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Abstract

Global features are commonly used to describe the image
content. The problem with this approach is that these features
cannot capture all parts of the image having different charac-
teristics. Therefore, local computation of image information
is necessary. By using salient points to represent local infor-
mation, more discriminative features can be computed. This
research is based on an existing affine invariant local feature
detector, in which the features are assumed to be intensity
corners. First, the existing algorithm is extended with the
intensity based SUSAN corner detector which fundamentally
differs from the original Harris corner detector. Second, the
algorithm is extended to incorporate color information into
the detection process. This results in a comparison between
three different detection algorithms: the intensity based algo-
rithm using the Harris or SUSAN detector and a color based
algorithm that uses two color extended Harris detectors. The
different algorithms are compared in terms of invariance and
distinctiveness of the regions and computational complexity.

1. Introduction
Vision is a complex multi-staged process in which every

step introduces a larger amount of abstraction and with that
a better understanding of the observed scene. Distinguishing
and recognizing different objects is of great importance in
this abstraction process. From the information provided by
the retina, the elementary features are grouped together into
units that make up the objects. We tend to do this according
to a set of principles called “the gestalt principles of organi-
zation,” which are probably innately specified [5]. This step
can be seen as the syntactic step. The next step is to iden-
tify the objects and associate a meaning to them; this can be
considered the semantic step. All these steps are performed
at multiple scales and this analysis can be used to derive a
hierarchical structure which abstracts the scene.

Since considering all pixels of an image as local fea-
tures is too computational expensive, in general a selection of
points is made: the salient points. Extracting these points has
similarities to the steps of the abstraction process described
above. It is very important that the salient point detectors
are invariant to changing imaging conditions. Moreover, the
same points should be detected in spite of common transfor-

mations, like rotation, change of perspective, zoom, lighting
changes, etc. The second criterion of a good salient point de-
tector is the distinctiveness. Distinctive points are needed for
good indexing and matching.

The primary goal of this research is to evaluate several
salient point detection techniques. Experiments are con-
ducted within the affine invariant interest region detection
framework proposed by Mikolajczyk [12]. The performance
of the different corner detectors is compared according to
three criteria. The overall system performance is evaluated
using the repeatability of the regions as a measure of invari-
ance and the information content of the regions as a measure
of distinctiveness. Another important criterion when choos-
ing a certain detector is its complexity.

Our novel contribution is twofold. First of all, we
are comparing the Harris corner detector used by Mikola-
jczyk [13] with the SUSAN corner detector [21]. The latter
is a low-level intensity-based corner detector that does not
use any (image) derivatives. When compared to the Harris
detector outside of the affine invariance framework, the de-
tection process is much faster; it is also more robust to noise
since no derivatives are used; but it has only an average re-
peatability rate. Second we are investigating the use of color
in extracting corners. We first used the color extended Harris
detector [23] which operates on the same principle as the in-
tensity based Harris detector. The extension to color consists
of a transformation of the color model to decorrelate com-
mon photometric variations and a saliency boosting function
that takes into account the statistics of color image deriva-
tives. Later, we investigate the use of invariant color ratios
and we show that by using color information the distinctive-
ness of the regions is increased, whereas the desirable prop-
erties are preserved. The incorporation of color information
however increases the detection complexity.

The rest of the paper is organized as follows. In Section2
we present the related research and in Section3 we briefly
introduce the affine invariant framework and the corner de-
tectors used in our experiments (Section4). Conclusions are
given in Section5.

2. Related research
In the last decades a lot of research has been done on the

matching of images and their structures [17, 3, 20, 14]. Al-
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though the approaches are very different, most methods use
some kind of point selection from which descriptors or a hi-
erarchy are derived. We focus here on the methods that are
related to the detection of points and regions that can be de-
tected in an affine invariant way.

Corner detection can be traced back to Moravec [16] who
measured the average change of intensity by shifting a local
window by a small amount in different directions. Harris and
Stephens [6] improved the repeatability of Moravec detector
under small image variations and near edges. By an analytic
expansion of the Moravec detector the local autocorrelation
matrix is derived using first order derivatives. The Harris de-
tector, in combination with a rotational invariant descriptor,
was also used by Schmid and Mohr [19] when they extended
local feature matching to general object recognition.

A low-level approach to corner finding is proposed by
Smith and Brady: the SUSAN detector [21]. Their corner
detector compares the intensity of a pixel with the intensities
of neighboring pixels. If few of the neighboring pixels have
approximately the same value, the center pixel is considered
a corner point.

Lindeberg [9] proposed an “interesting scale level” detec-
tor which is based on determining maxima over scale of a
normalized blob measure. The Laplacian-of-Gaussian (LoG)
function is used for building the scale space. Mikolajczyk
[12] showed that this function is very suitable for automatic
scale selection of structures. An efficient algorithm for use
in object recognition was proposed by Lowe [11]. This al-
gorithm constructs a scale space pyramid using difference-
of-Gaussian (doG) filters. The doG can be used to obtain an
efficient approximation of the LoG. From the local 3D max-
ima a robust descriptor is build for matching purposes. The
disadvantage of using doG or LoG as feature detectors is that
the repeatability is not optimal since they not only respond to
blobs, but also to high gradients in one direction. Because of
this, the localization of the features may not be very accurate.

An approach that intuitively arises from this observation,
is the separation of the feature detector and the scale selec-
tion. The original Harris detector [6] shows to be robust to
noise and lighting variations, but only to a very limited ex-
tend to scale changes [20]. To deal with this Dufournoud et
al. [2] proposed the scale adapted Harris operator. In this ap-
proach points are selected by applying the Harris detector at
multiple scales and selecting the local maxima at every scale
level. This results in a lot of points, where multiple points can
describe the same structure. These additional points increase
the matching complexity and mismatches are more likely to
occur.

Given the scale adapted Harris operator, a scale space
can be created. Local 3D maxima in this scale space can
be taken as salient points. Mikolajczyk points out that the
scale adapted Harris operator rarely attains a maximum over
scales [12]. This results in very few points, which are not
representative enough for the image. To address this prob-

lem, Mikolajczyk [12] proposed the Harris-Laplace detector
that merges the scale-adapted Harris corner detector and the
Laplacian based scale selection.

During the last years much of the research on scale in-
variance has been generalized to affine invariance. Affine in-
variance is defined here as invariance to non-uniform scaling
in different directions. This allows for matching of descrip-
tors under perspective transformations since a global per-
spective transformation can be locally approximated by an
affine transformation [22]. Most of the scale invariant meth-
ods are only limited invariant to affine transformations. This
is because non-uniform scaling affects the location, the scale,
and the shape of a local feature.

The use of the second moment matrix (or autocorrelation
matrix) of a point for affine normalization was explored by
Lindeberg and Garding [10]. They initialized their region de-
tector with the local 3D maxima from the scale space that is
created by using LoG filters. The scale and shape of an initial
point with a corresponding scale is iteratively adapted until
convergence is reached. The shape of the region is derived
from the second moment matrix. A similar approach was
used by Baumberg [1] for feature matching. Schaffalitzky
and Zisserman [18] use a similar approach as Baumberg [1]
for the affine normalization of regions. Additionally, they
initialize the regions by using the Harris detector that is ex-
tended with the Laplacian characteristic scale selection. This
way uniform scale changes between the regions are handled.
In the iterative procedures of the three approaches described
above, true affine invariance is not obtained. As the region is
iteratively adapted, not only the shape and the scale can vary,
but also the position of the region might change. In all ap-
proaches the position of the region is fixed. Mikolajczyk [13]
integrated the location, scale, and shape adaption into one it-
erative procedure. Because all three parameters of the region
might vary during the iterations, all of them are detected at
every iteration.

All the approaches presented above are intensity based.
Since the luminance axis is the major axis of color variation
in the RGB color cube, most salient points are found using
just intensity. The additional color based salient points might
not dramatically increase the number of salient points. The
distinctiveness of these color based salient points is however
much larger, and therefore color can be of great importance
when matching images. Furthermore, according to Itti et al.
[7] color plays an important role in the pre-attentive stage
in which features are detected. This means that the saliency
value of a point also depends on the color information that
is present. Very relevant to our work is the research of van
de Weijer et al. [24]. They aim at incorporating color dis-
tinctiveness into the design of salient point detectors. In their
work, the color derivatives form the basis of a color saliency
boosting function since they are used in both the detection
of the salient points, and the determination of the informa-
tion content of the points. Furthermore, the histograms of



color image derivatives show distinctive statistical properties
which are used in a color saliency boosting function.

3. Affine invariant framework and corners de-
tectors

In this section, we briefly present the affine invariant
framework used throughout the paper and give insight into
the corner detection algorithms used in our comparison. For
more details we direct the reader to the original publications.

The affine invariant region detection algorithm [12] con-
sists of a number of steps. An initial point with a correspond-
ing detection scale is assumed. Based on the region defined
by the initial location and scale, the point is subject to an it-
erative procedure in which the parameters of the region are
adapted until convergence is reached. The affine invariance is
obtained by combining a number of existing algorithms. The
characteristic scale of a structure is selected using the Lapla-
cian scale selection. The location of a region is determined
using the Harris corner detector, and the affine deformation
of a structure is obtained by using certain properties of the
second moment matrix. Because all parameters (scale, loca-
tion, and shape) influence each other, they all need to be ad-
justed in every iteration. If the algorithm converges towards
a stable region, the adjustments become smaller. If they be-
come small enough the algorithm halts, and the next initial
region is processed. More details on the framework can be
found in [12, 13, 14]. Note that we are using this framework
as a baseline and we “plug-in” several corner detectors (Har-
ris [6], SUSAN [21], and two color variants of Harris corner
detector).

The Harris corner detector [6] uses the eigenvalues of
the second moment matrix to derive a cornerness measure.
These eigenvalues are proportional to the principle curva-
tures of the considered area, and are invariant to rotation. A
cornerness measure is derived from the eigenvalues based on
the trace and determinant of the second moment matrix.

The SUSAN feature detection principle [21] is based on a
circular mask in which the intensity of the center is compared
with that of the other pixels in the mask. The number of pix-
els within the mask with a similar intensity as the center pixel
is computed. The center pixel is called the nucleus and the
pixels with similar intensity are called the USAN (Univalue
Segment Assimilating Nucleus). Under the assumption that
pixels belonging to the same object have a relative uniform
intensity, the USAN can be used to detect features like cor-
ners and edges.

To extend the Harris detector to incorporate color infor-
mation, the second moment matrix will be based on color
information. Because of common photometric variations
in imaging conditions such as shadows and illumination,
two invariant color spaces are used i.e. the opponent color
space [24] for the colOppHarris detector and them-color ra-
tio space [4] for the colRatHarris detector. The reason for

choosing these color spaces is to investigate whether color
invariance plays a role in the repeatability and distinctive-
ness of the detectors. It has been shown that there exists a
trade-off between color invariant models and their discrimi-
native power [4]. While the opponent color space has lim-
ited invariance and the intensity information is still present,
the color ratio is independent of the illumination, changes in
viewpoint, and object geometry [4].

The second moment matrix is computed as follows. The
first step is to compute the spatial derivatives ofRGB by us-
ing a convolution with the differentiation kernels of sizeσD.
The derivatives are then transformed into the desired color
system (i.e. opponent or color ratio system). By the mul-
tiplication and summation of the transformed gradients, the
components of the second moment matrix are computed. The
values are averaged by a Gaussian integration kernel with
size σI . Scale normalization is done again using a factor
σ2

D. This procedure is shown in Eq.1 where a general no-
tation is used. Color spaceC is used with its components
[c1, . . . , cn]T , wheren is the number of color system com-
ponents andci,x and ci,y denote the spatial derivatives in
this color system, withi ∈ [1, . . . , n], and the subscriptx or
y indicating the direction of the derivative.

µ(x) = σ2
DgσI ⊗

[
CT

x (x)Cx(x) CT
x (x)Cy(x)

CT
x (x)Cy(x) CT

y (x)Cy(x)

]
(1)

If the distribution of the transformed image derivatives
is observed for a large set of images, regular structures are
formed by points of equal frequency [24, 23]. The planes
of these structures are called isosalient surfaces. These sur-
faces are formed by connecting the points in the histogram
that occur the same number of times. Based on the observed
statistics a saliency measure can be derived in which vec-
tors with an equal information content have an equal effect
on the saliency function. This is called the color saliency
boosting function which is based on rotation and normaliza-
tion [24, 23]. The components of the second moment matrix
that incorporate the rotation and normalization, are shown
in Eq. 2. The components of the rotated transformed image
derivatives are denoted bỹci,x and c̃i,y. The normalization
of the ellipsoid is done using the diagonal matrixΛ. Subse-
quently, the color boosted matrix elements of Eq.1 are com-
puted with

CT
x (x)Cx(x) =

n∑
i=1

Λ2
iic̃

2
i,x(x, σD)

CT
x (x)Cy(x) =

n∑
i=1

Λ2
iic̃i,x(x, σD)c̃i,y(x, σD) (2a)

CT
y (x)Cy(x) =

n∑
i=1

Λ2
iic̃

2
i,y(x, σD)

Note that in the case of color ratios, the derivatives are
already incorporated in the way the ratios are computed. A
brief description is given below.



We focus on the following color ratio [4]:

M(ci
~x1 , ci

~x2 , cj
~x1

, cj
~x2

) =
ci
~x1

cj
~x2

ci
~x2

cj
~x1

, ci 6= cj , (3)

expressing the color ratio between two neighboring image
locations~x1 and ~x2, for ci, cj ∈ C giving the measured
sensor response obtained by a narrow-band filter with central
wavelengthsi andj.

For a standardRGB color camera, we have:

m1(R~x1 , R~x2 , G~x1 , G~x2) =
R~x1G~x2

R~x2G~x1

(4)

m2(R~x1 , R~x2 , B~x1 , B~x2) =
R~x1B~x2

R~x2B~x1

(5)

m3(G~x1 , G~x2 , B~x1 , B~x2) =
G~x1B~x2

G~x2B~x1

. (6)

Taking the natural logarithm of both sides of Eq.4 results
for m1 (a similar procedure is used form2 andm3) in:

ln m1(R~x1 , R~x2 , G~x1 , G~x2) = ln(
R~x1G~x2

R~x2G~x1

) = ln(
R~x1

G~x1

)−ln(
R~x2

G~x2

)

Hence, the color ratios can be seen as differences at two
neighboring locations~x1 and ~x2 in the image domain of
ln(R/G):

∇m1(~x1, ~x2) = (ln(
R

G
))~x1 − (ln(

R

G
))~x2 . (7)

Differentiation is obtained by computing the difference in a
particular direction between neighboring pixels ofln R/G.
The resulting derivation is independent of the illumination
color, changes in viewpoint, the object geometry, and illu-
mination intensity. To obtain the gradient magnitude, the
Canny’s edge detector is taken (derivative of the Gaussian
with σ = 1.0).

4. Experiments

In this section we compare the different corner detectors
according to three criteria: repeatability, information content,
and complexity. We are interested in comparing the intensity
and color based detectors and in investigating the role the
color invariance plays in the performance of color based de-
tectors.

4.1. Repeatability

The repeatability is measured by comparing the regions
that are detected in an imageIR, and in a transformed copy
of it IL. The localizations and shapes of the structures in the
images are related by a homographyH. By comparing the
correspondences between the detected regions that cover the
same part of the depicted scene, the repeatability rate can be
computed as [12]:

r =
nm

min(nR, nL)
× 100%

wherenR is the number of regions in the common part of
IR, nL is the number of regions in the common part ofIL,
andnm is the number of matches.

In order to determine the robustness of the detectors, the
repeatability is measured under common variations in the
imaging conditions. For each transformation the detectors
are evaluated using a set of images in which in every suc-
cessive image the transformation is increased a little. The
dataset used, is the one used in [14] for determining the re-
peatability. Test sets are provided for blur, zoom & rotation,
viewpoint changes, light changes, and JPEG compression.
All images are taken with a digital camera that introduced
JPEG compression artifacts.

4.1.1 Blur
The blur testset consists of two sets of 6 images. In both
sets the focus of the camera is gradually varied from sharp in
the first image to unsharp in the last image. The successive
images are also translated.
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Figure 1. Repeatability for different detectors on the blur set

Figure 1 shows the repeatability results for the ”bikes”
testset. For most of the images, the color-based Harris detec-
tors performed best. The intensity based Harris detector per-
forms about 10% worse for images 2 to 5. The SUSAN based
detector performs worse over the whole set of images. This
poor performance might be due to the scale of the detectable
structures that increases as the images get more blurred. The
localization of the SUSAN based detector gets worse as the
scale increases. Note that the color Harris detectors have sim-
ilar repeatability and they only need a fraction of the number
of regions that the other detectors need to achieve a similar
repeatability.

4.1.2 Lighting
In this test set the aperture of the camera is varied. This re-
sults in a sequence of images that range from light to dark.
In theory, this should only affect the intensity component,
but since the camera pre-processes the image additional vari-
ations might be present. The successive images in this set
are also slightly translated. In the test set only the intensity
is changed and no other lighting changes like shadow and
highlights are present.
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Figure 2. Repeatability for optimized detectors on the lighting set

The intHarris detector performs best on this test set (Fig-
ure2). This is probably due to the fact that the Harris corner
detector is based on the derivatives of the image instead of on
the actual pixel values. The SUSAN detector uses its bright-
ness threshold to determine whether something qualifies as
a corner. If the overall image intensity gets lower, the vari-
ations in brightness also get lower. As a result the SUSAN
detector will pick up less corners. The repeatability of the
colOppHarris based detector is similar to that of the SUSAN
detector, although it is also based on derivatives. ColRatHar-
ris detector performs the worst probably due to the invariant
properties imposed on it. The number of regions needed is
the highest for the intHarris detector, whereas the SUSAN
and color Harris detectors need a lower number of regions.

4.1.3 Rotation and scaling
Invariance against rotation and scaling is very important in
detecting the same regions in different images of the same
scene. Any multi-scale interesting point detector should have
good results on this.

The “bark” test set consists of a number of rotated and
zoomed images depicting a natural structure. Although cor-
ners and edges are present, most of them are found in the
texture. Color information is present, be it in a modest way.
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Figure 3. Repeatability for different detectors on the rotation and
scaling set

The colOppHarris based detector performs best (Fig-
ure 3). This might be due to the fact that it only detects

10 regions in the reference image; which might be too few
for matching. The intensity based Harris detector also per-
forms well, using more regions. The SUSAN based detector
needs the most regions and achieves the lowest repeatability
comparable to the one of colRatHarris detector. Note again
that by using a more invariant color space (as is the case for
colRatHarris detector) we tend to lose in repeatability perfor-
mance.

4.1.4 Viewing angle
The “graffiti” test set depicts a planar scenes from different
viewpoints and its images contain regions of equal color that
have distinctive edges and corners. The images bear similar-
ities to synthetic images as those images in general also have
sharp edges and colors with high saturation.
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Figure 4. Repeatability for different detectors on the viewpoint set

The repeatability results are shown in Figure4. All detec-
tors perform similar. Overall the repeatability of the SUSAN
detector is a few percents lower than those of the other detec-
tors. Again, the number of regions used by the color Harris
detectors to achieve this repeatability, is much lower than that
of the other detectors.

4.1.5 JPEG compression
The JPEG compression artefacts introduced are all rectangu-
lar regions. These rectangles introduce many additional cor-
ners in the image. All salient point detection methods used
in the experiments rely on corners. Therefore, these artefacts
might have a significant impact on the repeatability. When
dealing with color and JPEG compression it is important to
know that the lossy compression aims at discarding informa-
tion the human cannot easily see. The human eye is more
sensitive to variations in intensity than to variations in color.
This is therefore also used in the JPEG compression scheme.

In the test set the reference image is compressed at a qual-
ity of 40%. In the successive images the quality is decreased
to 2%. Note that most JPEG compressed images are com-
pressed at a higher quality level; low quality values like these
are in practice only used under special circumstances like low
bandwidth video.

The intHarris and SUSAN detectors perform similar un-
der compression in this test set, as is shown in Figure5.
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Figure 5. Repeatability for optimized detectors on the compression
set

The intensity based detectors deal significantly better with
the artefacts than the color Harris detectors do. The color
Harris detectors are clearly confused by the (color) artefacts
introduced by the high JPEG compression. This might be
due to the fact that the JPEG encoding is more conservative
in varying the intensity information than it is with varying
the color information of an image.

4.1.6 Discussion
In general the intHarris detector, as used by Mikolajczyk
[13], performs in terms of repeatability very well in all ex-
periments. The SUSAN detector performs on the blurring
test set poor, compared to other detectors. In all other experi-
ments the SUSAN detector performs in general a little worse
than the Harris detector. This is primary due to the sensitivity
of its input: a small change in input or parameters might lead
to a very different output, and because of this localization at
larger scales becomes less accurate. If the SUSAN detec-
tor outperforms the Harris detector, this is always in the last
images of a test set. In these last images the transformation
is the most extreme. From this however we cannot directly
conclud that the SUSAN detector performs better under ex-
treme transformations. The number of regions needed by the
SUSAN detector to achieve the results obtained is in some
experiments higher, and in other experiments lower than the
number of regions used by the Harris detector to achieve sim-
ilar or better results. From the experiments cannot be con-
cluded that one of the detectors needs significantly more or
less regions compared to the other.

The color Harris detectors achieve in general a similar re-
peatability compared to the intensity based Harris detector.
On the JPEG compression and lighting test sets the color
Harris detectors perform worse; on the blurring test set they
perform better. From this can be concluded that incorporat-
ing color information using the saliency boosting function,
neither has a significant positive or (except for transforma-
tions by strong JPEG compression) negative effect on the re-
peatability.

Overall, from the experiments can be concluded that re-
gions can be detected more reliable under some transfor-

mations when using just intensity information. The oppo-
nent color model that is used in the colorOppHarris detector
decorrelates the intensity and color information. It is pos-
sible that by varying the ratio of these two different com-
ponents, the tradeoff between invariance and distinctiveness
can be made. If the weighting of the intensity component is
increased, probably more regions are detected. Although the
information content of these additional regions might not be
very high, they can be detected reliable under varying imag-
ing conditions. On the other extreme, the colRatHarris detec-
tor does not use any intensity information and this is reflected
in the poor results under most of the transformations. How-
ever, this is compensated by a higher distinctiveness of the
descriptors as it will be illustrated in the next section.

4.2. Information content

The information content of the detected regions is mea-
sured using the entropy. The entropy is defined as the aver-
age information content of all “messages”. The information
content of one messagei can be computed from the probabil-
ity of the messagepi according toIi = − log(pi). From the
information content of one message, the average information
content of all messages can be derived. The entropy of a set
of messages is therefore defined asI = −

∑
i pi log(pi).

To estimate the entropy of a number of detected regions,
the regions need to be described. In this context, the descrip-
tor of a region acts as the “message” in the entropy estima-
tion. There are numerous ways of describing a region; in
this research two common methods are used to describe re-
gions. Both methods are based on convolutions with Gaus-
sian derivatives.

A method to describe a region using derivatives is the “lo-
cal jet” of orderN at pointx [8]. In this research rotational
differential invariants up to the second order are used to cre-
ate the intensity based descriptorvi:

vi =


L2

x + L2
y

LxxL2
x + 2LxyLxLy + LyyL2

y

Lxx + Lyy

L2
xx + 2L2

xy + L2
yy

 (8)

This descriptor is also used in [20], and similar descriptors
are used in [12].

To determine the entropy of a set of descriptors, the prob-
abilities of the descriptors have to be determined. The prob-
ability of the occurrence of a descriptor can be estimated by
partitioning the descriptor space. The probability of the de-
scriptors in one partition is obtained by dividing the number
of descriptors in the partition by the total number of descrip-
tors. The aim is to cluster very similar descriptors in the same
partition. We implemented the method proposed in [20]. Due
to the space limitation we refer the reader to the original work
for more details.

The color based descriptorvc as used in [23] is given by:

vc =
[
R, G, B, Rx, Gx, Bx, Ry, Gy, By

]T
(9)



This descriptor uses only derivatives up to the first order.
Montesinos et al. [15] argue that due to the additional color
information the color 1-jet is sufficient for local structure de-
scription. Note that this descriptor is not invariant to rotation.

To keep the probabilities of the descriptors computable,
the probabilities of thezeroth order signal and the first order
derivatives are assumed independent, as is done in [23]. The
probability of descriptorvc becomes:

p(vc)=p((R, G, B)T )p((Rx, Gx, Bx)T )p((Ry, Gy, By)T ) (10)

The information content of such a descriptor can be com-
puted by summing the information content of the three inde-
pendent components. This is shown in Eq.11, whereI(L),
I(Lx), andI(Ly) represent the information content of the
zeroth and first order color derivatives.

I(vc) = I(L) + I(Lx) + I(Ly) (11)

Since the Harris and SUSAN detector are based on in-
tensity and the other detectors are color based we use two
information content measures. The intensity based descrip-
tors are computed as described in [20] (cf. Eq. 8). The color
based descriptors are computed according to [23] (cf. Eq. 9).

4.2.1 Evaluation
A large number of points has to be considered in order to get
a statistically significant measure. For this purpose a selec-
tion of 300 images from the Corel dataset was made. The
images both depict man made objects as well as images of
natural scenes.

After normalization the descriptor space is partitioned in
order to determine the probabilities of the descriptors. Be-
cause of normalization the same partition size can be used in
all dimensions. The size of the partitions is determined by the
largest absolute descriptor value of the normalized descrip-
tors. In the experiments, each dimension of the normalized
descriptor space is divided into 20 partitions.

For intensity based entropy calculation, the results are
shown in Table1. Note that in this experiments, for each cor-
ner detected by one of the methods (intensity or color based
detectors), we used the descriptors calculated from deriva-
tives of the intensity function up to the second order (cf.
Eq.8).

Detector Entropy
SUSAN 3.1146
Harris 3.3866
colOppHarris 2.5541
colRatHarris 2.4505
Random 2.3654

Table 1. The intensity information content for different detectors

Although the color Harris detectors are included here, the
intensity based descriptors are too restrictive to draw conclu-
sions since no color information is considered in characteriz-
ing the regions. A region that is of equal intensity might be a
high salient red-green corner. The color Harris detectors are
included here since the occurrence of such corners is quite
rare in natural images. Most color corners are also visible in
the intensity image, be it with a lower gradient.

As expected, the regions that are detected using the ran-
dom region generator have the lowest average information
content. Also, the intensity based entropies of the regions
detected by the color Harris are low. The intensity based de-
scriptor is unable to describe the features that are detected
by the color Harris detectors. The entropy of the regions de-
tected by the Harris and SUSAN detectors are the highest.

Although the Harris and SUSAN detector are intensity
based we can still use a color descriptor to compare the
detected features. These detectors do not only detect pure
black/white/gray corners but to a certain extent also color
corners. The results for the color based entropy calculation
are summarized in Table2. The columnsL, Lx andLy cor-
respond to the components of Eq.11. The total entropy is
computed from this by summing the components.

Detector Entropy
L Lx Ly Total

SUSAN 4.9321 3.3366 2.9646 11.2333
Harris 4.9799 3.2160 3.2132 11.4091
colOppHarris 5.4367 4.0040 3.9659 13.4066
colRatHarris 5.4153 4.2644 4.2865 13.9662
Random 4.8754 2.1534 2.2183 9.2470

Table 2. The color information content for different detectors

Again, the regions detected by the random region gener-
ator have the lowest entropy. The Harris and SUSAN based
detectors perform also approximately the same. The regions
detected by the color Harris detectors are by far the most dis-
tinctive according to the color based entropy calculation.

4.2.2 Discussion
The color Harris detectors in combination with the intensity
based descriptors are not good choices, as expected. The in-
tensity descriptor is unable to represent the additional color
information that is present; an opposite effect can be seen in
the results of the color based entropy calculation.

It is clear that a good balance between repeatability and
distinctiveness has to be made. By increasing the repeata-
bility, the distinctiveness of the regions decreases. To make
the regions more distinctive, color information can be used
to describe the regions. When introducing the color informa-
tion in the descriptor, the detector becomes less invariant to
changes in illumination. By using a color model in the de-
tector that is invariant to common changes in illumination, a
tradeoff between invariance and distinctiveness can be made.



This is exactly what the colRatHarris detector does. The ex-
periments clearly show the advantages of this approach. If
color information is used to describe the regions, the color
Harris regions are significantly more distinctive than the re-
gions detected by the intensity based detectors.

4.3. Complexity

The complexity of the complete system depends on two
parameters: color or intensity framework; and Harris or SU-
SAN corner detector. The complexity of the color based
framework is due to the additional color channels, about 3
times larger than that of the intensity based framework.

Computing the Harris cornerness measure is equally ex-
pensive in the color or intensity based framework. The
SUSAN corner detector is only used in the intensity based
framework. In the intensity based framework, the SUSAN
corner detector operates the fastest. The Harris corner detec-
tor needs to perform more and larger convolutions to deter-
mine the cornerness measure of one pixel. If recursive filters
are used to perform the convolutions, the size of the kernel
does not matter anymore. In this case, the difference in speed
between the detectors within the framework becomes very
small.

The greater part of the total running time is spent in the
framework. Also, the SUSAN and Harris corner detectors
(intensity) perform similar in terms of speed. For these two
reasons the choice of the corner detector should be based on
performance in terms of repeatability and entropy.

The choice between using color or intensity information
depends on more criteria. The complexity is increased by
a factor of 3 compared to the intensity based framework.
At this cost the distinctiveness of the regions is increased
whereas the repeatability is decreased. Possibly, the match-
ing complexity should also be considered, since this involves
the number of regions needed for matching. The experiments
have shown that when using the color information, less re-
gions are needed to obtain a similar repeatability.

5. Conclusion

In this paper, four different algorithms are compared in
terms of invariance and distinctiveness of the extracted re-
gions; and computational complexity. Based on our exten-
sive experiments a number of conclusion can be drawn. The
invariance to common image transformations is in general
similar for the intensity and color Harris detectors. The in-
tensity based detectors have the lowest computational cost.
The color based detection algorithms detect the most distinc-
tive features. Furthermore, the experiments suggest that to
obtain optimal performance, a tradeoff can be made between
invariance and distinctiveness by an appropriate weighting
of the intensity and color information. To conclude, color
information can make a significant contribution to (affine in-
variant) feature detection and matching.
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