D3). The forecasts for each day started at 00:00 UTC, the
spin-up time was 6 h, and the forecast time was 24 h with one-hour output data. The
selection of parametrization schemes of the WRF physical processes was conducted based
on the studies for the Central European area [64,65] and other recent studies related
to this subject [66,67]. Based on that, the revised MM5 Monin–Obukhov surface layer
scheme [9,65,66,68] was used in this study (for all domains). For planetary boundary layer
(PBL) parameterization, the Yonsei University Scheme (YSU) [9,64,65,69] was applied for
the first domain. In the second and third domain, explicit vertical diffusion was used
directly (non-PBL parameterization) [9,65,70–72]. For those domains, the horizontal and
vertical eddy viscosities were determined using 3D Smagorinsky turbulence [9]. For all
domains, microphysics parametrization WSM6 [7] and RRTMG longwave and shortwave
radiation schemes [8] were used.

3. Results

As a result of simulating the WRF model in three variants, the distributions of basic
meteorological parameters (temperature (Figure 6), relative humidity, wind direction and
speed) were obtained.

The results were compared with the observations and then, to determine the quality
of the forecasts of the meteorological parameters, they were verified based on the values of
statistical indicators (Table 2).

To show that not only the terrain but also land cover influence the wind simulation, the
example results of different geographical data setups for the third domains are summarized
in Figure 7. The forecast of wind speed and direction is influenced, as are the forecasts of
the other elements analyzed, by both the topography of the terrain and its cover. Land
cover roughness and heat capacity significantly influence wind formation, distribution,
and intensity.

The analysis of the forecast error values of individual parameters was divided into the
analysis of forecast errors for individual days for all analyzed stations and the analysis of
errors at a given measuring station for the complete study period. The value of the forecast-
ing errors of individual parameters averaged over stations and days was also calculated
(Tables 5 and 6). Analyses of the values of the temperature forecast errors for individual
days average over stations (Figure 8) showed that in 80% of the situations studied, the use
of CLC or CGLS-LC100 data improved the obtained results. This improvement was greater
for simulations using CLC data than those using CGLS-LC100.
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Table 5. Average statistical evaluation of the simulations error values: ME, MAE, RMSE, MSE for
five-day (22–27 June 2020) 24 h simulations for all stations (13 stations: 11 automatic and 2 airport
stations) with 6 h spin-up time.

Average
Statistics

Model
Simulation

Temperature
(◦C)

Relative
Humidity

(%)

Wind Speed
(m/s)

Wind
Direction

(◦)

Default 0.98 −11.29 2.15 36.46
ME CLC 0.79 −9.75 2.01 21.79

CGLS 0.85 −10.31 2.19 31.52

Default 1.80 15.07 2.28 80.74
MAE CLC 1.65 13.97 2.22 76.43

CGLS 1.68 14.09 2.35 76.20

Default 2.28 17.51 2.39 99.12
RMSE CLC 2.11 16.38 2.35 90.99

CGLS 2.14 16.51 2.46 92.49

Default 6.03 368.93 6.57 12,415.11
MSE CLC 5.21 324.56 6.31 10,047.97

CGLS 5.33 331.32 6.93 10,831.89



Remote Sens. 2023, 15, 2389 14 of 25

Table 6. Average statistical verification results (Pearson’s correlation coefficient (R), BIAS, and
nRMSE) of the simulations for five-day (22–27 June 2020) 24 h simulations for all stations (13 stations:
11 automatic and 2 airport stations) with 6 h spin-up time.

Average
Statistics

Model
Simulation Temperature Relative

Humidity Wind Speed Wind
Direction

Default 0.81 0.63 0.46 0.23
R CLC 0.82 0.63 0.36 0.25

CGLS 0.82 0.64 0.52 0.23

Default 1.05 0.87 2.52 1.36
BIAS CLC 1.04 0.89 2.47 1.27

CGLS 1.02 0.88 2.56 1.33

Default 10.58 22.75 105.54 67.72
nRMSE (%) CLC 9.77 21.28 103.67 62.17

CGLS 9.91 21.46 108.45 63.19

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 

   
(a) (b) (c) 

Figure 8. Distribution of mean values of temperature forecast errors for the analyzed synoptic situ-
ations average over stations: (a) RMSE; (b) BIAS; (c) R. 

Analysis of the RMSE values for the individual measurement stations (Figure 9) av-
eraged over days showed the greatest improvement in temperature forecast results when 
using CLC data (the matrix mesh near ideal value has lighter color). The improvement 
over the simulation in the default configuration also occurred when CGLS-LC100 data 
were used. The analysis of BIAS values for individual measuring stations showed that in 
only at two stations (Plochocinska and Wilanow) of the thirteen analyzed stations, the 
value for the default simulation was better than for the CLC or CGLS-LC100 simulations. 
The value of the Pearson correlation coefficient (R) of temperature forecast, an average 
over stations and days, was the best for the simulation on CLC data, and it was 0.82 (Table 
4). 

   
(a) (b) (c) 

Figure 9. Distribution of mean temperature forecast errors at individual weather stations average 
over days: (a) RMSE; (b) BIAS; (c) R. 

Figure 8. Distribution of mean values of temperature forecast errors for the analyzed synoptic
situations average over stations: (a) RMSE; (b) BIAS; (c) R.

Analysis of the RMSE values for the individual measurement stations (Figure 9)
averaged over days showed the greatest improvement in temperature forecast results when
using CLC data (the matrix mesh near ideal value has lighter color). The improvement over
the simulation in the default configuration also occurred when CGLS-LC100 data were
used. The analysis of BIAS values for individual measuring stations showed that in only at
two stations (Plochocinska and Wilanow) of the thirteen analyzed stations, the value for
the default simulation was better than for the CLC or CGLS-LC100 simulations. The value
of the Pearson correlation coefficient (R) of temperature forecast, an average over stations
and days, was the best for the simulation on CLC data, and it was 0.82 (Table 4).
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The verification of the relative humidity forecasts for the synoptic situations analyzed
revealed (Table 6, Figure 10) that the near-ideal value of forecasts, as determined by
Pearson’s correlation coefficient (R), was obtained by the model simulations using CLC.
BIAS indicated higher agreement between forecasts and observations for CLC simulations.
Moreover, ME, MAE, RMSE, and MSE showed the highest agreement with observations
for the simulations plotted using CLC. For 80% of the analyzed cases, the use of CLC or
CGLS-LC100 data effectively improved relative humidity forecasts.
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The verification of the relative humidity forecasts at individual gauging stations
(Figure 11) showed that at 69% of stations, the use of CLC or CGLS-LC100 data improved
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the obtained weather forecast results compared to simulations using default geographical
data. Despite the fact that the average value (for all surveyed stations and for the whole
analyzed five-day period of the simulation) of the RMSE for relative humidity forecast
was better (the lowest) for simulations using CLC when analyzing the average value of
the correlation coefficient (R), the best result was achieved for simulations on CGLS-LC100
data, and it was 0.64 (Table 6).

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 26 
 

 

 
 

 

(a) (b) (c) 

Figure 11. Distribution of mean relative humidity prediction errors at individual weather stations 
average over days: (a) ME; (b) BIAS; (c) R. 

   
(a) (b) (c) 

Figure 12. Distribution of mean values of wind speed forecast errors for the analyzed synoptic 
situations average over stations: (a) RMSE; (b) BIAS; (c) R. 

A detailed analysis of the errors at individual stations showed that for 54% of the 
stations studied, the BIAS value for CLC and CGLS-LC100 simulations was closer to the 
ideal value than for simulations of the default parameters (Figure 13). The value of the 
Pearson correlation coefficient (R) of the wind speed forecast was the best for the simula-
tion on CGLS-LC100 data, and it was 0.52 (Table 6). 
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The verification of the wind speed forecasts for the examined synoptic situations in
the three different variants showed that the values of the mean errors (ME, MAE, MSE, and
RMSE) were the lowest for the simulation using the CLC data (Figure 12). BIAS also showed
the highest compliance for CLC simulations (Table 6). For 60% of the analyzed cases, the
use of CLC data enhances the capability of receiving more accurate wind speed forecasts.
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A detailed analysis of the errors at individual stations showed that for 54% of the
stations studied, the BIAS value for CLC and CGLS-LC100 simulations was closer to the
ideal value than for simulations of the default parameters (Figure 13). The value of the
Pearson correlation coefficient (R) of the wind speed forecast was the best for the simulation
on CGLS-LC100 data, and it was 0.52 (Table 6).

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 26 
 

 

   
(a) (b) (c) 

Figure 13. Distribution of mean values of wind speed forecast errors at individual weather stations 
average over days: (a) RMSE; (b) BIAS; (c) R. 

Analysis of wind direction forecasts for the examined synoptic situations showed 
that the value of mean error (ME), mean square error (MSE), and BIAS reached the most 
desirable value for simulations using CLC (Tables 5 and 6, Figure 14). Furthermore, sim-
ulations using CGLS-LC100 showed higher accuracy in terms of wind direction forecasts 
than simulations on default data. 

   
(a) (b) (c) 

Figure 14. Distribution of mean values of wind direction forecast errors for the analyzed synoptic 
situations average over stations: (a) ME; (b) BIAS; (c) R. 

A detailed analysis of the errors at individual stations showed that for 77% of the 
stations studied, the BIAS value for CLC and CGLS-LC100 simulations was closer to the 
ideal value than for simulations on default parameters (Figure 15). The value of the Pear-
son correlation coefficient (R) of the wind speed forecast was the best for the simulation 
on CGLS-LC100 data, and it was 0.25 (Table 6). RMSE and R were more sensitive to large 

Figure 13. Distribution of mean values of wind speed forecast errors at individual weather stations
average over days: (a) RMSE; (b) BIAS; (c) R.

Analysis of wind direction forecasts for the examined synoptic situations showed
that the value of mean error (ME), mean square error (MSE), and BIAS reached the most
desirable value for simulations using CLC (Tables 5 and 6, Figure 14). Furthermore,
simulations using CGLS-LC100 showed higher accuracy in terms of wind direction forecasts
than simulations on default data.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 26 
 

 

   
(a) (b) (c) 

Figure 13. Distribution of mean values of wind speed forecast errors at individual weather stations 
average over days: (a) RMSE; (b) BIAS; (c) R. 

Analysis of wind direction forecasts for the examined synoptic situations showed 
that the value of mean error (ME), mean square error (MSE), and BIAS reached the most 
desirable value for simulations using CLC (Tables 5 and 6, Figure 14). Furthermore, sim-
ulations using CGLS-LC100 showed higher accuracy in terms of wind direction forecasts 
than simulations on default data. 

   
(a) (b) (c) 

Figure 14. Distribution of mean values of wind direction forecast errors for the analyzed synoptic 
situations average over stations: (a) ME; (b) BIAS; (c) R. 

A detailed analysis of the errors at individual stations showed that for 77% of the 
stations studied, the BIAS value for CLC and CGLS-LC100 simulations was closer to the 
ideal value than for simulations on default parameters (Figure 15). The value of the Pear-
son correlation coefficient (R) of the wind speed forecast was the best for the simulation 
on CGLS-LC100 data, and it was 0.25 (Table 6). RMSE and R were more sensitive to large 

Figure 14. Distribution of mean values of wind direction forecast errors for the analyzed synoptic
situations average over stations: (a) ME; (b) BIAS; (c) R.



Remote Sens. 2023, 15, 2389 18 of 25

A detailed analysis of the errors at individual stations showed that for 77% of the
stations studied, the BIAS value for CLC and CGLS-LC100 simulations was closer to the
ideal value than for simulations on default parameters (Figure 15). The value of the Pearson
correlation coefficient (R) of the wind speed forecast was the best for the simulation on
CGLS-LC100 data, and it was 0.25 (Table 6). RMSE and R were more sensitive to large
forecast errors, so the errors shown for several stations outweighed the final result of the
statistical analyses for all weather stations (Figure 15).
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Tables 5 and 6 show the average forecast errors of forecast parameters for the whole
analyzed period and all of the analyzed meteorological stations (road network and airport
stations). The average forecast error in this study is described as the error average for
stations and days. Tables 7 and 8 present the verification results (average for stations and
days) exclusively for airport meteorological stations, which meet the WMO requirements
for location and, thus, should yield more objective analysis results.

Table 7. Average statistical evaluation of error values: ME, MAE, RMSE, MSE for five-day
(22–27 June 2020) 24 h simulations for two airport stations (spin-up time, 6 h).

Average
Statistics

Model
Simulation

Temperature
(◦C)

Relative
Humidity

(%)

Wind Speed
(m/s)

Wind
Direction

(◦)

Default 1.14 −8.31 0.14 3.00
ME CLC 0.93 −6.78 −0.16 −19.00

CGLS 0.94 −7.14 0.20 −1.60

Default 1.72 12.71 0.62 30.60
MAE CLC 1.64 12.00 0.68 32.00

CGLS 1.65 12.02 0.74 33.00

Default 2.17 14.99 0.79 39.66
RMSE CLC 2.07 13.95 0.92 43.09

CGLS 2.08 14.07 0.93 40.63

Default 5.52 264.35 0.62 1611.40
MSE CLC 4.91 219.66 0.85 1931.20

CGLS 4.97 223.48 0.90 1653.00
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Table 8. Average statistical verification results (Pearson’s correlation coefficient, BIAS, and nRMSE)
of the simulations for five-day (22–27 June 2020) 24 h simulations for all stations (13 stations:
11 automatic and 2 airport stations) with 6 h spin-up time.

Average
Statistics

Model
Simulation Temperature Relative

Humidity Wind Speed Wind
Direction

Default 0.79 0.62 0.47 0.94
R CLC 0.80 0.64 0.35 0.88

CGLS 0.79 0.64 0.52 0.92

Default 1.06 0.90 1.04 1.02
BIAS CLC 1.05 0.92 0.98 0.90

CGLS 1.05 0.92 1.06 0.99

Default 10.24 19.93 18.33 21.29
nRMSE (%) CLC 9.75 18.54 21.36 23.13

CGLS 9.82 18.70 21.55 21.81

For temperature and relative humidity forecasts for both the airport weather stations
and all of the analyzed weather stations, the smallest average forecast errors (RMSE,
ME, MAE, and MSE) were obtained by the CLC simulations. The errors in the CGLS-
LC100 simulations were slightly higher. Simulations using default data introduced the
worst results. Furthermore, the BIAS and R-factor values showed the highest accuracy in
terms of temperature and relative humidity forecasts for simulations for airport stations
and temperature forecasts for simulations for all of the analyzed weather stations using
CLC (Tables 6 and 8). The average value of the temperature forecast improvement for
simulations using CLC data compared to the default data was 0.19 ◦C. The average value
of the difference between the observed and modeled temperatures was 0.79 ◦C in the
CLC simulation, 0.85 ◦C in the CGLS-LC100 simulation, and 0.98 ◦C in the simulation
using the default data (Table 5). According to ICAO annex 3, the temperature for aviation
purposes should be predicted with an accuracy of ±1 ◦C. Therefore, even such a seemingly
small improvement in model forecast capability is important for synoptics. The statistical
verification of the predicted parameters showed (Table 6) that for the 2 m temperature
prediction, the use of CLC data allowed the nRMSE to be decreased by 0.81% and by 0.67%
when using CGLS-LC100 data compared to the results obtained in default geographical
data simulations.

The greatest improvement in the average relative humidity forecast value was recorded
for the CLC simulation. For the three simulation variants analyzed, the average relative
humidity forecast error for the CLC simulations compared to the default simulations
decreased by 1.54% (Table 5). For relative humidity forecasts, the decrease in nRMSE
for the simulations using CLC was 1.47% and 1.29% for CGLS-LC100 compared to the
default simulations (Table 6). The value of the average difference between the observed
and modeled relative humidity was −9.75% for the CLC simulation, −10.31% for the
CGLS-LC100 data, and −11.29% for the default data (Table 5). It is notable that for the
analyzed period, the model overestimated the average value of the forecast temperature
by about 0.8 ◦C to 1.1 ◦C (Tables 5 and 7). As for relative humidity, it underestimated its
value by 6.8% to 11.3% (Tables 6 and 8). These significant errors may have been caused
by the presence of squall lines during the analyzed period, which are not always properly
forecasted by the WRF model (Figure 6).

As far as the wind speed analyses for airport stations and all of the analyzed mete-
orological stations are concerned, the lowest value of the mean forecast error (ME) was
obtained by the CLC simulation, a slightly higher error was obtained by the simulation
using default data, and the worst result was noted for the simulation using CGLS-LC100
(Tables 5 and 7). An increase of 2.90% in nRMSE was recorded for the wind speed simula-
tion using CGLS-LC100 data compared to the simulation using default data (Tables 6 and 8).
The value of the improvement in wind speed forecasts was below the acceptable wind
speed measurement error (0.5 m/s). According to ICAO annex 3, the wind speed reading
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required for aviation should be predicted with an accuracy of ±2.5 m/s and a wind direc-
tion of±20◦. The average value of the difference in wind speed measured to result from the
model was 2.15 m/s for the simulation on the default data, 2.01 m/s for the CLC simulation,
and 2.19 m/s for the CGLS-LC100 simulation. The mean value of the improvement after
applying the CLC data was 0.14 m/s (Tables 5 and 6). It is also worth noting that in the
case of the wind speed forecast, the value of the average forecast error (for stations and
days) was about 2 m/s higher for stations from the network of road meteorological stations
(Tables 5 and 7) in comparison with the values obtained for airport meteorological stations
(or stations situated in open areas, such as Most Polnocny). This may be caused by the
failure to maintain a 30 m separation of the measuring station from terrain obstacles.

As for the wind direction analysis for all analyzed meteorological stations, the lowest
mean forecast error (for stations and days) was obtained for simulations with CLC. More-
over, for the simulations created with CGLS-LC100, lower values of the mean error of the
wind direction forecast were obtained than for the simulations on the default data.

For wind direction, a decrease in nRMSE of 5.55% was recorded for the simulation
using CLC and a decrease of 4.53% for the CGLS-LC100 simulation compared to the
simulation using default data (Table 8). The average difference (for all stations and days)
between the wind direction calculated by the model and measured was 36.46◦ for the default
simulations, 21.79◦ for the CLC simulation, and 31.52◦ for the CGLS-LC100 simulation
(Table 5). The use of CLC simulations resulted in an average improvement of 14.68◦.

4. Discussion

The correctness of forecasting atmospheric phenomena is determined by the accuracy
of the basic meteorological parameters forecast by the numerical model; therefore, it is
important to improve the accuracy of forecasting basic meteorological parameters even
slightly, for example, by updating the geographical data (LULC, topography) used by
numerical weather prediction models. Measurements, as well as the prognostic values of
meteorological parameters in numerical weather prediction models, are used to develop
forecasts of atmospheric phenomena (e.g., glaze or fog) or prognoses of the amount of
energy obtained from renewable sources. WMO requirements [50] for the accuracy of
measurements of individual meteorological parameters indicate the need to provide highly
accurate measurements of individual meteorological parameters for both aviation and
synoptic meteorology. Based on that, the accuracy of the meteorological measurements
used for synoptic, aviation, or agrometeorological purposes should be as follows: tem-
perature, ±0.1 ◦C; relative humidity, ±1%; wind speed, ±0.5 m/s; and wind direction,
±5◦. According to this article’s authors, those values could be equated with the accuracy
requirements of an ideal weather forecast model. According to the received values of
forecast errors, it could be seen that the received values of the prognosed parameters meet
the ICAO requirements for an operationally desirable accuracy of forecasts, which should
be as follows: temperature, ±1.0 ◦C; wind speed, ±2.5 m/s; and wind direction, ±20◦, for
at least 80% of cases.

Based on conducted studies, it can be seen that the implementation of higher-resolution
geographical data has allowed for increased forecast accuracy for Warsaw. The implemen-
tation of higher-resolution and more up-to-date LULC data resulted in receiving more
consistent values in terms of temperature and relative humidity forecasts. The greatest
improvement was received in terms of CLC data implementation. For CGLS-LC100 data
implementation, improvements also occurred compared to the default simulations. The
results obtained after the implementation of the CLC data did not confirm the temperature
overestimation effect observed in Northern Italy [31], but confirmed the results received
after global LULC data implementation for Xinjang in northwest China [13]. The improve-
ment in temperature forecast after CLC data implementation to the WRF model was also
confirmed for Berlin [38] and Austrian regions [39]. The use of USGS data as a default
for studies concluded that for Berlin, the temperature is underestimated [38], whereas for
the use of MODIS data as a default, there was overestimation in temperature for Warsaw.
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In addition, for the analyzed period and the stations studied, the forecasted temperature
value after the implementation of the high-resolution LULC data showed a decrease, which
is caused by a better representation of small green areas in the city.

For wind speed forecasts after higher-resolution geographical data implementation for
the analyzed areas, a reduction in wind speed was visible. The wind speed decrease was
not as high as noted for other regions in Europe [36], which could be caused not only by the
roughness length of land use and land cover classes, but also by the better representation of
friction in higher-resolution topography. The received differences in wind speed forecasts
between airport and road meteorological network stations indicate that there are microscale
environmental influences in the urban area in terms of the measurement of wind speed and
direction by the road meteorological stations. The BIAS and RMSE values illustrated that
the simulated near-surface parameters improved when using the highest and more-updated
land use and land cover data with a topography adequate to its resolution. The received
results indicate that for the analyzed area, a better representation of LULC data is achieved
through CLC data than CGLS-LC100, which confirmed its higher thematic accuracy.

Overestimation of the wind speed forecasts at the WRF model during spring and
summer was also emphasized in other works [73]. Some steps for an additional increase
of wind speed forecast verifiability can be taken; for example, the use of additional mea-
surements of wind speed in the planetary boundary layer from the Doppler wind LiDARs
(Light Detection and Ranging) [74] can provide high-accuracy reference data to validate
the NWP model. Moreover, that data assimilation can improve the WRF accuracy of wind
simulations [73,75].

Our research shows the possible effect of basic meteorological parameter forecast im-
provement when using more accurate LULC data in very high-resolution WRF modeling. It
is worth emphasizing that the WRF model results can have different accuracy for different
seasons, synoptic situations, and localizations. Therefore, to provide a more convincing
statistical assessment, the study will be continued considering different synoptic situations
over a longer period for different seasons and locations. Moreover, due to the develop-
ment of increasingly up-to-date land cover and land use data, e.g., from the Sentinel-2
mission [76], research into their impact on numerical weather modeling results will be
carried out. The currently available 10 m spatial resolution of land cover and land use data
from Sentinel 2 Global Land Cover (S2GLC) provide several opportunities for microscale
urban weather modeling.

5. Conclusions

Research studies on the impact of land use and land cover on the results of WRF
numerical weather prediction model simulations show that providing more up-to-date
LULC data with a higher level of detail can effectively improve numerical weather forecast-
ing of basic meteorological parameters. Most of the studies known to the authors on this
topic for the European area have investigated the effect of CLC data implementation on
WRF simulation results. Due to the limited coverage of CLC data, the authors developed
and tested global land use and coverage data from CGLS at the WRF model. The authors
analyzed the impact of implementing high-resolution (100 × 100 m) data on land cover
and land use from two independent sources, which are CLC and CGLS-LC100.

For the analyzed period, the use of CLC data allowed for an average improvement in
the forecasting of temperature by 0.2 ◦C, relative humidity by 1.5%, wind speed by 0.1 m/s,
and wind direction by 14.7◦ over the default data. The use of CGLS-LC100 data allowed
for an average improvement of 0.1 ◦C in temperature forecast, 1.0% in relative humidity,
0.04 m/s in wind speed, and 4.9◦ in wind direction compared to the results obtained on
the default data. The results indicate the possible effects of basic meteorological parameter
forecast improvement when using higher-accuracy LULC data in high-resolution WRF
modeling. Nevertheless, forecasts of meteorological parameters are affected in general by
different synoptic situations at each season. Therefore, to ensure the statistical significance
of the results, long time series are needed to verify of the new LULC datasets in various
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synoptic conditions for various seasons and localizations to determine whether CLC and
CGLS-LC100 can successfully improve numerical weather forecasts.

Based on the results, it is expected that the use of CLC data more effectively improves
numerical weather forecasting capability for Warsaw than CGLS-LC100 data, and, hence,
the authors suggest that for high-resolution simulations of the WRF model, if CLC data
are available for the area under analysis, these data should be considered to be used first,
and in the cases where the analyzed area is outside the range of the CLC, data from the
CGLS-LC100 from Copernicus should be used.
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