
Evaluation of High-Resolution Precipitation Estimates
from Satellites during July 2012 Beijing Flood Event
Using Dense Rain Gauge Observations

Sheng Chen1,2, Huijuan Liu3*, Yalei You4, Esther Mullens5,6, Junjun Hu7, Ye Yuan3, Mengyu Huang8,

Li He9,10, Yongming Luo9,10, Xingji Zeng11, Guoqiang Tang12, Yang Hong1,2

1 School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, United States of America, 2Advanced Radar Research Center,

National Weather Center, Norman, Oklahoma, United States of America, 3Anhui Weather Modification Office, Hefei, China, 4Departments of Earth, Ocean, and

Atmospheric Science, Florida State University, Tallahassee, Florida, United States of America, 5Cooperative Institutes for Mesoscale Meteorological Studies, University of

Oklahoma, Norman, Oklahoma, United States of America, 6 School of Meteorology, University of Oklahoma, Norman, Oklahoma, United States of America, 7 School of

Computer Science, University of Oklahoma, Norman, Oklahoma, United States of America, 8 Beijing Weather Modification Office, Beijing, China, 9 Remote Sensing

Application Test Base of National Satellite Center, Gaugnxi, China, 10Disaster Mitigation Institute of the Guangxi Meteorological Bureau, Nanning, Gaugnxi, China,

11Meteorological Information Center of the Guangxi Meteorological Bureau, Nanning, Gaugnxi, China, 12Department of Hydraulic Engineering, Tsinghua University,

Beijing, China

Abstract

Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge
network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and
PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of
precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall
by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to
capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively.
Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and
forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of
Beijing.
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Introduction

On July 21, 2012, Beijing experienced one of the heaviest rain

events in the past 60 years. The heavy rainfall triggered flash

flooding and landslides, which killed 79 people and caused US $2

billion in direct economic losses, destroying at least 8,200 homes in

the city and affecting more than 1.6 million people [1,2]. A Study

by [3] indicated that this extreme event was the result of a frontal

system and mid-troposphere disturbance. Sang et al. [4] pointed

out that topographic effects and natural climate variability,

coupled with a changing climate system, may have contributed

to the severity of this precipitation event. Additionally, low

standards for mountain torrents monitoring and control for

medium and small rivers in the effected regions contributed to

the high-impact flooding. The inhomogeneous precipitation, both

spatially and temporally, as well as excessive runoff due to

increasing impervious surface areas, contributed to severe

waterlogging in the urban area in Beijing.

Satellite-based quantitative precipitation estimates (QPE) prod-

ucts are widely applied to hydrologic modeling, hazards monitor-

ing and climate research due to their global coverage and spatial

continuity [5,6,7,8,9,10]. Thermal Infrared (IR) and passive

microwave (PMW) sensors are the most widely used instruments

to quantitatively estimate rainfall on the ground. The physical

bases of rainfall estimation from both IR and PMW sensors

imagery are well explored and explained by many previous works

[11,12,13]. Rainfall estimation from IR sensors depends on the

assumption that the surface rainfall can be inferred from analyzing

the cloud top characteristics, i.e., the cloud top temperature. That

is, where the clouds which can reach highest altitude, and

therefore have the lowest cloud top temperature are the most

probably to precipitate. On the other hand, passive microwave

measurements provide more physically direct link between

hydrometeors in the atmosphere and radiances observed from a

satellite. While being different in details, the PMW algorithms

estimate rainfall rates fundamentally under the same principle:

translating the scattering signature caused by ice water and/or

emission signature caused by liquid water into a surface rainfall

rate. Although the PMW sensors have clear advantages for rainfall

estimation since they provide more information from the

hydrometers themselves in the air, the IR sensors usually have
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much higher spatio-temporal resolution. Therefore, many recent

rainfall algorithms utilize brightness temperatures from both

PMW and IR sensors to achieve better rainfall estimation

accuracy. Algorithms which combine both the advantages of

PMW and IR were developed to estimate the rainfall

[14,15,16,17,18], for example, the IR-dominated Precipitation

Estimation from Remotely Sensed Information using Artificial

Neural Networks(ANN) [16] and later the PERSIANN-Cloud

Classification System (PERSIANN-CSS) [18], the National

Oceanic and Atmospheric Administration’s(NOAA) Climate

Prediction Center(CPC) morphing technique(CMORPH) [14].

Studies by Dinku et al. [19] and [20] shows that the CMORPH

and PERSIANN-CCS underestimated the rainfall by more than

30% in extreme precipitation events.

This study aimed to evaluate the performance of algorithms

PERSIANN-CCS and CMORPH with a relatively dense rain

gauge network over Beijing and the surrounding regions for the

July 21, 2012 extreme precipitation event. The paper is organized

as follows. Section 2 describes the study region and the evaluated

rainfall products. Section 3 provides an analysis of spatial

characteristics and error quantification for the rainfall from

00:00AM on July 21 to 00:00PM on July 22 2012. The total

rainfall accumulation, the temporal variation of mean hourly

rainfall, and rainfall contingency as a function of rainfall intensity

are described in this section. A summary of analysis results and

conclusions are provided in Section 4.

Study Region and Data

2.1 Study region
The study region, including Hebei province, Beijing and

Tianjin, spans from 36u9N to 42.5uN in latitude and from

113.5u089E to 120uE in longitude (Fig. 1). The east of study region

terminates at the Bohai Sea, the western at the Taihang mountain

ridge, and the northern at the Yanshan mountain ridge.

2.2 Data
Dense Automatic Weather Stations (AWS) gauge network

observations from 2401 stations (Figure 1b) are used as the ‘ground

truth’. The gauges are part of an enhanced dense gauge network

over China, providing hourly real-time weather observations for

authorized natural hazard monitoring departments and weather

service sectors. An analysis by Ren [21] shows that the average

rainfall error of gauge observations is 6.52% [32], which is much

smaller than satellite-based precipitation estimates. The satellite-

based quantitative precipitation estimates (QPE) products include

hourly PERSIANN-CCS with a spatial resolution 0.04u and 3-

hourly CMORPH with a spatial resolution 0.25u.

PERSIAN-CCS is an automated system for precipitation

estimation from remotely sensed information using the artificial

neural network, which extracts local and regional cloud features

from infrared geostationary satellite imagery to estimate rainfall

distribution. The system retrieves different rainfall rates at a given

brightness temperature (Tb) and detects variable rain/no-rain IR

thresholds for different cloud types [18,22]. In this study,

PERSIANN-CCS is resampled from 0.04u to 0.25u in order to

compare with CMPORH at the same scale.

CMORPH has a quasi-global coverage (60uS-60uN in latitude)

and is of very high-resolution (0.07278u, approximately 8 km, in

latitude/longitude, half-hourly) [14]. Motion vectors derived from

the half-hourly geostationary satellite IR imagery are used to

extrapolate the passive microwave precipitation estimates. This

technique improves the estimation of multi-hour precipitation

accumulation, better than the simple averaging of available

microwave-based estimates and other merging results that

incorporate microwave and infrared information in the estimation

[14]. Only the most recent one-month half-hourly/0.07278u

CMORPH product could be publically accessed, with data during

the July 21 Beijing flood event not available when this work was

initiated in October of 2012. Therefore, the 3 hourly/0.25u

CMORPH product was used together with PERSIANN-CCS to

compare with the gauge observations.

Figure 1. Study area (a) outlined in red lines and Taihang and Yanshan Ranges distribution on the remote sensing map from the
ArcGIS Map Service. (b) Gauge distribution and topographic features in Beijing, Tianjin and Hebei province.
doi:10.1371/journal.pone.0089681.g001
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2.3 Statistics metrics
Statistic metrics include Relative bias (RB), root-mean-squared

error (RMSE), correlation coefficient (CC), probability of detec-

tion (POD), false alarm ratio (FAR) and critical success index (CSI)

are used in this study to evaluate the performance of all the rainfall

algorithms. These metrics are defined as follows.

RB~

P

(QPE{gague)
P

gauge
ð1Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

(QPE{gauge)2

N

s

ð2Þ

CC~
Cov(QPE,gauge)

sQPEsgauge

ð3Þ

where RB and CC are dimensionless, RMSE is in mm. In Eq. (3),

‘‘Cov ()’’ refers to the covariance, and s indicates the standard

deviation. RB, when multiplied by 100, denotes the degree of

overestimation or underestimation in percentage. All the above

statistics were computed for each pixel location within the study

region.

Table 1 provides the contingency table to compute the number

of hits (A), the false alarm (B), and miss rate (C). Statistics of POD,

FAR and CSI were computed with the following equations [19]:

POD~
A

AzC
ð4Þ

FAR~
B

AzB
ð5Þ

CSI~
A

AzBzC
ð6Þ

Analysis of Rainfall Products

3.1 Accumulated rainfall
Rainfall estimates from all the products were accumulated from

00:00AM on 21 July 2012 to 00:00AM on 22 July 2012 to yield a

two-day total rainfall as shown in Figure 2. The gauge daily

observations were interpolated over the study domain based on

Kriging interpolation skill, which is embedded in the Interactive

Data Language (IDL, Version 8.2). The exponential model and

default variogram model were used for the interpolation. The

interpolated result (Figure 2(a)) indicates the maximum in

accumulated rainfall extending from southwest of Beijing north-

eastward all the way to the adjacent Beijing and Hebei province,

and eastward to center of Tianjin. CMORPH and PERSIANN-

CCS misplaced this precipitation maximum. It is also worth

noting that PERSIANN-CCS underestimated the rainfall by a

wide margin, with maximum rainfall less than 200 mm.

For quantitative comparison, only the grids that cover two and

more rain gauges were used for comparison. Grids containing less

than two gauges were discarded. Such grid-based comparison

technique has been applied in many previous studies

[23,24,25,26,27]. A total of 345 grids were available for direct

comparison with a 0.25u60.25u spatial resolution for the large

region including Hebei, Beijing and Tianjin, and 30 grids for

Beijing. Figure 2d–e show that both CMORPH and PERSIANN-

CCS have low CC with gauge-based observations, which indicates

CMORPH and PERSIANN-CCS failed to capture the spatial

rainfall pattern. The index RB implies CMORPH overestimated

the rainfall by about 6.14% but PERSIANN-CCS significantly

underestimated the rainfall by 65.29%. Figure 3d indicates the

cloud top in the region of highest accumulated precipitation was

above 220 k except for the 11th hour. This suggests the IR-based

QPE retrieve technique has inherent shortage that using IR

brightness temperatures to estimate precipitation will yield a large

error when the convective cloud has a higher brightness

temperature than the commonly used temperature threshold

[28,29]. For CMORPH, the misplacement of the most intense

rainfall might be due to: 1) Precipitation that is not observed, as it

forms and dissipates over an area outside of passive microwave

overpasses mosaics; or 2) Ice areas assigned zero rainfall estimates

by the snow screening process in the CMORPH algorithm

[14,20]. This result is consistent with the findings in Hirpa et al.

[30], Zhang [20] and Chen et al. [27] over complex terrain during

heavy precipitation events.

3.2 Precipitation time-series
Figure 3 shows time series plots of hourly area-average

accumulated rainfall for gauge and satellite products for the large

domain including Hebei, Beijing and Tianjin (HBT), and Beijing

and the rainfall center indicated by the red letter A in Figure 2a. In

Figure 3a, the gauge observed rainfall over HBT generally

increased from the first hour to the peak occurring at the 20th hour

and then decreased dramatically to less than 1 mm/h by the 24th

hour. CMORPH captured the peak of rainfall and generally

replicated the temporal evolution observed by the gauge.

PERSIANN-CCS produced a peak in rainfall one hour ahead of

the gauge but substantially underestimated the amounts through-

out the event. The statistics show that CMORPH had a high CC

of 0.92 and low RB (4.80%), while PERSIANN-CCS had a

slightly lower CC (0.86) but a highly negative RB (266.69%). For

the Beijing area (Figure 3b), CMORPH and particularly

PERSIANN-CCS failed to capture the rainfall peak and temporal

variation, evidenced by the negative CC. Furthermore,

CMORPH generally overestimated the rainfall, while PERI-

SANN-CCS underestimated by 272.75%. For the rainfall

maximum in the rainfall center (Figure 3c), CMORPH and

PERSIANN-CCS performed poorly in capturing the rainfall peak

and temporal variation, underestimating total accumulation by

42.26% and 85.37%, respectively.

It was noted that in the region of highest rainfall accumulation

the gauge-observed very heavy rainfall (.15 mm/h) began at the

9th hour and lasted to the 15th hour. This rainfall intensity

exceeded the lower bound of the rainfall intensity-duration

threshold (Intensity = 12.45 mm/h Duration= 0.42 h) for land-

Table 1. Contingency table comparing gauge area-averages
and satellite rainfall estimates.

Gauge$Threshold Gauge,Threshold

Satellite$Threshold A B

Satellite,Threshold C D

doi:10.1371/journal.pone.0089681.t001
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slides proposed by Hong et al. [31]. Several mountain torrents,

floods, and landslides took place in these areas (http://www.

youtube.com/watch?v =X1gzzUipevg; http://video.lnd.com.cn/

htm/2012-07/25/content_2422846.htm), and 38 people were

killed in Fangshan County, located in the rainfall maximum.

Compared with gauge observation, the most intense rainfall

observed by both CMORPH and PERISANN-CCS did not

exceed 12.45 mm/h. Therefore, the landslide and debris would

not have triggered if CMORPH and PERISANN-CCS were used

as input to the landslide model proposed by Hong et al. [31].

3.3 Probability distributions
Information on the precipitation rate distribution, precipitation

volume distribution, and the precipitation estimates’ sensitivity as a

function of precipitation rate may be revealed with Probability

distribution functions (PDFs). PDFs offers insight into error

dependence on precipitation rate, and the potential impact of this

error on hydrological applications [32]. Figure 4 shows the hourly

mean precipitation PDFs by occurrence (PDFc) and cumulative

distribution of rainfall rate by volume (CDFv) for the gauge and

satellite-based observations. Figure 4a shows that CMORPH had

the best agreement with gauge observations in terms of hourly

mean precipitation occurrence, while PERSIANN-CCS had a

higher percentage of light rainfall rates (,1 mm/h), and low

percentages for high rainfall rate (.5 mm/h). Figure 4b shows

that more than 90% of the total rainfall accumulation derived

from PERSIANN-CSS was contributed by rainfall rates less than

10 mm/h. The distributions for CMORPH and PERSIANN-CSS

were similar for rainfall rates less than 22 mm/h; however, the

gauge observations had more contribution from rainfall rates

greater than 22 mm/h, especially relative to PERSIANN-CSS.

This implies that CMORPH and PERSIANN-CCS could not

resolve the intense rainfall rates associated with this event. This

result is consistent with the results of Chen et al. [27].

3.4 Contingency information
Figure 5 provides contingency information in terms of POD,

CSI and FAR. Figure 5a shows PERSIANN-CCS has low POD

and CSI for rainfall rates greater than 15 mm/h, while

CMORPH has low POD and CSI when rainfall rates exceed

25 mm/h. This result provides further evidence that PERSIANN-

CCS and CMORPH generally perform poorly in the detection of

Figure 2. Gauge analysis (a) based on Kriging interpolation. (b) CMORPH accumulated precipitation (c) PERSIANN-CCS accumulated
precipitation. (d) Scatter plots of gauge vs. CMORPH accumulated rainfall. (e) Scatter plot of gauge vs. PERSIANN-CCS accumulated rainfall. The red
letter ‘‘A’’ in (a) indicates the rainfall center.
doi:10.1371/journal.pone.0089681.g002
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very high rainfall rates, and is consistent with information revealed

by the PDFs shown in Figure 4.

Summary and Conclusions

The primary objective of this study was to quantify the

performance of the popular satellite-based QPE products

CMORPH and PERSIANN-CCS for an extreme precipitation

event over Beijing and surrounding regions, using a dense gauge

network as ground truth. The satellite-based QPE products have

been evaluated in terms of accumulated rainfall, time series

rainfall, probability distribution and contingency metrics. Our

results identified the following:

a. Both CMORPH and PERSIANN-CCS were unable to

capture the spatial rainfall pattern (CC,0.6, Figure 2) and

misplaced the region of greatest precipitation intensity/

accumulation.

b. CMORPH captured the temporal variation of rainfall with

high CC (0.92) over the large area HBT but could not resolve

the temporal variation of rainfall over Beijing and the rainfall

maximum (Figure 3a–c).

Figure 3. Time series rainfall over rainfall center of (a) large region HBT, (b) Beijing and (c) rainfall center. (d) Time series mean
brightness temperature at rainfall center shown in Figure 1d in the scale.
doi:10.1371/journal.pone.0089681.g003

Figure 4. Occurrence probability distribution (a) of rain rate with interval of 0.1 mm/h, (b) volume cumulative distribution of rain
rate with interval of 0.1 mm/h.
doi:10.1371/journal.pone.0089681.g004
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c. PERSIANN-CCS underestimated the rainfall by more than

60% over the large area HBT, Beijing and rainfall center, and

failed to resolve the temporal variation (Figure 2d–e,

Figure 3a–c).

d. PERSIANN-CCS was unable to detect high rainfall rate

(.15 mm/h), and CMORPH had low probabilities of high

rainfall rate (.25 mm/h) (Figure 4, 5).

This study suggests that satellite-based QPE products

CMORPH and PERSIANN-CCS demonstrated poor perfor-

mance in very heavy rainfall events, similar results can be found in

studies of Dinku et al. (2010) [19], and Zhang (2012) as well as

Chen et al. [27]. These two products tend to have limitations in

terms of resolution and accuracy, especially for this type of

extreme mid-latitude precipitation. Caution should be applied

when CMORPH and PERSIANN-CCS are utilized for hydro-

logical modeling and natural hazards (e.g. landslide) monitoring,

because the data used to drive risk model cascades often form the

dominant source of uncertainty within such model systems

[33,34]. However, we can envision that future Satellite-based

QPE algorithms will be improved for hydrological and meteoro-

logical applications such as flood and landslide monitoring and

forecasting, notably in the expected launch of Global Precipitation

Measuring (GPM) mission in 2014 with dual-frequency radar

onboard and better spatiotemporal coverage over the globe.
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