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Abstract. Hindcasting experiments (conducting a model

forecast for a time period in which observational data are

available) are being undertaken increasingly often by the in-

tegrated assessment model (IAM) community, across many

scales of models. When they are undertaken, the results are

often evaluated using global aggregates or otherwise highly

aggregated skill scores that mask deficiencies. We select a

set of deviation-based measures that can be applied on differ-

ent spatial scales (regional versus global) to make evaluating

the large number of variable–region combinations in IAMs

more tractable. We also identify performance benchmarks

for these measures, based on the statistics of the observa-

tional dataset, that allow a model to be evaluated in absolute

terms rather than relative to the performance of other mod-

els at similar tasks. An ideal evaluation method for hindcast

experiments in IAMs would feature both absolute measures

for evaluation of a single experiment for a single model and

relative measures to compare the results of multiple exper-

iments for a single model or the same experiment repeated

across multiple models, such as in community intercompar-

ison studies. The performance benchmarks highlight the use

of this scheme for model evaluation in absolute terms, pro-

viding information about the reasons a model may perform

poorly on a given measure and therefore identifying opportu-

nities for improvement. To demonstrate the use of and types

of results possible with the evaluation method, the measures

are applied to the results of a past hindcast experiment fo-

cusing on land allocation in the Global Change Assessment

Model (GCAM) version 3.0. The question of how to more

holistically evaluate models as complex as IAMs is an area

for future research. We find quantitative evidence that global

aggregates alone are not sufficient for evaluating IAMs that

require global supply to equal global demand at each time

period, such as GCAM. The results of this work indicate it is

unlikely that a single evaluation measure for all variables in

an IAM exists, and therefore sector-by-sector evaluation may

be necessary.

1 Introduction

Integrated assessment models (IAMs) couple human and

physical Earth systems to explore the impacts of economic

and environmental policies (Parson and Fisher-Vanden,

1997; Parson et al., 2007). IAMs are usually calibrated to

a historical base year and simulate forward in time by in-

corporating changes in quantities such as population, GDP,

technology, and policy to produce outputs that include land

use, emissions, and commodity prices. Hindcast experiments

use a model to produce a forecast simulation over a time pe-

riod for which observational data are available. The ability

to compare simulation data with observational data presents

new opportunities for understanding a model’s strengths and

identifying avenues for improvement, and raises new re-

search questions to explore. A variety of hindcast studies on

IAMs of varying scale have used different metrics for evalua-

tion studies, often driven by the research question of interest

(Calvin et al., 2017; Fujimori et al., 2016; Baldos and Her-

tel, 2013; Beckman et al., 2011; van Ruijven et al., 2010b,

a; Kriegler et al., 2015). However, no community standard

for evaluation of IAMs currently exists, making it more dif-

ficult to compare results of hindcast experiments from dif-

ferent models. This work outlines goals for evaluating IAM

hindcast experiments.

The Global Change Assessment Model version 3.0

(GCAM; Calvin et al., 2011; Kim et al., 2006; Clarke et al.,
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2007; Kyle et al., 2011) was recently used to conduct a hind-

cast experiment (Calvin et al., 2017). Calvin et al., hereafter

referred to as Paper 1, used skill scores (Reichler and Kim,

2008; Taylor, 2001; Schwalm et al., 2010) to compare per-

formance of the land use module of GCAM under struc-

turally different operating assumptions to an observational

dataset. The different scenarios represent different extremes

of information for decision making given to the GCAM eco-

nomic agents. One finding of this hindcast experiment with

GCAM 3.0 was that the highly aggregated nature that makes

the skill scores examined convenient also masks important

deficiencies, limiting the insight they can provide for model

development. A key question raised by this experiment, and

which this work examines in greater detail, is how to actually

define “improvement”. The ease of use of skill scores has to

be balanced with illuminating as many model deficiencies as

possible. Only once a definition of improvement has been de-

cided upon can parameter estimation studies be undertaken,

as ranging over parameter values is only a useful task if one

can quantitatively identify the parameter values that give the

best agreement with historical data.

From this work, four goals for development of an IAM

hindcast evaluation scheme were identified. A desirable eval-

uation method will provide information about the absolute

performance of a single model run and may be used to mea-

sure the relative performance of multiple model runs (from a

single model or across many models of the same variables).

Additionally, we seek a method that can describe multiple

aspects of model performance on multiple scales, provid-

ing a flexible organizational structure for analyzing the large

amount of data generated by IAMs while investigating par-

ticular hypotheses of interest. And finally, the method should

include at least one metric that can be used as a cost func-

tion in future Monte Carlo-style parameter estimation exper-

iments. Given these goals, it is unlikely that a single metric

could be arrived at to satisfy all four. Rather, a condensed

set of related metrics that together accomplish all four goals

is sought for evaluating IAMs. The result of applying the set

of metrics to model runs may be interpreted to identify future

avenues for model improvement of a particular IAM. The im-

plementation of such improvements is outside the scope of

this paper.

Our evaluation goals are not independent of each other.

A metric that provides absolute performance insight can be

calculated for multiple model runs and compared to provide

relative performance information. A metric evaluating a par-

ticular aspect of model performance may be used to estimate

parameters to improve that aspect of model performance.

Several other works in the IAM hindcasting literature

(Baldos and Hertel, 2013; Beckman et al., 2011; van Rui-

jven et al., 2010b, a; Kriegler et al., 2015; Fujimori et al.,

2016) do not meet all four of our goals. For example, in the

hindcast experiment performed for the energy component of

the AIM/CGE (Asia-Pacific Integrated Models/Computable

General Equilibrium) model, Fujimori et al. present two

statistics: a regression technique and an error statistic for

global aggregates. The regression technique identifies re-

gions and variables for which model performance may be

improved. While the regression technique can produce de-

sirable region-specific information about model performance

and shortcomings for multiple variables, it unfortunately can-

not be leveraged as a performance metric for future Monte

Carlo-style parameter estimation exercises. It is also difficult

to efficiently and comprehensively compare the regression

results of multiple different scenarios to evaluate whether

one scenario represents an overall better performance than

another.

A common finding to both of these hindcast experiments

is that global performance of a variable is often substantially

better than the performance in individual regions.Therefore,

while this work will explore global aggregates as previous

analyses did, we find that global aggregates alone are not suf-

ficient to evaluate IAMs that require global supply to equal

global demand at each time period. GCAM is only one ex-

ample of such an IAM.

The analysis scheme outlined below is designed with the

four evaluation goals in mind and focuses on deviation-based

measures of model performance and the extent of conclu-

sions that may be drawn from them. While many other model

performance statistics exist, many operate on a pass–fail ba-

sis and therefore provide little insight into the reasons a

model may fail. The scheme is then used to reexamine the

land use data from Paper 1 to demonstrate application of the

evaluation method and the resulting expanded results relative

to application of skill scores.

2 Evaluation methods

A proposed scheme to meet the four evaluation goals inspired

by past IAM hindcasting experiments is outlined below. This

work explores the extent of conclusions that may be drawn

from the root mean square error (RMSE) measure of model

performance and finds that different uses of RMSE allow

the possibility of addressing all four evaluation goals. While

arguments against RMSE in favor of mean absolute error

(MAE) exist (Legates and McCabe, 1999; Willmott and Mat-

suura, 2005), RMSE is chosen because it can be decomposed

into errors from different sources (Murphy, 1988; Weglar-

czyk, 1998; Taylor, 2001). If only a single deviation measure

were being examined, the types of conclusions that could be

drawn would not differ appreciably whether RMSE or MAE

is used. However, the ability to decompose RMSE provides

unique opportunities to understand different aspects of simu-

lation performance.

Indices of agreement are popular in the literature and gen-

erally involve the comparison of a deviation measure be-

tween simulated and observed time series with some refer-

ence measure (Nash and Sutcliffe, 1970; Garrick et al., 1978;

Willmott, 1981; Legates and McCabe, 1999; Willmott et al.,
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2012). Common reference measures include deviation mea-

sures between the observed data points and the mean of ob-

servations, or deviation measures between the observed data

points and a baseline or naive model of the variable being

simulated. Consistent with the idea of examining different

reference measures, we normalize the root mean square er-

ror in different ways to capture different facets of model

performance. Other members of the geoscientific modeling

community are also moving to assess model performance

with multiple normalized statistics, although we differ in spe-

cific techniques (Luo et al., 2012). These indices of agree-

ment are particularly useful for evaluating model scenario

performance in absolute terms due to the informative per-

formance benchmarks outlined in Sect. 2.3. Other goodness-

of-fit statistics such as correlation or a reduced chi-squared

statistic were not chosen because they offer less information

to guide improvements when a model displays poor perfor-

mance.

2.1 Background: root mean square error

decomposition

In the statistics outlined below, the value of variable i in re-

gion j at timestep t is denoted by s
ij
t for simulation and o

ij
t

for observation. Each time series contains N discrete time

points. The deviation measure of error chosen for model eval-

uation is the root mean square error, denoted for variable i in

region j by

eij =

√

√

√

√

1

N

N
∑

t=1

(

s
ij
t − o

ij
t

)2
. (1)

Root mean square error is the total deviation error in the

model, decomposed as follows:

e2
ij = b2

ij + v2
ij , (2)

where bij represents bias and vij represents errors due to

variability. Bias of variable i in region j is given by

bij = sij − oij , (3)

where sij is the mean of the simulated time series and oij

is the mean of the observed time series. The errors due to

variability are those remaining after bias is accounted for by

subtracting the means of the simulation and observation. The

centered root mean square error quantifies this error and is

denoted by

vij =

√

√

√

√

1

N

N
∑

t=1

[(

s
ij
t − sij

)

−
(

o
ij
t − oij

)]2
. (4)

2.2 Metrics for model evaluation

Past hindcast experiments in integrated assessment models

have implied that errors across regions cancel each other out,

leading to better performance at the global level than in most

individual regions (Calvin et al., 2017; Fujimori et al., 2016).

We define the time series for the global region, G, by concate-

nating the time series for each individual region. Therefore,

for J total regions whose time series each contain N data

points, the global time series contains JN data points. To

quantify the extent to which cancellation across regions oc-

curs, bias is examined at the global level in two ways. First,

the bias for the global region is examined, noting that it is

mathematically equivalent to averaging the individual region

biases:

biG = siG − oiG =
1

J

J
∑

j=1

bij . (5)

Second, we define global absolute bias as follows:

|biG| =
1

J

J
∑

j=1

|bij |. (6)

By comparing the magnitudes of Eqs. (5) and (6), the extent

of cancellation occurring across regions may be quantified

for each variable i.

On a regional level, normalization provides context for in-

terpreting the errors in Sect. 2.1. The conventional normal-

ization of root mean square uses the standard deviation of

the observed time series, σ
ij
o . Normalized RMSE of variable

i in region j is given by

e′
ij =

eij

σ
ij
o

. (7)

The quantity e′
ij gives a dimensionless measure: total error as

a fraction of the standard deviation of observation of variable

i in region j . Similarly, the centered RMSE may be normal-

ized by the standard deviation of observation, to give the er-

rors due to variability as a fraction of the observed standard

deviation. Normalized centered RMSE of variable i in region

j is given by

v′
ij =

vij

σ
ij
o

. (8)

The normalization used in Eqs. (7) and (8) compares devi-

ation measures to the observed variance about the temporal

mean. However, that variance encompasses the trend line be-

havior. Therefore, we also normalize RMSE for variable i in

region j by the observed variance about the trend line, fol-

lowing the convention of comparing deviation measures to a

selected baseline to provide more targeted information about

model performance (Garrick et al., 1978; Willmott, 1984;

Legates and McCabe, 1999).

For each variable i in each region j , let ŷ(t) be the trend

line fitted to the observational data, with ŷt the values at the

discrete time steps considered. Then we define the standard
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deviation of observation about the trend line as

σ̂
ij
o =

√

√

√

√

1

N

N
∑

t=1

[

(

o
ij
t − ŷt

)

−

(

o
ij
t − ŷt

)]2

. (9)

For the true trend line, ŷ(t), the mean o
ij
t − ŷt = 0. However,

in numerically fitting the trend line, the mean is often not

precisely 0. We can then define revised normalized RMSE

by normalizing with the standard deviation about the trend

line rather than about the time mean as follows:

êij =
eij

σ̂
ij
o

. (10)

One advantage of this refined measure is that êij penalizes

poor simulation of the observed trend line more heavily than

e′
ij . Another advantage is that, if the trend line is believed

to be true to reality, the variance about the trend line will

encapsulate natural variations (such as those due to weather)

as well as observational uncertainty.

For the GCAM land use case study defined in Sect. 3.1,

FAO observational data for each crop–region combination

was individually detrended using the function loess.as from

the R package fANCOVA (Wang, 2010) to fit the LOESS

trend line, selecting the bias-corrected Akaike information

criterion (AICC) method for generating the span parameter

(Hurvich et al., 1998).

2.3 Informative performance benchmarks

While the time series statistics outlined in Sect. 2.1 have clear

values corresponding to perfect model performance (i.e., a

value of 0), specific criteria for acceptable and good model

performance are more difficult to define objectively. In this

section, we outline ways in which to contextualize the values

achieved by each statistic outlined above to identify opportu-

nities for model improvement.

For e′
ij and eij , a helpful performance benchmark is de-

fined as

e′
ij =

eij

σ
ij
o

< 1 ⇐⇒ eij < σ
ij
o . (11)

Recall that the definition of standard deviation is σ
ij
o =

√

1
N

∑N
t=1

(

o
ij
t − oij

)2
. The right-hand side of this equation

is also what the root mean square error would be for a model

taking s
ij
t = oij at each time step t . Satisfying Eq. (11) gives

some sense of whether total error is small enough without

achieving a perfect value of 0. It is popular to say that if

e′
ij > 1, using the mean of the observed time series as a

model leads to better performance than the current model.

This interpretation is identical to that of the Nash–Sutcliffe

efficiency (Nash and Sutcliffe, 1970; Garrick et al., 1978;

Legates and McCabe, 1999). However, for a nonstationary

distribution of observations, the observed mean can only be

calculated after the simulation period and therefore cannot

be used as a model. When e′
ij > 1, either the bias or the vari-

ability component of RMSE (or both) is too large. Therefore,

when e′
ij > 1, it is most useful to examine whether v′

ij < 1.

In this case, improving bias may allow the model to satisfy

Eq. (11).

3 A case study of GCAM 3.0 land allocation

The data described below and analyzed in Sect. 3.2 are from

the first GCAM land use system hindcast experiment, Paper

1. The land allocation data are reanalyzed using the method

outlined in Table 1 in order to determine whether this method

is more likely to achieve our four goals than the skill scores

originally used. This demonstration is why we have chosen to

reevaluate existing experiments rather than repeat or develop

new experiments in a more up to date version of GCAM.

The full complement of resulting statistics and figures are

available online with code and data; see the data availability

section.

3.1 GCAM background and data for reanalysis

GCAM is an integrated assessment model capturing the in-

teractions between human and Earth systems1. GCAM in-

cludes energy, economic, and land use sectors that interact

with each other and with a climate model. It is designed

for long-term forecasting and is typically operated in 5-year

timesteps. Model behavior is calibrated to a historical base

year using observational data, and forecasts evolve in time

from the base year. Therefore, social, economic, and environ-

mental policies in place during the base year are implicitly

reflected in GCAM’s performance. Policies that begin later,

or change over time, must be more thoughtfully included, of-

ten explicitly.

Full details of the GCAM land use system, including

equations, are provided in Wise et al. (2014) as well as in

the online documentation1. Full details of different aspects

of GCAM’s structure are published in a variety of papers

(Calvin et al., 2011; Kim et al., 2006; Clarke et al., 2007;

Kyle et al., 2011). Briefly, the land use system of GCAM has

a nested structure. In each subregion within a geopolitical re-

gion, a nested structure is implemented with data specific to

the subregion. The land allocation choice at each branch in

the nest is parameterized to reflect that subregion’s charac-

teristics and may vary in response to economic, policy, and

technological changes.

Economic agents in each subregion operate to maximize

the difference between revenue (including any taxes and sub-

sidies) and the cost of production. The land use system as-

sumes a distribution of costs, where the amount of land allo-

cated for each use is actually the probability that land type is

most profitable within its nest and avoiding winner-take-all

1Documentation available at http://jgcri.github.io/gcam-doc/.
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Table 1. Statistics for model evaluation

Abbreviation Description Normalized by Notes

biG global bias lacks absolute

performance info

|biG| global absolute bias lacks absolute

performance info

e′
ij

regional normalized standard deviation around

RMSE time mean of observation

v′
ij

regional normalized standard deviation around

centered RMSE time mean of observation

êij revised regional standard deviation around trend

normalized RMSE lline of observation

behavior. That is, land is allocated to various possible uses

via a logit distribution function at each branch of the nest.

All references to GCAM within this work may be assumed

to refer to GCAM version 3.0, unless otherwise specified.

Historical data prior to 1990 were used to calibrate

GCAM 3.0, and then GCAM was run for a period from 1990

to 2010 without using additional historical data (i.e., GCAM

is used to forecast agricultural land use from 1990 to 2010).

There are 9 GCAM crops (of 12) with historical data reported

by the United Nations Food and Agricultural Organization

(FAO; FAO, 2014) during the period 1990 to 2010. The same

analysis scheme outlined in Sect. 2 and demonstrated here

could just as easily be used to examine any variable output

by an IAM with historical data available for validation.

The reference setup of GCAM 3.0 (and all subsequent ver-

sions to date) for forecast into the 21st century uses smoothed

FAO projections of yields as exogenous yield input informa-

tion that is used by GCAM to simulate land allocation. The

smoothing is performed as a 5-year rolling average including

past and future years (i.e., the smoothed 2040 data point is

generated as the average of data from 2038 to 2042).

Because GCAM requires global supply to equal global de-

mand to solve for market prices at each time step, it is possi-

ble for GCAM economic agents to implicitly optimize land

allocation to meet global demand at minimum cost, even

though GCAM is a dynamic recursive rather than an opti-

mization model. When the economic agents are given unre-

alistic fore-knowledge of the impacts of weather events, for

example, this implicit optimization may become particularly

problematic. GCAM endogenously calculates a global mar-

ket price (where global supply equals global demand) dur-

ing the simulation period. This global market price is used to

set producer prices used by economic agents in profit calcu-

lations underlying land allocation decisions, and every land

use region shares the same global producer price. A global

market price is needed for model calibration in the base year.

Since such data do not currently exist, the USA producer

price is used as the global price for calibration. This choice

could lead to incorrectly incorporating or missing impacts of

policies like subsidies or crop insurance programs. On the

demand side, the price is sterilized in the GCAM calibration

procedure.

Paper 1 featured experiments designed to investigate the

possibility of unrealistic implicit optimization and examined

two extremes of exogenous yield inputs via different param-

eterizations. The extremes also emphasize different aspects

of the GCAM reference setup, and so the reference setup be-

havior is assumed to lie between the behaviors of the two

extremes. The first extreme features increased variability in

exogenous yield inputs compared to the GCAM reference.

This is referred to as the actual yield case: GCAM makes

planting decisions (allocates land) in 2005 based on know-

ing what the yield at the end of the year in 2005 will be, a

case of economic agents having unrealistic levels of infor-

mation for making planting decisions. There is no smoothing

at all, and there is no explicit memory of past years’ perfor-

mance. The other extreme features a lack of variability and

no updates to exogenous yield inputs during the simulation

period 1990–2010, as opposed to the reference setup. This

is referred to as the forecast yield case: a linear regression

is fit to the historical yields over 1961–1990 and extrapo-

lated linearly for the simulation period 1990–2010. There is

no variation about this linear trend and economic agents have

no fore-knowledge, contrasting the actual yield case.

To examine the impact of missing or incorrectly charac-

terizing a policy, Paper 1 examined the US Renewable Fuel

Standards implemented in 2005. The standards, among other

things, increased demand for corn. GCAM runs without any

implementation of the policy were compared with GCAM

runs in which the increased demand for corn was explicitly

included. Future scenarios interested in deeper analysis of the

impacts of the US Renewable Fuel Standards may use a more

detailed implementation or may make use of the metrics out-

lined in Sect. 2 to perform a Monte Carlo-style parameter

estimation for parameters related to the fuel standards.

These considerations result in the following four test cases

(scenarios) examined in Paper 1:

www.geosci-model-dev.net/10/4307/2017/ Geosci. Model Dev., 10, 4307–4319, 2017
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Figure 1. Global bias, biG (Eq. 5). The black circle corresponds to bi,G = 0.

– GCAM makes annual land allocations given data for

population, income, and actual crop yields (denoted by

AY);

– GCAM makes annual land allocations given data for

population, income, and actual crop yields and includes

an estimate of the additional demand for corn result-

ing from the implementation of the US Renewable Fuel

Standards (denoted by AYB);

– GCAM makes annual land allocations given data for

population and income, but crop yields are forecasted

based on an annual time trend for the years 1961 to 1990

(denoted by FY);

– GCAM makes annual land allocations given data for

population and income, but crop yields are forecasted

based on an annual time trend for the years 1961 to

1990, and includes an estimate of the additional demand

for corn resulting from the implementation of the U.S.

Renewable Fuel Standards (denoted by FYB).

The simulated regional data in each of these four scenar-

ios are compared to data reported by the FAO (FAO, 2014)

during the period 1990 to 2010 for the nine GCAM crops

with FAO data available. Calvin et al. found that the case

FYB performed as well as or better than the other scenarios

across the skill scores considered: Reichler–Kim (Reichler

and Kim, 2008), normalized mean absolute error (Schwalm

et al., 2010; Luo et al., 2012), and Taylor skill (Schwalm

et al., 2010; Luo et al., 2012). Scenarios AY and AYB gener-

ally performed the worst.

3.2 Results

A selection of results demonstrating how the evaluation

method summarized in Table 1 can be used to analyze multi-

ple aspects of model performance at multiple scales and how

the metrics may be used to make the analysis of the large

amounts of data produced by IAMs more tractable are pre-

sented. The results presented were chosen both to illustrate

the general types of insights that may be drawn from appli-

cation of the evaluation scheme and to highlight the GCAM

areas of strong performance and weak performance, with the

full results for all variables on all scales by all metrics lying

somewhere in between the results presented in this section.

Each metric in Table 1 is used to reexamine the Paper 1 data,

demonstrating the interactive and complementary nature of

the metrics selected. With this approach, we are able to verify

and expand the previous GCAM land hindcast results arrived

at using skill scores in Paper 1. The analysis scheme does

appear to be more capable of achieving all four evaluation

goals than the skill scores. The full complement of resulting

statistics and figures are available online with code and data;

see data availability section for details.

Figure 1 shows the global bias, Eq. (5), which is equivalent

to the average of each individual region’s bias. Because it is

a signed quantity, a black circle is included at bi,G = 0 for

Geosci. Model Dev., 10, 4307–4319, 2017 www.geosci-model-dev.net/10/4307/2017/
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visual reference. Each scenario models global supply well for

each crop with observational data available, as measured by

global bias biG. The primary exceptions are that the scenarios

AY (red) and AYB (green) model MiscCrop and OtherGrain

poorly. This is not surprising, given that each of those crops

is an aggregate of a large number of real-world crops, varying

across regions.

Figure 2 shows the global absolute bias, Eq. (6). For each

crop, the magnitude of the global absolute bias in Fig. 2 is

larger than the magnitude of the global bias in Fig. 1, indi-

cating that errors are canceling each other out across regions.

Because there are no regional constraints on supply to sup-

plement the requirement that global supply equal global de-

mand, there are numerous regional supply solutions that may

satisfy the global constraint. This provides ample opportu-

nity for error cancellation across regions in any integrated

assessment model with a similar global constraint.

The FYB scenario (purple) displays the smallest absolute

bias for all crops, with the exception of Rice and OtherGrain,

in Fig. 2. In other words, the FYB scenario is most successful

at modeling global supply when cancellation across regions

is prohibited.

The compensating errors across regions can be further

studied by examining the normalized RMSE, e′
ij (Eq. 7), for

a single crop. Figure 3 displays the individual regional errors

for Wheat. A black circle is included to denote the perfor-

mance benchmark e′
ij = 1 (Eq. 11). With the exception of

Southeast Asia, the forecast yield scenarios (FY, blue, and

FYB, purple) outperform the scenarios using actual yield

information (AY, red, and AYB, green). Scenarios FY and

FYB show that compensating performance is occurring: the

good performance in Canada, eastern Europe, and the USA

is balanced by the poorer performance in Australia, New

Zealand, India, Latin America, and Southeast Asia. Similar

trends hold when examining other crops.

To further understand the role of compensating errors in

GCAM land allocation, the role of bias as a contributing fac-

tor is examined. Because root mean square error decomposes

into bias and centered root mean square error (Eq. 2), a sense

of whether bias is too large can be gained from comparing

e′
ij (Eq. 7) and v′

ij (Eq. 8). If e′
ij > 1 and v′

ij < 1, bias may

be considered a problematic source of errors. This is gener-

ally what occurs in GCAM.

Figure 4 displays the normalized RMSE, e′
ij , for each crop

in the United States. A black circle is included for e′
ij = 1.

In the FYB scenario (purple), e′
ij > 1 for every crop except

Wheat.

Figure 5 displays the normalized centered RMSE, v′
ij , for

each crop in the United States. A black circle is included for

v′
ij = 1.

The FYB scenario (purple) displays v′
ij < 1 for all crops

except Rice and Root Tuber. Compared with the larger values

of e′
ij in Fig. 4, this indicates that bias is a major contribut-

ing factor to performance issues. This general trend – that

scenario FYB performs best and that bias is the major con-

tributor to model performance issues for most crops – holds

across regions.

It would be preferential for the bias to be improved in-

trinsically through structural or parametric model changes,

rather than through bias-correction techniques. Therefore,

we examine which factors contribute to bias. The revised

normalized RMSE, êij (Eq. 10), compares GCAM perfor-

mance to variations of the observed time series about the

trend line. Figure 6 displays this metric for each crop in the

USA. A black circle is included for êij = 1. Each crop in

each scenario misses the trend line behavior. With the excep-

tion of Rice, scenario FYB (purple) comes closest to captur-

ing the trend line behavior. This result holds for most crops in

most regions. Therefore, scenario FYB is one possible start-

ing place in making structural improvements to GCAM.

To further examine the ways in which simulations may im-

prove at capturing trend lines, time series for corn and wheat

for multiple regions are depicted in Fig. 7a and b, respec-

tively. The black curves are FAO observational data for land

allocation in each region, and the colored time series corre-

spond to the different GCAM scenarios.

The time series for both corn and wheat illustrate a key is-

sue: GCAM tends to incorrectly simulate whether land allo-

cation should increase or decrease in time. The FYB scenario

for Wheat (Fig. 7b) tends to be the most accurate, consistent

with the results depicted in Fig. 6. It is of note that the actual

yield scenarios (AY, red, and AYB, green) are also suscepti-

ble to inaccurate discrimination between increasing and de-

creasing land allocation, showing that it is not improved by

economic agents in GCAM having perfect information about

year-end yields to make planting decisions.

One possibility for the incorrect direction of simulated

trends is that the parameters involved in the land allocation

decision may be improved, by changing the calibration pro-

cess and/or by using parameter estimation to adjust the logit

exponents governing competition. Another option may be to

explore the impacts of using different distributions to govern

competition.

That the AY (red) scenario displays different performance

than the AYB (green) scenario reinforces the importance of

careful implementation of policies: explicitly including the

effects of policies (such as in AYB) leads to different perfor-

mance than assuming policies are implicitly included in the

information provided to the model (as in AY, a case where

real-world yields that should implicitly reflect the increased

demand due to the US Renewable Fuel Standards).

Finally, the time series for corn in the former Soviet Union

and wheat in China both suggest an opportunity for struc-

tural changes to improve the land allocation performance of

GCAM. The yields for both of these crops display different

slopes during the simulation period than the historical pe-

riod. Therefore, the extension of the historical yield trends

used in the FY and FYB scenarios has no hope of correctly

capturing the different yield behavior during the simulation
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Figure 2. Global absolute bias, |biG| (Eq. 6).
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Figure 3. Normalized RMSE, e′
ij

(Eq. 7), in each region for the land allocated to Wheat. The black circle is at the performance benchmark,

e′
ij

= 1 (Eq. 11); e′
ij

compares RMSE error with the standard deviation of observation for each crop.
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ij

(Eq. 7), for each crop in the United States. A black circle is included for e′
ij

= 1; e′
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compares RMSE error

with the standard deviation of observation for each crop.
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(Eq. 8), for each crop in the United States. A black circle is included for v′
ij

= 1; v′
ij

compares

centered RMSE error with the standard deviation of observation for each crop.
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Figure 6. Revised normalized RMSE, êij (Eq. 10), for each crop in the United States. A black circle is included for êij = 1; êij compares

RMSE error with the standard deviation about the observed trend line for each crop.

period. In turn, GCAM has no hope of capturing the different

land allocation decisions in response to those yield changes.

In contrast to the FY and FYB scenarios, the AY and AYB

scenarios lead to GCAM’s land allocation being very respon-

sive to variability in yield inputs. One hypothesis is that this

is because the economic agents in GCAM have unrealistic

access to year-end harvest amounts when making their plant-

ing decisions. This local-yield input information may allow

GCAM to meet global demand without matching historical

data due to the lack of regional supply constraints.

3.3 GCAM-specific conclusions

Using the evaluation method outlined in Table 1, we expand

the results presented in Paper 1. Like many IAMs, GCAM re-

quires that global supply equal global demand for each com-

modity in each time period. The FYB scenario in GCAM

models global supply well, as measured by global bias biG

(Fig. 1). GCAM, at least, has no regional constraints on sup-

ply to supplement the global supply and demand constraint.

As a result, there are numerous regional supply solutions that

may satisfy the global constraint. This provides ample oppor-

tunity for error cancellation across regions, demonstrated in

Fig. 3.

We find that the main opportunity to improve land allo-

cation decisions in GCAM is to make structural and para-

metric changes to improve the trend line for each simulated

time series and therefore improve bias. The scenario using

yields forecasted from the historical period and modeling the

US Renewable Fuel Standards (scenario FYB) generally per-

forms the best across all metrics and is the most reasonable

starting point to begin model improvements. Specifically, up-

dating the yield forecast as new information becomes avail-

able each year in the simulation period would allow the yield

to capture changes occurring during the simulation period

while avoiding the over-responsiveness of the scenarios us-

ing actual yields as inputs (scenarios AY and AYB). Changes

to parameters, calibration methods, and data sources for pro-

ducer prices may also improve the land use system’s ability

to discern whether land allocation trend lines should increase

or decrease in time for a given crop–region combination. The

metrics in Table 1 may be used for parameter estimation stud-

ies. In using GCAM to forecast into the future (where an

AY scenario is not possible), providing the ability to adapt to

shifts in yield occurring during a simulation period and the

ability to better predict whether a land allocation trend line

should increase or decrease in response to a yield shift would

both be improvements.

Because the GCAM reference exogenous yield inputs lie

between the two extremes examined in Paper 1 and here,

one expects a hindcast experiment with the reference setup

to have errors between those of the AY and FY cases. How-

ever, because the reference scenario has exogenous yield in-

puts based on FAO forecasts of yields, it is possible that
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Figure 7. Time series for land allocated to corn (a) and wheat (b) in units of thousands of square kilometers across select regions. The black

time series in each panel represents FAO observational data. The colored time series correspond to different GCAM scenarios.

the reference scenario may perform substantially worse than

any of the cases examined in this work. This could occur if

FAO forecasts of yields are dramatically inaccurate. Because

planting decisions are not subject to the kind of “vintaging”

seen with power plant construction, it is unlikely that errors

will compound in unexpected ways. A planting decision (in

GCAM) only lasts for the year in which it occurs. A power

plant construction lasts for 30+ years. This lack of vintaging

makes it simpler to evaluate the land sector than other sectors

of GCAM. Therefore, while the evaluation method outlined

in this work can still be applied to sectors that feature vintag-

ing, the results must be interpreted much more carefully. It is

possible that additional metrics may have to be implemented

for sectors with vintaging, and rigorous studies designed to

specifically test the extent to which vintaging causes errors

to compound may be undertaken in the future.

4 Conclusions

Examination of past hindcasting exercises in the IAM com-

munity has suggested that global aggregate metrics are often

not well suited to evaluating IAM hindcast performance. This

work has outlined a suite of metrics designed to counteract

this problem and has demonstrated that the family of metrics

presented is able to provide richer insight into model perfor-

mance than global skill scores by reevaluating the results of

a past hindcast experiment in GCAM.

Further, applying the evaluation method outlined in Ta-

ble 1 allows insight into evaluating IAMs beyond GCAM.

While global results in GCAM are largely consistent with

observations, cancellation of errors is present at the global

level, a finding implied by previous hindcasting work in two

different IAMs (Calvin et al., 2017; Fujimori et al., 2016).

Any IAM requiring globally balanced supply and demand

without additional regional constraints will likely encounter

this same issue. This suggests a larger challenge in evaluat-

ing integrated assessment models: replicating global aggre-

gates is a necessary but in no way sufficient constraint on
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model performance. Indeed, many IAMs force global supply

to equal global demand, and so global aggregates of many

variables in IAMs simply reflect this forced behavior. There-

fore, a family of validating metrics is found to be necessary

in evaluation of IAM hindcast experiments. The option to

evaluate results both relatively and absolutely should lead to

more robust model improvements in the future by identifying

the best-performing scenarios for a single model, as well as

aid the IAM community in conducting hindcast intercompar-

ison studies.

A sector by sector application of a family of metrics may

be necessary for evaluation of an IAM hindcast experiment

as a whole. Future research into more tractable methods for

simultaneous evaluation of all IAM sectors without mask-

ing deficiencies as global aggregates do is necessary to de-

termine whether this is the case. Such work is complicated

by the lack of historical data against which to validate many

IAM variables. Additionally, one may question whether the

observational data being used for validation are reliable. Col-

lecting global economic data is difficult and there is no op-

portunity for repeated measurements to obtain measurement

uncertainty. When fitting trend lines to the FAO data for use

in the revised normalized RMSE metric, êij (Eq. 10), it be-

came clear that in at least some regions the data may not

be a reflection of reality. Namely, for some crops in Korea

and Japan (among other regions), there is almost no variation

about the trend line. There also was no available FAO data to

validate three crops and other land types modeled by GCAM.

Therefore, a better sense of observational uncertainty is nec-

essary before parameter estimation based on observational

data can take place.

Code and data availability. The data analyzed in this work are

publicly available at https://github.com/JGCRI/LandHindcastPaper.

This repository includes all input data, the R scripts for calculating

all statistics and the results of those calculations, and the R scripts

for generating all plots of statistics and the resulting plots. Results

from GCAM 3.0 simulations were used in this work. All GCAM re-

leases from 3.0 onward are available at https://github.com/JGCRI/
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