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Abstract

This paper deals with the evaluation of residual tensile strength of
composite laminates containing impact damage generated with
different impact energies. Sensor fusion of acoustic emission and
load data is carried out through neural networks to obtain a
prediction of residual tensile strength as early as possible in the
loading history of impacted composite laminates. The results show
that neural network processing provides an effective monitoring of
laminate fracture behavior based on acoustic emission analysis.

Introduction

One of the main disadvantages of composite materials in
comparison with metals is their liability to be damaged by low
velocity impact. Accordingly, composite laminates can undergo
severe strength reduction because of impact damage occuring
during fabrication or service [1,2].

Nondestructive evaluation (NDE) methods for composite
materials are generally capable of providing information on defects
generated during fabrication or service [3,4]. Most of these
methods can determine the type and location of damage in the
material: it is then necessary to correlate the detected damage with
residual mechanical properties. Unfortunately, despite the efforts
of researchers [5,6], completely satisfying analytical methods for
prediction of strength after impact are not yet available.
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412 Artificial Intelligence in Engineering

A totally different approach is enabled by NDE techniques
based on acoustic emission (AE) testing. The detection of AE, i. e.
transient stress waves released in materials undergoing permanent
deformation and fracture, presents the unique advantage of
sensing the failure processes as they occur in the material under-
loading [4,7]. This allows for on-line decisions on damage
development and real-time corrective actions.

There is, however, a need for a better interpretation of AE
detected from composite materials under loading to achieve a
reliable strength prediction before catastrophic failure. In a
previous paper [8], it was reported that while in tensile testing of
vergin composite samples the stress field is uniform and AE
comes from the whole material volume, the presence of damage
affects the stress distribution, magnifying stresses at the tip of the
discontinuity. The crack tip becomes a preferential site of failure
development inducing two effects: material residual strength
decreases and AE is strongly altered bacause an early activity is
generated by a small material volume. This feature makes AE
monitoring a very promising NDE method, provided a reliable
correlation between detected AE and residual strength is found.

In [9] a correlation between AE and residual strength was
hypothesized. In [8] a reliable prediction of material residual
strength was obtained through neural networks in the case of
tensile testing of quasi-isotropic fiberglass composites carrying
center holes. In this paper, AE monitoring of the fracture
behavior of composite laminates containg impact damage
generated with different impact energies is utilized for residual
tensile strength prediction at an early stage of the AE response
based on a similar neural network approach.

Experimental

Quasi-isotropic (0/90/±45)s E glass fabric/epoxy prepreg composite
laminates were fabricated. Nominal thickness was 1.3 mm and fiber
volume fraction 35%. Tensile strength of the virgin material was 269
N/mm2. The laminates, 80 mm in width and 1000 mm in length,
were clamped in a circular support, 60 mm in diameter, and
struck at their central point by a hemi-spherical tup with a 20 mm
diameter and 1 kg mass. Impact energy was varied in the range 2-
20 J by varying the drop height. After impact, rectangular
specimens, 80 mm by 250 mm, were trimmed to 250 mm length
and tensile tested. A total number of 14 valid tests on impacted
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Artificial Intelligence in Engineering 413

samples were performed. AE was detected during tensile tests using
a 150 kHz resonant sensor; amplification was 58 dB, threshold level
0.5 V, and high-pass filter cut-off freq. 100 kHz. AE event counts,
Nt, was the AE count-based parameter considered for impacted

composite laminate fracture behavior prediction.

Results and discussion

By plotting the AENt recorded during tensile testing of the

impacted samples vs. applied stress, typical Nt - a curves were

obtained [9,10] (Fig. 1). Curve trend was very much dependent on
impact energy and damage, in agreement with fracture mechanics
considerations. In particular, residual strength decreases with
increasing impact energy. A more detailed analysis of the features
of the AE response of the tested laminates is given in [10].
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Figure 1: Nt-a curves for impacted composite laminate samples.
U = impact energy in J. Dotted line = minimum value of Ntmax-

The most important result illustrated in Fig. 1 is that samples
displaying different residual strength also show distinct AE Nt - a

curves: the lower the residual strength, the higher the Nt value for

a given stress level. AE activity seems to be dependent on residual
strength rather than on impact energy. This observation is
interesting because it supports the possibility of correlating the AE
response with residual strength.

Neural network processing was applied to predict composite
laminate residual strength at an early stage of its loading history.
A pattern vector representing the AE Nt - a curve was fed at the
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414 Artificial Intelligence in Engineering

input layer of a network in order to obtain the value of residual
strength at the output layer. If the evaluation of residual strength

were carried out after the entire AE Nt - a curve is available, the

laminate would have already failed and the information would be
useless. If a correct evaluation could be obtained at a stress level
lower than the ultimate stress, the prediction of residual strength
would allow for actions such as laminate repair or substitution.

A total number of 14 valid tensile tests on impacted laminate
samples were considered for neural network processing. For each

tensile test, an AE Nt - a experimental curve, consisting in a sequence

of data points each identified by an AE event count and its
corresponding stress value, was available. As AE event counts
increase from 1 to the total number of events at failure by increments

of 1 event, the AE Nt - a curve can be represented by a vector: the

components of the curve vector are the stress values for each A E
event and the position of the stress value in the vector corresponds
to its associated AE event count. The last component of the curve
vector is the impacted laminate residual strength and the length of
the vector is the total number of AE events at failure, Ntmax.

Curve vectors have different length as both residual strength and
Ntmax vary significantly with impact energy.

A backpropagation three-layer neural network was utilized to
produce a mapping from input vectors to output values [11]: the
curve vectors were the input and the impacted sample residual
strength was the output. In order to reduce the number of nodes at
the input layer, abridged curve vectors were obtained by selecting
one stress value every other ten in the original sequence. The
reduced curve vectors to be utilized as inputs to the neural
network had 1/10 of the components of the original curve vectors.
This did not introduce significant errors in the obtained results.

The number of input nodes should match the number of
components in the input vectors. The curve vectors had different
lengths and could not be utilized as inputs to the same neural network
requiring the same number of input features from all input vectors.
Thus, input pattern vectors were constructed by selecting the first Q
components of all curve vectors. The maximum Q value was the
length of the smallest curve vector in the training set, ie370 (dotted
line in Fig. 1). Lower Q values were also used to verify network
performance when a smaller portion of the curve was considered: as
matter of fact, the earlier the correct pattern recognition, the more
useful the system for impacted composite laminate diagnostics.
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Artificial Intelligence in Engineering 415

Nine networks with Q = 370, 300,250,200, 150, 100, 50, 40, 30
input nodes, respectively, 5 hidden nodes and 1 output node were used
for impacted laminate residual strength prediction. The number of

hidden nodes was chosen according to a "cascade learning" procedure
[6]: hidden units are added one at a time until an acceptable training
speed is achieved. Weights and thresholds were randomly initialized
between -1 and +1. Learning coefficients were: learning rate between
input and hidden layers r| = 0.3, learning rate between hidden and
output layers r| = 0.15, momentum a = 0.4. The learning rule was the
Generalized Delta Rule and the transfer function applied to the nodes
was the sigmoid function f(x)= l/(l+e-*) [5]. The number of learning
steps for a complete training set was comprised between 42000 and
280000, according to time to convergence and value of Q. Epoch size,
ie the number of training presentations between weight updates, was
1. The Q-5-1 neural networks were trained by the "leave-k-out"
method, which is particularly useful when dealing with small training
sets [7]. One pattern vector (k= 1) was held back in turn for the recall
phase, and the other pattern vectors were used for learning: 1 4
different learning and recalling procedures were carried out.

In Fig. 2, the ratio of predicted over actual residual strength is
reported vs. the number of input data points. Vertical bars represent
data scatter and symbols indicate mean values. Predicted residual
strength mean value is in all cases practically coincident with the
actual experimental value. However, data scatter is rather high up to
50 input data points. Data scatter decreases notably for 100 input data
points, then it stays constant at +10%/-7%.

O

o

0
o 100 200 300

Data points

400

Figure 2: Ratio of predicted over actual residual strength vs.
number of input data points. Q-5-1 neural networks.
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416 Artificial Intelligence in Engineering

Another neural network configuration was used for residual
strength prediction. Single data points from the experimental curves
were utilized as input vectors. The input layer had 2 input nodes for
the stress value and its associated AE event count, the hidden layer had
4 nodes, and the output layer 1 node for residual strength prediction.
Weights and thresholds initialization, learning coefficients, learning
rule, transfer function, and epoch size were the same as for the Q-5-1
networks. The number of learning steps for a complete training set
was 114000for829 input vectors. Training of the 2-4-1 neural
network was obtained by inputting the data points of all experimental
curves, except for one curve held back in turn for the recall phase.

The output values obtained from the learned network after
sequentially inputting the data points of the held back curve were
normalized and plotted vs. normalized AE event counts, Nt/Nt max-
In Fig. 3, the upper and lower envelopes of the curves are reported.
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Figure 3: Upper and lower envelopes of the ratio of predicted/actual
residual strength vs. normalized AE event counts, Nt/Nt max-

Predicted residual strength is affected by a large error in the first

part of the AE Nt - a curve up to Nt = 0.20 Ntmax, corresponding to 80-
90% of the actual residual strength and to 20 - 50% of vergin material
ultimate strength. Then, the error stays constant with load. A predi-
ction of residual strength with precision + 1 0%/-7% can be obtained.

In Fig. 4, the ratio of predicted over actual residual strength is
reported vs. the number of input data points for the 2-4-1 neural
network. A prediction of residual strength with precision +10%/-
7% can be obtained for input data points > 100.
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Figure 4: Ratio of predicted over actual residual strength vs.
number of input data points. 2-4-1 neural network.

Examining Figs. 2 and 4, the performance of the Q-5-1 and 2-
4-1 neural networks can be compared. Both network
configurations provide reasonably accurate results when the
number of input data points is > 100. The main difference between
the two nework configurations can be appreciated when the number
of input data points is < 100. In this case, the 2-4-1 network can
predict material residual strength with a higher precision in terms
of positive error. This avoids the danger of overestimating the
actual residual strength and provides a more conservative
prediction for low number of input data points.

Conclusions

Experimental curves of AE event counts vs. stress obtained from
tensile tests on impacted composite laminates were utilized as input
patterns to different neural network configurations. The capability
of neural network processing to effectively predict material
residual strength at an early stage in the AE response evolution and
laminate loading history was verified and critically assessed.
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