QUT

Queensland University of Technology
Brisbane Australia

This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Sievers, Gregor, Ax, Johannes, Kucza, Nils, Flasskamp, Martin, Jungeblut,
Thorsten, Kelly, Wayne, Porrmann, Mario, & Ruckert, Ulrich

(2015)

Evaluation of interconnect fabrics for an embedded MPSoC in 28 nm FD-
SOl.

In Serdijn, W & Fernandes, J (Eds.) Proceedings of the 2015 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS).

Institute of Electrical and Electronics Engineers Inc., United States of
America, pp. 1925-1928.

This file was downloaded from: https://eprints.qut.edu.au/84930/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/ISCAS.2015.7169049

https://eprints.qut.edu.au/view/person/Kelly,_Wayne.html
https://eprints.qut.edu.au/84930/
https://doi.org/10.1109/ISCAS.2015.7169049

Evaluation of Interconnect Fabrics for an
Embedded MPSoC in 28 nm FD-SOI

Gregor Sievers*, Johannes Ax*, Nils Kucza*, Martin FlaBkamp*, Thorsten Jungeblut*,
Wayne Kelly', Mario Porrmann*, Ulrich Riickert*
*Cognitronics and Sensor Systems Group, CITEC, Bielefeld University, Bielefeld, Germany
fScience and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
Email: gsievers@cit-ec.uni-bielefeld.de w.kelly@qut.edu.au

Abstract—Embedded many-core architectures contain dozens
to hundreds of CPU cores that are connected via a highly scalable
NoC interconnect. Our Multiprocessor-System-on-Chip CoreVA-
MPSoC combines the advantages of tightly coupled bus-based
communication with the scalability of NoC approaches by adding
a CPU cluster as an additional level of hierarchy. In this work,
we analyze different cluster interconnect implementations with 8
to 32 CPUs and compare them in terms of resource requirements
and performance to hierarchical NoCs approaches. Using 28 nm
FD-SOI technology the area requirement for 32 CPUs and AXI
crossbar is 5.59mm? including 23.61% for the interconnect at
a clock frequency of 830 MHz. In comparison, a hierarchical
MPSoC with 4 CPU cluster and 8 CPUs in each cluster requires
only 4.83 mm? including 11.61% for the interconnect. To evaluate
the performance, we use a compiler for streaming applications
to map programs to the different MPSoC configurations. We use
this approach for a design-space exploration to find the most
efficient architecture and partitioning for an application.

I. INTRODUCTION

The decreasing feature size of microelectronic circuits
allows for the integration of more and more processing cores
on a single chip. Therefore, the high number of processing
cores poses high demands on the underlying communication
infrastructure. For providing efficient communication between
the CPUs and to increase scalability, a dedicated NoC infrastruc-
ture is inevitable. Nevertheless, the area and power overhead
of a NoC is high compared to the small processing cores.
The CoreVA-MPSoC used in this work is a highly scalable
multiprocessor system based on a hierarchical communication
infrastructure (cf. Fig. 1) and a configurable VLIW processor.
The CPU cores in a cluster are tightly coupled via a bus
interconnect that can be compliant to either the ARM AXI or
the OpenCores Wishbone standard. Both bus standards support
a shared bus or a crossbar topology. There is no common shared
memory, but the CPUs can access each other’s local memory in
a Non-Uniform Memory Access (NUMA) fashion. The global
interconnect of the CoreVA-MPSoC is a configurable Network-
on-Chip, which allows for the implementation of different
network topologies. A typical configuration, used throughout
this paper, consists of a 2D-mesh with a processor cluster
consisting of multiple CPU cores connected to each network
node of the NoC. The CoreVA-MPSoC targets streaming
applications specialized for embedded mobile devices, which
require a high resource efficiency.

This paper shows an exploration of different bus confi-
gurations to aim for the most resource-efficient intra-cluster
communication in the CoreVA-MPSoC. The main contributions

of this work are the analysis of the scalability of tightly
coupled processor clusters in hierarchical MPSoCs. We compare
different interconnect bus standards and topologies (shared bus,
crossbar, and NoC) in a 28 nm FD-SOI technology for 8 to
32 CPU cores. We determine the optimal number of register
stages to obtain a target frequency of 830 MHz which is the
maximum frequency of our CPU cores. To compare execution
performance, a self-built compiler is used to map different
streaming-based benchmarks to the analyzed 16 CPU MPSoC
configurations.

II. RELATED WORK

Energy efficient, hierarchical MPSoCs have been widely
adopted in research and industry. However, there is not much
research into the partitioning of cluster interconnects in com-
bination with a NoC-based MPSoC. The STM STHORM [1]
connects up to 16 CPUs and multi-banked L1 data memory
via a logarithmic interconnect. Four of these CPU clusters
are connected via a NoC. STHORM can be programmed via
OpenCL or a proprietary Native Programming Model. The
Kalray MPPA-256 [2] is a commercial, hierarchical 288-core
MPSoC targeting embedded applications. Each CPU cluster
contains 16 processing CPUs, a system CPU and shared
memory. Nevertheless, the impact of the number of cores per
cluster and different cluster interconnects are not analyzed in
these papers. Adapteva’s Epiphany E64G401 [3] is a 64 CPU
multiprocessor with 2 MB memory. The maximum operation
frequency is 800 MHz. A 3-layer 2D-mesh NoC is used as
interconnect fabric. The Epiphany does not introduce a cluster-
level hierarchy but solely relies on NoC communication. Our
hierarchical approach reduces the NoC overhead by allowing
tightly-coupled communication within a CPU cluster. Angiolini
et al. [4] compare an AMBA AHB shared bus, a partial 5-layer

CPU CPU CPU CPU
Cluster Cluster Cluster Cluster
CPU CPU CPU CPU
Cluster Cluster Cluster Cluster

Fig. 1: Hierarchical CoreVA-MPSoC with 4x2 mesh NoC.

AMBA AHB crossbar, and an xpipes NoC as interconnect
fabrics for a MPSoC connecting 30 IP cores. The shared
bus does not provide adequate bandwidth for the considered
applications. The 5-layer crossbar outperforms the NoC in
terms of area and power in a 130 nm process. Angiolini et al.
consider only NoC nodes (cluster) with 1 master (CPU or traffic
generator) and slave (memory) per NoC node. We compare
different partitionings with different numbers of CPUs per NoC
node. Kumar et al. [5] perform a design-space exploration
for a multiprocessor with 4, 8, and 16 Power4-like CPUs.
They consider a shared bus, a crossbar, and a hierarchical
interconnect consisting of two shared buses. It is shown that
the architecture of the interconnect highly influences overall
system performance. For example, the area savings due to
reduced shared-bus bandwidth can be used for larger caches
which results in an improved system performance. Kumar et al.
target server applications and do not consider a NoC.

III. THE COREVA-MPSOC ARCHITECTURE

The CPU used in our MPSoC is named CoreVA [6] and
features a configurable 32 bit VLIW architecture. It has separate
instruction and data memories and six pipeline stages. The
number of VLIW issue slots, arithmetic-logic-units (ALUs),
multiply-accumulate (MAC), and load-store-units (LD/ST) can
be adjusted at design time. The CPU integrates a bus slave
interface to enable access to the memories from the bus and for
initialization/control. To avoid CPU stalls due to bus congestion,
a FIFO is used to decouple CPU bus writes from the bus master
interface. Both master and slave interfaces are generic to enable
the evaluation of different bus standards and topologies (see
below). Our C-compiler tool-chain for a single CPU is based
on LLVM and supports VLIW and SIMD vectorization.

A. Cluster level

In a CPU cluster several CoreVA CPUs are tightly coupled
using an interconnect fabric. The cluster implements a NUMA
architecture, where each CPU can access the data memories of
all other CPUs within a cluster (cf. Fig. 2). In this work, two
different interconnect standards are considered. Wishbone (WB)
is an open-source interconnect-standard maintained by the
community project OpenCores [7] and is used in a broad range
of academic and open-source projects. WB represents a classic

Cluster Interconnect]

Master Slave
t

Slave | [Master]| [Slave |
t

CoreVA CoreVA

Cpu macro

Fig. 2: CPU cluster with NoC-Cluster-Interface (NCI).

Cpu macro

bus standard that can be found in (multi-) processor systems
for the last two decades. We implemented the pipelined variant
of the standard with asynchronous cycle termination. AMBA
AXI4 is the latest interconnect specified by ARM Inc. [8].
AXI is targeting high performance embedded multiprocessor
systems and is widely used in both industry and academia.
AXI defines separate channels for address- and data transfers.
In addition, read and write channels are separated and allow
for parallel read and write requests even for a shared bus.
This results in five channels in total (read and write address,
read and write data, and write response). Both interconnect
implementations are not registered by default. Register stages
can be added to both master and slave ports of the interconnect
to increase the maximum clock frequency and to simplify
place and route (P&R) timing closure. A WB master can issue
a write operation every cycle whereas AXI allows a write
operation every second cycle only. However, a write operation
of another AXI master can be interleaved. Outstanding read
requests are not supported as our VLIW architecture does not
implement out-of-order execution. The minimum read latency
is 4 cycles for both AXI and WB (without register stages). The
WB shared bus requires 1 arbiter in total, the WB crossbar
1 arbiter per slave, and the AXI shared bus 5 arbiters (1 per
channel). The AXI crossbar interconnect requires 2 arbiters
per slave (read and write address channel). The data channels
do not require extra arbitration, because our interconnect does
not support outstanding transactions. We use a round robin
arbitration scheme. The data bus width of both interconnects is
configurable at design time and is fixed to 32 bit in this work.

B. Network on Chip

For realizing MPSoCs with dozens or hundreds of CPU
cores, a second interconnection hierarchy level, a Network
on Chip (NoC), is introduced to the CoreVA-MPSoC. The
NoC considered in this work features packet switching and
wormhole routing. Each packet is segmented into small flits,
each containing a 23 bit header for control information (for a
4x4 NoC) and 64 bit payload data. The maximum payload size
of a packet is configurable at design time and set to 4kB in
this work. The NoC is built up of switch boxes, each having
a configurable number of ports. This flexibility enables the
implementation of most common network topologies. In this
work, a 2D-mesh topology is used (cf. Fig. 1). Each switch
box has a latency of two clock cycles. To increase the average
throughput, virtual channels can be introduced to the NoC,
which implies dedicated input buffers in each output port. One
port of each switch box is connected to a cluster via a network
cluster interface (NCI, cf. Fig. 2). The NCI acts as a DMA
controller within the CPU cluster. It stores incoming NoC flits
directly in the data memory of the target CPU. Vice versa,
outgoing packets stored in the data memory are separated into
flits and transferred to the switch box. For very large scaled
CoreVA-MPSoCs the NoC can be extended by a Globally-
Asynchronous Locally-Synchronous (GALS)-based approach
by using mesochronous links [9]. Mesochronous links between
the switch boxes divide the system into frequency domains.
Each domain consists of a cluster and a single switch box
(cf. Fig. 2). In this work, only small NoCs are considered, so
virtual channels and GALS are not required and disabled. An
accurate simulator of the MPSoC has been developed to aid
the software development and debugging.

IV. IMPLEMENTATION RESULTS

In this section we compare synthesis results for MPSoC con-
figurations comprising 8, 16, and 32 CoreVA CPUs (cf. Fig. 3).
We used a highly automated standard-cell design-flow based on
Cadence Encounter Digital Implementation System. We vary
the interconnect type (WB or AXI) and topology (shared bus
or full crossbar). In addition, we consider NoC configurations
with 1, 4, and 8 CPUs per cluster. Basic block is a CoreVA
CPU hard macro with 2 VLIW slots, 16 kB data- and 16kB
instruction-memory. The maximum frequency of this hard
macro is 830 MHz in a 28 nm FD-SOI standard cell technology'.
Area requirements are 0.133 mm? and the estimated power
consumption is 16.38 mW. In this work, the whole MPSoC has
a single clock domain and all syntheses are performed with a
target frequency of 8§30 MHz.

First, we determined the required number of master and
slave register stages for the interconnect. For each configuration,
we started without any register stage and increased the number
of registers until the target frequency was achieved. Registers
can be placed in between masters and the interconnect and/or
in between the interconnect and the slaves. All configurations
with 8 CPUs and the 16 CPU WB shared bus require 1 master
register stage to meet the timing. The 32 CPU AXI shared bus
configuration requires 2 master- and 1 slave register stages. All
other considered configuration require 1 master- and 1 slave
register stage.

The 8 CPU cluster with WB shared bus has a total area of
1.09 mm?, the interconnect requires only 2.33% (0.025 mm?)
of this area. WB crossbar, AXI shared bus, and AXI crossbar
consume 0.059 mm?, 0.053 mm?, and 0.094 mm? respectively.
A 4x2 mesh NoC with 1 CPU per cluster (4x2x1) has an
area of 1.53 mm? with 0.464 mm? (30.28%) for the NoC. This
shows that a pure NoC has a large area overhead compared
to bus-based interconnects. The NoC with two 4-CPU clusters
(2x1x4) requires 1.22 mm? with 0.070 mm? for the two AXI
crossbar clusters and 0.090 mm? for the NoC. Area for the 16
CPU clusters varies from 2.18 mm? (WB bus) to 2.46 mm?
(AXI crossbar). The WB crossbar is 3.9 times larger than the
WB shared bus whereas the AXI crossbar requires 2.3 times
more area than the AXI shared bus. Both considered NoC
configurations have approximately the same size compared to
the full AXI crossbar (2x2x4: 2.45mm?, 2x1x8: 2.41 mm?).
Considering 32 CPU cores, the shared bus implementations
of WB and AXI scale quite well and require only 2.32%
and 8.02% of the overall area. The crossbars interconnects
consume 14.81% (WB) and 23.61% (AXI) of the overall area.
A 4x2x4 MPSoC consumes 13.05% of the area whereas the
2x2x8 MPSoC requires 11,61% of the overall area for the
interconnect.

The synthesis tool provides power estimation based on
default input switching activities. For our CoreVA CPU hard
macro, switching activities of 10% result in a good power
estimation compared to our simulation-based annotations. In
the following we present first power estimations for the 16
CPU cluster. The WB shared bus cluster consumes 275 mW
in total including 5% for the interconnect. The WB crossbar
dissipates 308 mW (15% for the interconnect), the AXI shared
bus 314 mW (16%), and the AXI crossbar 346 mW (24%). The

ISTMicroelectronics, 10 metal layer, Worst Case Corner: 1.0V, 125°C

Il CPU cores
3 Cluster Interconnect
N NoC

Area [mm? |
w

WB Bus
WB Bus

%]
>
o
@
=

WB Crossbar
AXI Crossbar
4x2x1 NoC
2x1x4 NoC

WB Crossbar

E AXI Crossbar
2x2x4 NoC
2x1x8 NoC

WB Crossbar

E AXI Crossbar
4x2x4 NoC
2x2x8 NoC

o
o
)
[
12

>
o
w
N
o

S S

Fig. 3: Area requirements of different MPSoC configurations,
2-issue VLIW CoreVA CPU, and 32kB memory per CPU.

2x2x4 NoC consumes 349 mW and the 2x1x8 NoC 336 mW.
Future work includes more detailed power analysis based on
gatelevel simulations.

Fig. 4 shows layouts of a 16 CPU Cluster with a WB
crossbar interconnect and a 2x2x4 NoC. Both layouts contain
16 2-issue VLIW cores and 512 kB memory in total. The clock
frequency is slightly reduced compared to logic synthesis
estimation (825 MHz cluster, 812 MHz NoC). The area of
the 16 CPU cluster is 21.0% (0.49 mm?) higher compared
to the synthesis estimation. The 2x2x4 NoC-based MPSoC
requires 3.02mm? which is a 22.7% increase compared to
synthesis results. The deviation in the area requirements can
mainly be explained by an exceptional routing overhead for the
interconnect (esp. in the center of the layout) that was estimated
too optimistically by the synthesis tool. This overhead could
be decreased by using a CPU hard macro that does not use all
routing layers.

2.82mm?) and a 2x2x4 NoC (right, 3.02 mm?).

= WB, Bus
B WB, Crossbar

3 AXI, Bus
B AXI, Crossbar

Bl 2x2x4 NoC
B 2x1x8 NoC

Speedup

AutoCor
BatcherSort
BubbleSort
DES

FFT
InsertionSort
LowPassFilter
MatrixMult
RadixSort

Fig. 5: Speedup of MPSoC configurations with 16 CPU cores
in relation to a single CPU.

V. BENCHMARK RESULTS

Programming a large number of CPU cores is a complex
task requiring compiler support. In [10] we presented a compiler
for the Streamlt language [11] targeting the CoreVA-MPSoC
architecture. A Streamlt program consists of a collection
of filters, in which a filter takes as input a data stream,
processes the data and produces an output data stream. Each
filter is entirely independent and communicates only via input
and output channels. Filters can be executed in parallel and
allow the compiler to map them to different CPUs using a
simulated annealing optimization algorithm. To manage the
communication channels between two filters on different CPUs,
our Streamlt compiler uses a unified communication library.
A communication channel handles buffer management and
features a mutex-based synchronization scheme. Each channel
consists of two or more buffers to hide latencies by filling one
buffer while another is being read (multi buffering). The data
buffers of a cluster-internal channel are allocated in the memory
of the receiving processor to avoid bus read latencies. For a
NoC channel, data buffers are allocated at the sending and at
the receiving cluster. Because of this, the memory footprint of
a NoC channel is doubled compared to a cluster channel.

Fig. 5 shows the throughput speedup for some Streamlt
benchmarks [11] using 16 CPUs and different MPSoC configu-
rations compared to a single CPU. The applications BubbleSort,
RadixSort, and LowPassFilter scale well, with a speedup factor
of about 14 for all cluster configurations. The shared bus is a
communication bottleneck for DES, MatrixMult, and FFT. The
advantages of WB compared to AXI (e.g., 4.9% for MatrixMult)
can be explained by the reduced write performance of AXI
(1 write requires 2 cycles). If a single master is accessing the bus
extensively, the CPU FIFO cannot hide this drawback of AXI.
However, AXI promises better results in MPSoCs that, e.g.,
contain a DMA controller and for other programming models
like OpenCL. The NoC performance is comparable to a WB and
AXI crossbar for most applications. Some applications show
a performance decrease for the NoC configurations. The NoC
performance for AutoCor, Low Pass Filter, MatrixMult, and

RadixSort is low compared to the single cluster configuration
(e.g., 68.7% performance decrease for MatrixMult and 2x2x4).
For BatcherSort, the NoC-based MPSoC shows a speedup
compared to the crossbar interconnects because the NCI acts as
an DMA controller. This shows that the most efficient MPSoC
configuration highly depends on the considered benchmark.

VI. CONCLUSION

In this work we evaluated different interconnect fabrics
for our embedded multiprocessor system CoreVA-MPSoC.
The scalability of bus-based interconnects is analyzed for
8 to 32 CPU cores, WB and AXI bus standard, shared bus
and crossbar topologies, and a 2-D mesh NoC. The AXI
crossbar interconnect and NoC have the same area requirements
for 16 CPUs. For 32 CPUs, the area of the AXI crossbar
configuration is 15.7% larger compared to our hierarchical NoC-
based 2x2x8 MPSoC. These results show that in terms of area
requirements the reasonable maximum size for a full crossbar
interconnect is 16 CPUs for the considered 28 nm FD-SOI
technology. The execution of different streaming applications
for 16 CPUs shows an advantage of AXI crossbar over AXI
shared bus (4.35% on average) and NoC (28.04% for 2x2x4).
Future work will analyze larger MPSoC configurations and
different NoC topologies. In addition we will examine partial
crossbars and different memory topologies within a cluster.

ACKNOWLEDGMENTS

This research was supported by the ATN — DAAD Joint
Research Co-operation Scheme: Tightly Coupled Software
Tools and Adaptable Hardware for Resource Efficient Multipro-
cessor Architectures, the DFG CoE 277: Cognitive Interaction
Technology (CITEC), and the German Federal Ministry of
Education and Research (BMBF) within the Leading-Edge
Cluster Intelligent Technical Systems OstWestfalenLippe” (it’s
OWL), managed by the Project Management Agency Karlsruhe.

REFERENCES

[1] L. Benini et al., “P2012: Building an ecosystem for a scalable, modular
and high-efficiency embedded computing accelerator,” in DATE. 1EEE,
2012, pp. 983-987.

[2] B. D. de Dinechin et al., “A Distributed Run-Time Environment for
the Kalray MPPA-256 Integrated Manycore Processor,” in Procedia
Computer Science. Elsevier, 2013, pp. 1654-1663.

[3] “E64G401 Epiphany 64-Core Microprocessor,” Adapteva, Inc., Tech.
Rep., 2014. [Online]. Available: http://www.adapteva.com/epiphanyiv

[4] F. Angiolini et al., “Contrasting a NoC and a traditional interconnect
fabric with layout awareness,” in DATE. IEEE, 2006, pp. 124-129.

[5] R. Kumar et al., “Interconnections in Multi-Core Architectures: Under-
standing Mechanisms, Overheads and Scaling,” in ISCA. IEEE, 2005,
pp. 408-419.

[6] S. Liitkemeier et al., “A 65 nm 32 b Subthreshold Processor With
9T Multi-Vt SRAM and Adaptive Supply Voltage Control,” [EEE J.
Solid-State Circuits, vol. 48, no. 1, pp. 8-19, 2013.

[7]1 “OpenCores Project.” [Online]. Available: http://opencores.org/

[8] “AMBA AXI and ACE Protocol Specification,” 2013. [Online].
Available: http://www.arm.com/products/system-ip/amba/

[9] T. Jungeblut ef al., “A TCMS-based architecture for GALS NoCs,” in
ISCAS. IEEE, 2012, pp. 2721-2724.

[10] W. Kelly et al., “A Communication Model and Partitioning Algorithm
for Streaming Applications for an Embedded MPSoC,” in Int. Symp. on
System on Chip (SoC). IEEE, 2014.

[11] W. Thies et al., “Streamlt: A Language for Streaming Applications,” in
Int. Conf. on Compiler Construction. Springer, 2002, pp. 179-196.

