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Abstract

Image features are widely used in computer vision appli-

cations. They need to be robust to scene changes and image

transformations. Designing and comparing feature descrip-

tors requires the ability to evaluate their performance with

respect to those transformations. We want to know how ro-

bust the descriptors are to changes in the lighting, scene, or

viewing conditions. For this, we need ground truth data of

different scenes viewed under different camera or lighting

conditions in a controlled way. Such data is very difficult to

gather in a real-world setting.

We propose using a photorealistic virtual world to gain

complete and repeatable control of the environment in or-

der to evaluate image features. We calibrate our virtual

world evaluations by comparing against feature rankings

made from photographic data of the same subject matter

(the Statue of Liberty). We find very similar feature rankings

between the two datasets. We then use our virtual world to

study the effects on descriptor performance of controlled

changes in viewpoint and illumination. We also study the

effect of augmenting the descriptors with depth information

to improve performance.

1. Introduction

Image features play an important role in computer vi-

sion. They are used for tasks ranging from wide base-

line stereo matching [21, 16, 23], panorama stitching [1]

and 3D scene reconstruction [27] to object [2, 4, 5, 10],

scene [9, 14, 28], texture [8] and gesture recognition [6].

Parikh and Zitnick [15] studied human performance in vi-

sual recognition tasks compared to that of a state-of-the-art

computer vision algorithm, and found that, under the con-

ditions of the study, the humans’ better performance could

be attributed to their better use and selection of image fea-

tures. Because of their importance and wide use, optimizing

image features is a critical task.

The goal in designing features is that they must be ro-

bust, distinctive and invariant to various image and scene

transformations. One of the challenges is acquiring ground

truth data necessary for evaluating and comparing different

image descriptors. Mikolajczyk et al. presented a dataset of

several images under various transformations [12, 18] ad-

dressing this need. Due to difficulty of attaining correspon-

dences, the dataset was limited to planar scenes or images

taken from a fixed camera position. These do not capture

the full complexity of viewpoint changes - changes in per-

spective beyond those of planar scenes or the presence of

occlusions. The dataset includes an example of change in

illumination simulated by changing the camera settings, es-

sentially changes in brightness and contrast. However, these

do not capture changes in light source position that result in

shadows and non-uniform changes in intensity.

To address such problems, Winder et al. recently pro-

posed using a data set of patches from several famous land-

marks [25, 26]. They used camera calibration and multi-

view stereo data of 1000 images for each landmark to find

corresponding interest points between the images using es-

timated dense surface models. While these datasets contain

image patches taken from different points of view and un-

der different illumination, it is difficult to evaluate the ef-

fect each of these has on the descriptor performance, since

the variations in viewpoint, illumination and camera type

are uncontrolled. Moreels et al. proposed a dataset of 100

real 3D objects viewed from 144 calibrated viewpoints un-

der three different lighting conditions [13]. However, those

do not contain complex scenes and interactions between ob-

jects such as occlusions, cast shadows, and inter-reflections.

We want to be able to capture a wide range of scenes un-

der different transformations. To gain complete, repeatable

control over specific aspects of the environment, we propose

using a photorealistic virtual world.

With the great progress in the field of computer graph-

ics in the last two decades, it is possible to generate high

quality realistic scenes. Recent work has shown that the use

of synthetic image/video data can be used to evaluate the

performance of tracking and surveillance algorithms [20],

to train classifiers for pedestrian detection [11] and to learn

locations for grasping novel objects [17]. We propose the

use of highly photorealistic virtual world for the evaluation



Figure 1. Sample images from the virtual world. Top row: Virtual City. Bottom row: Statue of Liberty.

and design of image features. We generated two data sets of

images taken under different illumination and from differ-

ent viewpoints from high resolution 3D graphics models of

a virtual city and of the Statue of Liberty. The images were

rendered with 3ds Max’s Mental Ray renderer using ad-

vanced materials, including glossy and reflective surfaces,

high resolution textures, and the state-of-the-art Daylight

System for illumination of the scene.

We first seek to calibrate our virtual world evaluations

against feature rankings made using photographic data. To

control for image content, we compare the performance

of feature descriptors on datasets based on real and syn-

thetic images of the Statue of Liberty, and we find very

similar feature rankings from the photorealistic and pho-

tographic datasets. We then exploit the flexibility of our

virtual world to make controlled evaluations that are very

difficult to make from photographs. We use our controlled

environment to evaluate the effects of changes in viewpoint

and illumination on the performance of different feature de-

scriptors. We can also study the effect of augmenting the

descriptors with depth information to improve performance.

2. Photorealistic Virtual World Dataset

Fig. 1 shows sample images rendered from the Virtual

City and from our calibration scene, the Statue of Liberty.

2.1. Photorealistic City Model

For our virtual city dataset, we used a high resolution

city model from Turbosquid [22] containing over 25 mil-

lion polygons. The model has 12 city blocks with 82 unique

buildings with highly detailed geometry and advanced tex-

tures from residential and commercial ones to churches,

schools, theaters and museums. It also includes parks, sport

fields, parking lots, and objects found in a city environment,

from lamppost and trashcans to benches and bus stops (al-

though no people). We also added 25 different high reso-

lution vehicles to the model that contain advanced glossy

and reflective surfaces. To increase the number of vehicles,

we varied their colors. The dataset was rendered using 3ds

Max’s Mental Ray renderer to produce high quality photo-

realistic city images.

To light the environment, we used 3ds Max’s Daylight

system that positions the sun light source automatically af-

ter specifying the location, the date and time. We rendered

five images for each scene taken at 9am, 11am, 1pm, 3pm

and 5pm on a sunny summer August day (Fig. 2 top row).

We used a 35 mm camera lens. To automatically render the

different scenes, we created a fly-through camera anima-

tion simulating a person walking along the city streets and

varied the illumination at each camera position. At each

camera location, we took three different shots panning the

camera at 22.5 degree steps (Fig. 2 bottom row a)). Neigh-

boring locations were close enough to capture the scene at

the current camera position from a different viewpoint, e.g.

figure 2 bottom row b) shows different viewpoints of the

scene captured in the center image of figure 2 bottom row

a). In this work, we used 3000 images from 200 different

camera locations over several city blocks with 15 images

taken at each location - three different camera orientations

and five different illumination settings for each orientation.

The images were rendered at resolution of 640x480 pixels.

No noise or compression artifacts have been added to the

images though they can be easily added as postprocessing

step. The impact of these phenomena on the performance

of image descriptors were studied previously in [12].

2.2. Statue of Liberty

Since the photographic subject can influence feature per-

formance, to study whether our photorealistic virtual world

would be a good predictor for descriptor performance in the

real world, we compared descriptor performance on a syn-

thetically generated dataset of the Statue of Liberty to that

on the real world Liberty dataset of [26]. We purchased a

high resolution 3D model of the Statue of Liberty and ren-

dered 625 images at 640x480 resolution. We simulated the

camera moving around the statue on the ground level in a

circular arc centered at the statue. We rendered the scene

at every 10 degrees for 250 degrees around the front of the

statue and under five different locations of the sun, simi-
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Figure 2. Sample images from the virtual city. Top row: Images from a static camera of a scene under different illumination (5 different

times of the day). Bottom row: a) Scene from a panning camera at 22.5 degree rotation stops. b) Images taken from a different camera

viewpoint and location of the center image in a).

lar to our city dataset. We used 4 different camera lenses -

50mm, 85mm, 135mm, and 200mm - to acquire both dis-

tant and close up shots. We used the 135mm lens at two

different angles - viewing the top and the base of the statue.

3. Feature Descriptors

We used our dataset to evaluate the performance of a se-

lection of commonly-used feature descriptors.

3.1. Scale Invariant Feature Transform (SIFT)

SIFT has been widely used in a variety of computer

vision applications from object recognition to panorama

stitching. We compute the descriptor similarly to [10]. Af-

ter initial pre-smoothing of the image by σ = 1.8, we quan-

tize the gradient orientation at each sample into d directions

and bin them in 4x4 spatial grid. Each gradient direction is

weighted bilinearly according to its distance to the bin cen-

ters. The final descriptor is normalized using a threshold of

0.2 as in SIFT [10]. We used 4, 8 and 16 gradient direc-

tions thus creating three descriptors of dimension 64, 128,

and 256 - these are referred to as T1a-S1-16, T1b-S1-16,

and T1c-S1-16 in [25]. The descriptor was computed over

a patch of 61x61 pixels centered at the sample.

3.2. Gradient Location and Orientation Histogram
(GLOH)

GLOH was proposed as an extension to SIFT to improve

robustness and distinctiveness of the descriptor [12]. We

quantized the gradient orientations as in SIFT and then bin

them in a log-polar histogram of 3 radial and 8 angular di-

rections. Only the outer bins are divided into 8 directions,

thus there are total of 17 bins. The size of the patch around

the sample was 61x61 pixels and the final descriptor was

normalized similarly to SIFT. We used 4, 8 and 16 gradient

directions resulting in 68, 136 and 272 dimensional feature

vectors - these are similar to T1a-S2-17, T1b-S2-17, and

T1c-S2-17 in [25]. Note that we do not reduce the size of

the descriptors in our experiments, unlike [12].

3.3. DAISY

The DAISY descriptors is inspired by SIFT and GLOH,

but designed for efficient computation [21]. Learning the

best DAISY configuration was proposed by [26]. We com-

pute d gradient orientation maps and then convolve them

with different Gaussian kernels depending on their distance

from the center. The descriptor is then computed over a log-

polar arrangement similar to GLOH. The vectors in each

pooling region are normalized before concatenated in the

final descriptor. We used three radial and eight angular di-

rections for a total of 25 sample centers including the one

at the center of the grid. The image patch is 61x61 pixels

centered around the sample. We used 4, 8, and 16 gradient

directions resulting in 100, 200, and 400 dimensional fea-

ture vectors - these are referred to as T1a-S4-25, T1b-S4-25,

and T1c-S4-25 in [25].

3.4. Histograms of oriented gradients (HOG)

The HOG descriptor [2] and its variants [3] have demon-

strated excellent performance for object and human detec-

tion. Similar to the SIFT [10], the HOG descriptor mea-

sures histograms of image gradient orientations but normal-

izes the descriptor with respect to neighboring cells. We



Descriptor HOG8 SIFT16 GLOH8 DAISY16

Notre Dame Real 0.898l 0.958 0.961 0.964

Liberty Real 0.885 0.947 0.950 0.953

Liberty Synthetic 0.896 0.950 0.955 0.959

Table 1. Area under the ROC curve for different descriptors on the

real Notre Dame and Liberty and the synthetic Liberty datasets.

Note the feature rankings on both the real and synthetic datasets is

the same despite the variation in individual performance. The fea-

ture ranking is the same even across datasets with different image

content.

use the same approach as described in [3]. However, we

compute the descriptor for 4, 8, and 16 gradient orientation.

We only use the descriptor for the cell centered at the sam-

ple resulting in very low dimensional feature vectors of 10,

16, and 28 dimensions. The descriptor was computed over a

patch of 61x61 pixels covering a neighborhood of 3x3 cells.

3.5. The self­similarity descriptor (SSIM)

The self-similarity descriptor [19] has been shown to

perform well on matching objects of similar shape but

vastly different local appearance. The idea is to represent

the appearance in a local image area around a particular

image patch by the “correlation map” of the patch with its

neighborhood. The descriptor captures the local pattern of

self-similarity. Each descriptor is obtained by computing

the correlation map of a 5x5 patch in a window with radius

equal to 30 pixels, then quantizing it using a log-polar his-

togram as in GLOH. We used 3 radial bins and either 8 or

16 angular bins, resulting in 24 or 48 dimensional feature

vectors.

4. Evaluation

Keypoints are the image locations where we compute de-

scriptors. We computed keypoints using one of three differ-

ent methods: spatial local maxima of a Difference of Gaus-

sian (DoG) filter [10], the Harris corner detector [7], and

a dense spatial grid at 5 pixel offset. We use the imple-

mentation of the keypoint detectors by [24]. For the experi-

ments presented here, we use the DoG keypoints. Since our

dataset is synthetically generated, we know the complete

geometry of the scene and therefore the pixel correspon-

dences across images. Figure 4 a) shows a pair of images

taken from different viewpoints and under different illumi-

nation. The overlapping part of the scene and the points in

the images for which we have correspondences are shown

in figure 4 b). Note that we do not match points in the sky

for images from a different viewpoint since we do not have

actual 3D coordinates for them. They may, however, be

considered in experiments where the camera is static. For

each image pair A and B, we compute the descriptors at
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Figure 3. Performance of the synthetic vs real world Statue of Lib-

erty datasets on a set of descriptors. Note that the performance

on both datasets is very similar and the relative ranking of the de-

scriptors is the same.

each keypoint in image A and its corresponding 3D point

in image B. We define the matching keypoints to be the true

correspondences and the non-matching keypoints to be key-

points that are at a distance of at least 10 pixels from the

true correspondence in image space. We follow the proto-

col of Winder et al. [25] to form an ROC curve of descriptor

performance. We compute the Euclidean distance between

the descriptors computed at each pair of matching and (ran-

domly selected) non-matching keypoints. As a function of

a distance threshold, we compute the number of correct and

false matches that is the matching and non-matching key-

points with a descriptor distance below the threshold, re-

spectively. Sweeping that computation over a descriptor

distance threshold yields a receiver operating characteristic

(ROC) curve. The correct match rate and the false positive

rate for each discrimination threshold are:

Correct Match Rate =
#correct matches

#matching keypoints

False Positive Rate =
#false matches

#non-matching keypoints

The larger the area under the ROC curve, the better the

performance of the descriptor.

5. Experiments

5.1. Overview

To first confirm that our virtual world and the real world

gave similar rankings, controlling for image content, we

compare feature descriptors using the photographic Liberty

patch dataset of [26] and our synthetic Statue of Liberty

dataset. We find that the descriptors perform comparably

on both datasets and the relative rank is the same. We pro-



a) b) c)

Figure 4. Examples of images from our virtual city. a) Image pair

of a scene under different viewpoint and illumination. b) The set

of corresponding 3D points between the images in a). c) The cor-

responding depth maps of the images in a).

ceed to study the effect of changes in illumination of out-

door scenes and changes in camera viewpoint on the de-

scriptor performance. Since our dataset is synthetically gen-

erated, we have full control of the scene and we can capture

the exact same scene both under different illumination and

different camera viewpoint and we have full knowledge of

the geometry of the scene that allows to match keypoints

accurately. We compare the degradation of all of the de-

scriptors with changes in illumination and viewpoint. We

find that the log-polar pooling scheme seems to perform

better than the grid one for coping with changes in illumina-

tion, while the number of pooling regions has a bigger effect

when there are changes in camera viewpoint. We also pro-

pose a 3D descriptor in the presence of depth map data and

show that even a very low dimensional descriptor like HOG

computed over the depth map can lead to improved feature

matching performance.

5.2. Real vs Synthetic Data

To calibrate our virtual world descriptor evaluations, we

compared the performance on the Liberty patch dataset

of [26] and our synthetic Statue of Liberty dataset, using

100000 patches/keypoints in both cases.

For this experiment, we only used images that have a

partial or full view of the front of the statue as this seems to

be the case for most of the images found online. Figure 3

a) shows performance of a set of the image descriptors on

both the real and synthetic data. The ROC curves are very

similar showing only slight variation and the ranking of the

performance of the different descriptors is the same. The

slightly worse performance of the descriptors on the real

dataset could be due to inaccuracies in the patch matching.

There can be some variation of the descriptor performance

depending on the data they are applied to as shown in ta-

ble 1. To study the change in feature rankings with image

content, we kept the evaluation method fixed (photographic

image patches) but compared the performance of features
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Figure 5. Descriptor performance for images from the virtual city

taken with a static camera of a scene under different illumination

(2,4,6 and 8 hour difference). The performance degrades with

larger changes in illumination. DAISY8 and GLOH8 perform best

in this context.

for the Notre Dame dataset [26]. The descriptors perform

better on the Notre Dame dataset than on the Liberty one;

however, even in this case the ranking of the descriptors is

still the same. The better performance on the Notre Dame

data set is probably due to the larger number of edge struc-

tures in the scene. These results show that (1) we can trans-

late the relative performance of the descriptors on the syn-

thetic data to that of the real data, and (2) the relative rank-

ings appear to change very little across image content.

5.3. Illumination Change

Changes in illumination can result in large changes in

the appearance of the scene due to shadows, specular re-

flections, etc. We compared the performance of the differ-

ent descriptors under different illumination using our virtual

city dataset. Each pair of matching keypoints belonged to

images of the same scene taken with a static camera dur-

ing two different times of day. We used 2.2 million key-

point pairs. Figure 5 shows the performance of a subset

of the descriptors for the same scene taken at 2, 4, 6, and

8 hour difference. The performance degrades with the in-

crease of the time difference between the rendered images

as the changes in illumination of the scene are more signif-

icant. The performance of the other descriptors followed a

similar trend. The much worse performance of the SSIM

descriptor is likely due to its smaller dimension and lack of

distinctiveness as it was meant to be computed densely. The

almost identical performance of the DAISY8 and DAISY16

descriptors shows that increasing the number of gradient

orientation to 16 is not beneficial. In the case of SIFT, the

performance even appears to degrade slightly. DAISY8 and

GLOH8 perform very similarly to each other and better than

SIFT in the presence of changes in illumination. That may
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Figure 6. Performance of descriptors on the virtual Statue of Lib-

erty dataset for varying camera viewpoints (10-80 degrees rota-

tion around the statue) under constant illumination. The perfor-

mance of all descriptors degrades with larger changes in view-

point. DAISY8 performs better under small changes in viewpoint

while SIFT8 performs better under larger changes.

be due to their use of the log-polar binning arrangement,

common to DAISY8 and GLOH8.

5.4. Viewpoint Change

We performed a couple of experiments to evaluate the

effects of viewpoint change on the different descriptors on

both of our datasets - Statue of Liberty and Virtual City.

Our synthetic dataset of the Statue of Liberty contains

images taken by moving the camera along a circle around

the statue at 10 degree stops. We evaluated the performance

of the descriptors as we move the camera up to 80 degrees

from the reference image on images taken under the same

lighting conditions. Figure 6 shows the performance of sev-

eral descriptors and how it degrades with the increase in

angle between the camera locations. The performance of

the DAISY8 descriptor degrades faster after 50 degrees and

the performance of the HOG16 descriptors almost reaches

chances level. The much worse performance of HOG16

may be related to its lower dimensionality (28) in compari-

son to the SIFT8 (128) and DAISY8 (200) descriptors.

We evaluated the performance of the descriptors on our

virtual city dataset for keypoints in images taken under dif-

ferent viewpoint (Fig. 2) but under the same illumination

using 1.3 million keypoint pairs. All images were taken

at 1pm. The ranking for the descriptors was similar to

that under changes in illumination (section 5.3) except for

GLOH (Fig. 7). Under viewpoint changes, the performance

of the GLOH8 descriptor is similar to that of SIFT8, not to

DAISY8 as in section 5.3. This could be explained by the

larger number of pooling regions in DAISY, 25 versus 17

in GLOH and 16 in SIFT. It appears that the arrangement
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Figure 7. Performance of descriptors under different viewpoint for

scenes from the virtual city under constant illumination. Note

here GLOH8 and SIFT8 perform similarly, where as GLOH8 per-

formed better than SIFT8 under changes in illumination.

of the pooling regions is important for illumination changes

in the scene while the number of pooling regions matters in

scenes captured from different viewpoints. Here, again the

performance of HOG and SSIM descriptors may be related

to the descriptor dimensionality.

5.5. Viewpoint and Illumination Change

In sections 5.3 and 5.4, we considered the effects of

illumination change on a scene taken with a static cam-

era and the effects of viewpoint change under constant il-

lumination. Here, we compare the effects of camera posi-

tion under different illumination for one of the descriptors

DAISY8. The relative performance of the other descriptors

was similar. We considered the performance of DAISY8

for scenes taken under different illumination (2, 4, 6, and

8 hours apart) with a static camera, with a camera at the

same location at rotation stops of 22.5 degrees (Fig. 2 a))

and camera from different locations (Fig. 2 b)). The per-

formance with the panning camera (Cam2) is similar to that

of the static camera (Fig. 8). The task of matching key-

points in images taken from cameras at different location

and orientation (Cam1) is a lot more challenging and the de-

scriptor performance is considerably worse. This is because

here the changes in perspective, occlusions, etc. play much

larger role. It is especially true for keypoints around con-

tour boundaries, where the background could significantly

change due to changes in viewpoint.

5.6. 3D Descriptors

Depth can be acquired by many different means, at a

range of quality levels. Since we know the full geometry

of each scene in our virtual city, we have depth maps easily

available (Fig. 4 c)), and we can assess the utility of incor-

porating depth information into feature descriptors. Since
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Figure 8. Performance of the DAISY8 descriptor for images of

scenes under different illumination (2, 4, 6, and 8 hours apart) with

a static camera, with a camera (Cam2) at the same location at ro-

tation stops of 22.5 degrees (Fig. 2 a)) and a camera (Cam1) from

different locations (Fig. 2 a)). The descriptor has most difficulty

with large changes in viewpoint.

acquiring high resolution depth maps is difficult, we quan-

tized the depth maps from our virtual city to n depth levels

to approximate a depth map acquired in a real world setting.

We expect that knowing depth will be particularly helpful

in two scenarios. For images of a scene under different il-

lumination, it can distinguish between edges due to depth

discontinuities and due to shadows. For images under dif-

ferent viewpoint, it can help match keypoints on contour

boundaries despite significant changes in the appearance of

the background.

We propose to augment the feature descriptors in the fol-

lowing way. For each keypoint, we compute the descriptor,

Frgb, using the RGB image (Fig. 4 a)) and the descriptor,

Fdepth, using the depth map (Fig. 4 c)). Thus, the final

descriptor is [Frgb;Fdepth]. We experimented with differ-

ent combinations of descriptors for Frgb and Fdepth and

different depth resolutions, n = 16, 32, 64, 128, and 256.

We found that using descriptors based on histograms of ori-

ented gradients for Fdepth produced best results as they cap-

ture the information about the relative depth of the pixels in

the neighborhood around the keypoint. To evaluate whether

two keypoints match, we compute the weighted sum of the

Euclidean distance between the descriptors from the RGB

image, Drgb and the Euclidean distance between the de-

scriptors from the depth map, Ddepth.

Ddesc = αDdepth + (1− α)Drgb

We performed different experiments with various val-

ues of alpha. We see greater improvement in performance

for larger changes in viewpoint and illumination. Figure 9

shows the performance of the SIFT8 descriptor for the RGB

image, HOG16 descriptor for the depth map quantized to 64
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Figure 9. The performance of the SIFT8 descriptor in compari-

son with the combined SIFT8 on the RGB image plus the HOG16

on the depth map (64 depth levels) 3D descriptor under different

camera viewpoint and varying illumination conditions. Note the

performance of the 3D descriptor has a larger performance gain

for larger changes in viewpoint (Cam1).

depth levels and alpha value of 0.3 in comparison to using

the SIFT8 descriptor alone. Even a very low dimensional

descriptor as HOG16 (28) that adds minimal computational

overhead produces a significant improvement in the perfor-

mance of descriptors in challenging illumination and view-

point conditions. Using higher dimensional descriptors like

GLOH or SIFT for the depth map descriptor improves the

performance further but at the expense of higher computa-

tional cost. Even depth maps with a resolution as low as 16

depth levels produce improvement in performance. Higher

resolution depth maps (greater than 64 levels) improve the

performance further but not significantly.

6. Conclusion

We used a photorealistic virtual world to evaluate the

performance of image features. We used two datasets of

photorealistic images –one from a virtual city and the other

of a model of the Statue of Liberty. We showed that the per-

formance of the descriptors on similar datasets from the real

world and virtual Statue of Liberty is similar and results in

the same ranking of the descriptors. Working in a virtual

world allows complete knowledge of the geometry of the

scene and full control of the environment, thus allowing to

study the impact of different parts of the environment on the

descriptors in isolation.

Our experiments on the dataset of our virtual city show

that the DAISY descriptor performs best overall both under

viewpoint and illumination changes. We found that spatial

arrangement of the pooling regions in the gradient descrip-

tors has an impact on the descriptor performance for match-

ing keypoints in images taken under different illumination.



The number of pooling regions on the other hand needs to

be considered for images taken from different camera view-

point. The lower dimensional feature descriptors generally

performed worse due to lack of distinctiveness. However,

we showed that using a low dimensional descriptor such as

HOG can help improve descriptor performance if applied to

the depth map of the scene and used in conjunction with a

feature descriptor over the RGB image. We ranked features

with regard to specific image transformations (viewpoint,

and lighting variations over time-of-day).

Using high quality 3D computer graphics models as we

have here allows for controlled and specific evaluation of

image features, and may allow new features to be designed

and optimized for specific computer vision tasks.
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