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Abstract. Many different low-level feature detectors exist and it is widely agreed that the evaluation of detectors
is important. In this paper we introduce two evaluation criteria for interest points: repeatability rate and information
content. Repeatability rate evaluates the geometric stability under different transformations. Information content
measures the distinctiveness of features. Different interest point detectors are compared using these two criteria.
We determine which detector gives the best results and show that it satisfies the criteria well.
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1. Introduction

Many computer vision tasks rely on low-level fea-
tures. A wide variety of feature detectors exist, and
results can vary enormously depending on the detec-
tor used. It is widely agreed that evaluation of fea-
ture detectors is important (Phillips and Bowyer, 1999).
Existing evaluation methods use ground-truth verifica-
tion (Bowyer et al., 1999), visual inspection (Heath
et al., 1997; L´opez et al., 1999), localization accu-
racy (Baker and Nayar, 1999; Brand and Mohr, 1994;
Coelho et al., 1991; Heyden and Rohr, 1996), theoret-
ical analysis (Demigny and Kaml´e, 1997; Deriche and
Giraudon, 1993; Rohr, 1994) or specific tasks (Shin
et al., 1998, 1999).

In this paper we introduce two novel criteria for
evaluating interest points: repeatability and informa-
tion content. Those two criteria directly measure the
quality of the feature for tasks like image matching,
object recognition and 3D reconstruction. They apply
to any type of scene, and they do not rely on any spe-
cific feature model or high-level interpretation of the
feature. Our criteria are more general than most existing
evaluation methods (cf. Section 1.1). They are comple-
mentary to localization accuracy which is relevant for
tasks like camera calibration and 3D reconstruction of
specific scene points. This criterion has previously been

evaluated for interest point detectors (Baker and Nayar,
1999; Brand and Mohr, 1994; Coelho et al., 1991;
Heyden and Rohr, 1996).

Repeatability explicitly compares the geometrical
stability of the detected interest points between dif-
ferent images of a given scene taken under varying
viewing conditions. Previous methods have evaluated
detectors for individual images only. An interest point
is “repeated”, if the 3D scene point detected in the first
image is also accurately detected in the second one.
The repeatability rate is the percentage of the total ob-
served points that are detected in both images. Note that
repeatability and localization are conflicting criteria—
smoothing improves repeatability but degrades local-
ization (Canny, 1986).

Information content is a measure of the distinctive-
ness of an interest point. Distinctiveness is based on the
likelihood of a local greyvalue descriptor computed at
the point within the population of all observed inter-
est point descriptors. Descriptors characterize the local
shape of the image at the interest points. The entropy
of these descriptors measures the information content
of a set of interest points.

In this paper several detectors are compared using
these two evaluation criteria. The best detector satisfies
both of these criteria well, which explains its success for
tasks such as image matching based on interest points
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and correlation (Zhang et al., 1995). In this context
at least a subset of the points have to be repeated in
order to allow feature correspondence. Furthermore,
if image-based measures (e.g. correlation) are used to
compare points, interest points should have distinctive
patterns.

1.1. Related Work on the Evaluation
of Feature Detectors

The evaluation of feature detectors has concentrated
on edges. Only a few authors have evaluated inter-
est point detectors. In the following we give a few
examples of existing edge evaluation methods and a
survey of previous work on evaluating interest points.
Existing methods can be categorized into methods
based on: ground-truth verification, visual inspection,
localization accuracy, theoretical analysis and specific
tasks.

1.1.1. Ground-Truth Verification. Methods based
on ground-truth verification determine the undetected
features and the false positives. Ground-truth is in gen-
eral created by a human. It relies on his symbolic in-
terpretation of the image and is therefore subjective.
Furthermore, human interpretation limits the complex-
ity of the images used for evaluation.

For example, Bowyer et al. (1999) use human
marked ground-truth to evaluate edge detectors. Their
evaluation criterion is the number of false positives
with respect to the number of unmatched edges
which is measured for varying input parameters. They
used structured outdoor scenes, such as airports and
buildings.

1.1.2. Visual Inspection. Methods using visual in-
spection are even more subjective as they are directly
dependent on the human evaluating the results. L´opez
et al. (1999) define a set of visual criteria to evalu-
ate the quality of detection. They visually compare
a set of ridge and valley detectors in the context of
medical images. Heath et al. (1997) evaluate detectors
using a visual rating score which indicates the per-
ceived quality of the edges for identifying an object.
This score is measured by a group of people. Different
edge detectors are evaluated on real images of complex
scenes.

1.1.3. Localization Accuracy. Localization accu-
racy is the criterion most often used to evaluate interest
points. It measures whether an interest point is accu-
rately located at a specific 2D location. This criterion

is significant for tasks like camera calibration and the
3D reconstruction of specific scene points. Evaluation
requires the knowledge of precise 3D properties, which
restricts the evaluation to simple scenes.

Localization accuracy is often measured by verify-
ing that a set of 2D image points is coherent with the
known set of corresponding 3D scene points. For ex-
ample Coelho et al. (1991) compare the localization
accuracy of interest point detectors using different pla-
nar projective invariants for which reference values are
computed using scene measurements. The scene con-
tains simple black polygons and is imaged from dif-
ferent viewing angles. A similar evaluation scheme is
used by Heyden and Rohr (1996). They extract sets of
points from images of polyhedral objects and use pro-
jective invariants to compute a manifold of constraints
on the points.

Brand and Mohr (1994) measure the localization ac-
curacy of a model-based L-corner detector. They use
four different criteria: alignment of the extracted points,
accuracy of the 3D reconstruction, accuracy of the
epipolar geometry and stability of the cross-ratio. Their
scene is again very simple: it contains black squares on
a white background.

To evaluate the accuracy of edge point detectors,
Baker and Nayar (1999) propose four global criteria:
collinearity, intersection at a single point, parallelism
and localization on an ellipse. Each of the criteria cor-
responds to a particular (very simple) scene and is mea-
sured using the extracted edgels. Their experiments are
conducted under widely varying image conditions (il-
lumination change and 3D rotation).

As mentioned by Heyden and Rohr, methods based
on projective invariants don’t require the knowledge of
the exact position of the features in the image. This is an
advantage of such methods, as the location of features
in an image depends both on the intrinsic parameters
of the camera and the relative position and orientation
of the object with respect to the camera and is there-
fore difficult to determine. However, the disadvantage
of such methods is the lack of comparison to true data
which may introduce a systematic bias.

1.1.4. Theoretical Analysis. Methods based on a
theoretical analysis examine the behavior of the detec-
tors for theoretical feature models. Such methods are
limited, as they only apply to very specific features.
For example, Deriche and Giraudon (1993) study an-
alytically the behavior of three interest point detectors
using a L-corner model. Their study allows them to
correct the localization bias. Rohr (1994) performs a
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similar analysis for L-corners with aperture angles in
the range of 0 and 180 degrees. His analysis evaluates
10 different detectors.

Demigny and Kaml´e (1997) use three criteria to the-
oretically evaluate four step edge detectors. Their cri-
teria are based on Canny’s criteria which are adapted
to the discrete domain using signal processing theory.
Canny’s criteria are good detection, good localization
and low responses multiplicity.

1.1.5. A Specific Task. A few methods have evalu-
ated detectors through specific tasks. They consider that
feature detection is not a final result by itself, but merely
an input for further processing. Therefore, the true per-
formance criterion is how well it prepares the input for
the next algorithm. This is no doubt true to some ex-
tent. However, evaluations based on a specific task and
system are hard to generalize and hence rather limited.

Shin et al. (1999) compare edge detectors using an
object recognition algorithm. Test images are cars im-
aged under different lighting conditions and in front
of varying backgrounds. In Shin et al. (1998) the per-
formance of a edge-based structure from motion algo-
rithm is used for evaluation. Results are given for two
simple 3D scenes which are imaged under varying 3D
rotations.

1.2. Overview of the Paper

Section 2 presents a state of the art on interest point
detectors as well as implementation details for the de-
tectors used in our comparison. Section 3 defines the
repeatability criterion, explains how to determine it ex-
perimentally and presents the results of a comparison
under different transformations. Section 4 describes the
information content criterion and evaluates results for
different detectors. In Section 5 we select the detector
which gives the best results according to the two crite-
ria, show that the quality of its results is very high and
discuss possible extensions.

2. Interest Point Detectors

By “interest point” we simply mean any point in the
image for which the signal changes two-dimensionally.
Conventional “corners” such as L-corners, T-junctions
and Y-junctions satisfy this, but so do black dots on
white backgrounds, the endings of branches and any
location with significant 2D texture. We will use the
general term “interest point” unless a more specific

Figure 1. Interest points detected on Van Gogh’s sower painting.
The detector is an improved version of the Harris detector. There are
317 points detected.

type of point is referred to. Figure 1 shows an exam-
ple of general interest points detected on Van Gogh’s
sower painting.

2.1. State of the Art

A wide variety of interest point and corner detectors
exist in the literature. They can be divided into three
categories: contour based, intensity based and paramet-
ric model based methods. Contour based methods first
extract contours and then search for maximal curva-
ture or inflexion points along the contour chains, or do
some polygonal approximation and then search for in-
tersection points. Intensity based methods compute a
measure that indicates the presence of an interest point
directly from the greyvalues. Parametric model meth-
ods fit a parametric intensity model to the signal. They
often provide sub-pixel accuracy, but are limited to spe-
cific types of interest points, for example to L-corners.
In the following we briefly present detection methods
for each of the three categories.

2.1.1. Contour Based Methods.Contour based me-
thods have existed for a long time; some of the more
recent ones are presented. Asada and Brady (1986) ex-
tract interest points for 2D objects from planar curves.
They observe that these curves have special character-
istics: the changes in curvature. These changes are clas-
sified in several categories: junctions, endings etc. To
achieve robust detection, their algorithm is integrated in
a multi-scale framework. A similar approach has been
developed by Mokhtarian and Mackworth (1986). They
use inflexion points of a planar curve.
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Medioni and Yasumoto (1987) use B-splines to ap-
proximate the contours. Interest points are maxima of
curvature which are computed from the coefficients of
these B-splines.

Horaud et al. (1990) extract line segments from the
image contours. These segments are grouped and inter-
sections of grouped line segments are used as interest
points.

Shilat et al. (1997) first detect ridges and troughs
in the images. Interest points are high curvature points
along ridges or troughs, or intersection points. They ar-
gue that such points are more appropriate for tracking,
as they are less likely to lie on the occluding contours
of an object.

Mokhtarian and Suomela (1998) describe an interest
point detector based on two sets of interest points. One
set are T-junctions extracted from edge intersections. A
second set is obtained using a multi-scale framework:
interest points are curvature maxima of contours at a
coarse level and are tracked locally up to the finest level.
The two sets are compared and close interest points are
merged.

The algorithm of Pikaz and Dinstein (1994) is based
on a decomposition of noisy digital curves into a min-
imal number of convex and concave sections. The lo-
cation of each separation point is optimized, yielding
the minimal possible distance between the smoothed
approximation and the original curve. The detection of
the interest points is based on properties of pairs of sec-
tions that are determined in an adaptive manner, rather
than on properties of single points that are based on a
fixed-size neighborhood.

2.1.2. Intensity Based Methods.Moravec (1977)
developed one of the first signal based interest point
detectors. His detector is based on the auto-correlation
function of the signal. It measures the greyvalue dif-
ferences between a window and windows shifted in
several directions. Four discrete shifts in directions par-
allel to the rows and columns of the image are used. If
the minimum of these four differences is superior to a
threshold, an interest point is detected.

The detector of Beaudet (1978) uses the second
derivatives of the signal for computing the measure
DET= Ixx I yy− I 2

xy whereI (x, y) is the intensity sur-
face of the image. DET is the determinant of the
Hessian matrix and is related to the Gaussian curva-
ture of the signal. This measure is invariant to rota-
tion. Points where this measure is maximal are interest
points.

Kitchen and Rosenfeld (1982) present an inter-
est point detector which uses the curvature of planar
curves. They look for curvature maxima on isophotes
of the signal. However, due to image noise an isophote
can have an important curvature without correspond-
ing to an interest point, for example on a region with
almost uniform greyvalues. Therefore, the curvature
is multiplied by the gradient magnitude of the image
where non-maximum suppression is applied to the gra-
dient magnitude before multiplication. Their measure

is K = Ixx I 2
y + I yy I 2

x − 2Ixy Ix I y

I 2
x + I 2

y
.

Dreschler and Nagel (1982) first determine locations
of local extrema of the determinant of the Hessian DET.
A location of maximum positive DET can be matched
with a location of extreme negative DET, if the direc-
tions of the principal curvatures which have opposite
sign are approximatively aligned. The interest point is
located between these two points at the zero crossing of
DET. Nagel (1983) shows that the Dreschler-Nagel’s
approach and Kitchen-Rosenfeld’s approach are iden-
tical.

Several interest point detectors (F¨orstner, 1994;
Förstner and G¨ulch, 1987; Harris and Stephens, 1988;
Tomasi and Kanade, 1991) are based on a matrix related
to the auto-correlation function. This matrixA averages
derivatives of the signal in a windowW around a point
(x, y):

A(x, y)

=
 ∑

W
(Ix(xk, yk))

2 ∑
W

Ix(xk, yk)I y(xk, yk)∑
W

Ix(xk, yk)I y(xk, yk)
∑
W
(I y(xk, yk))

2


(1)

whereI(x, y) is the image function and(xk, yk) are the
points in the windowW around(x, y).

This matrix captures the structure of the neighbor-
hood. If this matrix is of rank two, that is both of its
eigenvalues are large, an interest point is detected. A
matrix of rank one indicates an edge and a matrix of
rank zero a homogeneous region. The relation between
this matrix and the auto-correlation function is given
in Appendix A.

Harris and Stephens (1988) improve the approach of
Moravec by using the auto-correlation matrixA. The
use of discrete directions and discrete shifts is thus
avoided. Instead of using a simple sum, a Gaussian
is used to weight the derivatives inside the window.
Interest points are detected if the auto-correlation ma-
trix A has two significant eigenvalues.
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Förstner and G¨ulch (1987) propose a two step proce-
dure for localizing interest points. First points are de-
tected by searching for optimal windows using the auto-
correlation matrixA. This detection yields systematic
localization errors, for example in the case of L-corners.
A second step based on a differential edge intersection
approach improves the localization accuracy.

Förstner (1994) uses the auto-correlation matrixA to
classify image pixels into categories—region, contour
and interest point. Interest points are further classified
into junctions or circular features by analyzing the local
gradient field. This analysis is also used to determine
the interest point location. Local statistics allow a blind
estimate of signal-dependent noise variance for auto-
matic selection of thresholds and image restoration.

Tomasi and Kanade (1991) motivate their approach
in the context of tracking. A good feature is defined
as one that can be tracked well. They show that such
a feature is present if the eigenvalues of matrixA are
significant.

Heitger et al. (1992) develop an approach inspired
by experiments on the biological visual system. They
extract 1D directional characteristics by convolving the
image with orientation-selective Gabor like filters. In
order to obtain 2D characteristics, they compute the
first and second derivatives of the 1D characteristics.

Cooper et al. (1993) first measure the contour direc-
tion locally and then compute image differences along
the contour direction. A knowledge of the noise char-
acteristics is used to determine whether the image dif-
ferences along the contour direction are sufficient to
indicate an interest point. Early jump-out tests allow a
fast computation of the image differences.

The detector of Reisfeld et al. (1995) uses the con-
cept of symmetry. They compute a symmetry map
which shows a “symmetry strength” for each pixel.
This symmetry is computed locally by looking at the
magnitude and the direction of the derivatives of neigh-
boring points. Points with high symmetry are selected
as interest points.

Smith and Brady (1997) compare the brightness of
each pixel in a circular mask to the center pixel to define
an area that has a similar brightness to the center. Two
dimensional features can be detected from the size,
centroid and second moment of this area.

The approach proposed by Lagani`ere (1998) is based
on a variant of the morphological closing operator
which successively applies dilation/erosion with dif-
ferent structuring elements. Two closing operators and
four structuring elements are used. The first closing op-

erator is sensitive to vertical/horizontal L-corners and
the second to diagonal L-corners.

2.1.3. Parametric Model Based Methods.The para-
metric model used by Rohr (1992) is an analytic junc-
tion model convolved with a Gaussian. The parameters
of the model are adjusted by a minimization method,
such that the template is closest to the observed sig-
nal. In the case of a L-corner the parameters of the
model are the angle of the L-corner, the angle between
the symmetry axis of the L-corner and thex-axis, the
greyvalues, the position of the point and the amount of
blur. Positions obtained by this method are very precise.
However, the quality of the approximation depends on
the initial position estimation. Rohr uses an interest
point detector which maximizes det(A) (cf. Eq. (1)) as
well as the intersection of line segments to determine
the initial values for the model parameters.

Deriche and Blaszka (1993) develop an acceleration
of Rohr’s method. They substitute an exponential for
the Gaussian smoothing function. They also show that
to assure convergence the image region has to be quite
large. In cluttered images the region is likely to contain
several signals, which makes convergence difficult.

Baker et al. (1998) propose an algorithm that auto-
matically constructs a detector for an arbitrary para-
metric feature. Each feature is represented as a densely
sampled parametric manifold in a low dimensional sub-
space. A feature is detected, if the projection of the
surrounding intensity values in the subspace lies suf-
ficiently close to the feature manifold. Furthermore,
during detection the parameters of detected features
are recovered using the closest point on the feature
manifold.

Parida et al. (1998) describe a method for general
junction detection. A deformable template is used to de-
tect radial partitions. The minimum description length
principle determines the optimal number of partitions
that best describes the signal.

2.2. Implementation Details

This section presents implementation details for the
detectors included in our comparison. The detectors
are Harris (Harris and Stephens, 1988), ImpHarris (an
improved version of Harris), Cottier (Cottier, 1994),
Horaud (Horaud et al., 1990), Heitger (Heitger et al.,
1992) and F¨orstner (F¨orstner, 1994). Except in the case
of the improved version of Harris, we have used the
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implementations of the original authors, with the stan-
dard default parameter values recommended by the au-
thors for general purpose feature detection. These val-
ues are seldom optimal for any given image, but they
do well on average on collections of different images.
Our goal is to evaluate detectors for such collections.

The Harris (Harris and Stephens, 1988) computes
the derivatives of the matrixA (cf. Eq. (1)) by convolu-
tion with the mask [−2−1 0 1 2]. A Gaussian(σ = 2)
is used to weight the derivatives summed over the win-
dow. To avoid the extraction of the eigenvalues of the
matrixA, the strength of an interest points is measured
by det(A)−α trace(A)2. The second term is used to
eliminate contour points with one strong eigenvalue,α

is set to 0.06. Non-maximum suppression using a 3× 3
mask is then applied to the interest point strength and
a threshold is used to select interest points. The thresh-
old is set to 1% of the maximum observed interest point
strength.

In the improved version of Harris (ImpHarris),
derivatives are computed more precisely by replacing
the [−2−1 0 1 2]mask with derivatives of a Gaussian
(σ = 1). A recursive implementation of the Gaussian
filters (Deriche, 1993) guarantees fast detection.

Cottier (1994) applies the Harris detector only to
contour points in the image. Derivatives for contour
extraction as well as for the Harris detector are com-
puted by convolution with the Canny/Deriche opera-
tor (Deriche, 1987)(α= 2, ω= 0.001). Local maxima
detection with hysteresis thresholding is used to ex-
tract contours. High and low thresholds are determined
from the gradient magnitude (high= average gradient
magnitude, low= 0.1 ∗ high). For the Harris detec-
tor derivatives are averaged over two different window
sizes in order to increase localization accuracy. Points
are first detected using a 5× 5 window. The exact lo-
cation is then determined by using a 3× 3 window and
searching the maximum in the neighborhood of the de-
tected point.

Horaud (Horaud et al., 1990) first extracts contour
chains using his implementation of the Canny edge de-
tector. Tangent discontinuities in the chain are located
using a worm, and a line fit between the discontinuities
is estimated using orthogonal regression. Lines are then
grouped and intersections between neighboring lines
are used as interest points.

Heitger (Heitger et al., 1992) convolves the image
with even and odd symmetrical orientation-selective
filters. These Gabor like filters are parameterized by
the width of the Gaussian envelope(σ = 5), the sweep

which increases the relative weight of the negative
side-lobes of even filters and the orientation selectivity
which defines the sharpness of the orientation tuning.
Even and odd filters are computed for 6 orientations.
For each orientation an energy map is computed by
combining even and odd filter outputs. 2D signal vari-
ations are then determined by differentiating each en-
ergy map along the respective orientation using “end-
stopped operators”. Non-maximum suppression (3× 3
mask) is applied to the combined end-stopped operator
activity and a relative threshold (0.1) is used to select
interest points.

The Förstner detector (F¨orstner, 1994) computes
the derivatives on the smoothed image(σ = 0.7). The
derivatives are then summed over a Gaussian window
(σ = 2) to obtain the auto-correlation matrixA. The
trace of this matrix is used to classify pixels into re-
gion or non-region. For homogeneous regions the trace
follows approximatively aχ2-distribution. This allows
to determine the classification threshold automatically
using a significance level(α= 0.95) and the estimated
noise variance. Pixels are further classified into con-
tour or interest point using the ratio of the eigenvalues
and a fixed threshold (0.3). Interest point locations are
then determined by minimizing a function of the local
gradient field. The parameter of this function is the size
of the Gaussian which is used to compute a weighted
sum over the local gradient measures(σ = 4).

3. Repeatability

3.1. Repeatability Criterion

Repeatability signifies that detection is independent of
changes in the imaging conditions, i.e. the parameters
of the camera, its position relative to the scene, and
the illumination conditions. 3D points detected in one
image should also be detected at approximately cor-
responding positions in subsequent ones (cf. Fig. 2).
Given a 3D pointX and two projection matricesP1

and Pi , the projections ofX into imagesI1 and Ii are
x1 = P1X andxi = Pi X. A point x1 detected in image
I1 is repeated in imageIi if the corresponding pointxi

is detected in imageIi . To measure the repeatability,
a unique relation betweenx1 and xi has to be estab-
lished. This is difficult for general 3D scenes, but in
the case of a planar scene this relation is defined by a
homography (Semple and Kneebone, 1952):

xi = H1i x1 where H1i = Pi P−1
1
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Figure 2. The pointsx1 andxi are the projections of 3D pointX
into imagesI1 and Ii : x1= P1X and xi = Pi X where P1 and Pi

are the projection matrices. A detected pointx1 is repeated ifxi is
detected. It isε-repeated if a point is detected in theε-neighborhood
of xi . In the case of planar scenes the pointsx1 andxi are related by
the homographyH1i .

P−1
1 is an abusive notation to represent the back-

projection of imageI1. In the case of a planar scene
this back-projection exists.

The repeatability rate is defined as the number of
points repeated between two images with respect to the
total number of detected points. To measure the number
of repeated points, we have to take into account that the
observed scene parts differ in the presence of changed
imaging conditions, such as image rotation or scale
change. Interest points which can not be observed in
both images corrupt the repeatability measure. There-
fore only points which lie in the common scene part are
used to compute the repeatability. This common scene
part is determined by the homography. Pointsx̃1 andx̃i

which lie in the common part of imagesI1 and Ii are
defined by:

{x̃1}= {x1 | H1i x1∈ Ii } and {x̃i }= {xi | Hi 1xi ∈ I1}

where{x1} and{xi } are the points detected in images
I1 and Ii respectively.Hi j is the homography between
imagesIi and I j .

Furthermore, the repeatability measure has to take
into account the uncertainty of detection. A repeated
point is in general not detected exactly at position
xi , but rather in some neighborhood ofxi . The size
of this neighborhood is denoted byε (cf. Fig. 2)
and repeatability within this neighborhood is called
ε-repeatability. The set of point pairs(x̃1, x̃i ) which
correspond within anε-neighborhood is defined by:

Ri (ε) = {(x̃1, x̃i ) | dist(H1i x̃1, x̃i ) < ε}

The number of detected points may be different for
the two images. In the case of a scale change, for ex-
ample, more interest points are detected on the high
resolution image. Only the minimum number of inter-
est points (the number of interest points of the coarse
image) can be repeated. The repeatability rateri (ε) for
imageIi is thus defined by:

ri (ε) = |Ri (ε)|
min(n1, ni )

where n1= |{x̃1}| and ni = |{x̃i }| are the number of
points detected in the common part of imagesI1 andIi

respectively. We can easily verify that 0≤ ri (ε)≤ 1.
The repeatability criterion, as defined above, is only

valid for planar scenes. Only for such scenes the geo-
metric relation between two images is completely de-
fined. However, the restriction to planar scenes is not
a limitation, as additional interest points detected on
3D scenes are due to occlusions and shadows. These
points are due to real changes of the observed scene and
the repeatability criterion should not take into account
such unreliable points (Shi and Tomasi, 1994; Shilat
et al., 1997).

3.2. Experimental Conditions

Sequences: The repeatability rates of several inter-
est point detectors are compared under different trans-
formations: image rotation, scale change, illumination
variation and viewpoint change. We consider both uni-
form and complex illumination variation. Stability to
image noise has also been tested. The scene is al-
ways static and we move either the camera or the light
source.

We will illustrate results for two planar scenes: “Van
Gogh” and “Asterix”. The “Van Gogh” scene is the
sower painting shown in Fig. 1. The “Asterix” scene
can be seen in Fig. 3. The two scenes are very different:
the “Van Gogh” scene is highly textured whereas the
“Asterix” scene is mostly line drawings.

Estimating the homography: To ensure an accurate
repeatability rate, the computation of the homography
has to be precise and independent of the detected points.
An independent, sub-pixel localization is required. We
therefore take a second image for each position of the
camera, with black dots projected onto the scene (cf.
Fig. 3). The dots are extracted very precisely by fitting
a template, and their centers are used to compute the
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Figure 3. Two images of the “Asterix” scene. On the left the image of the scene and on the right the image with black dots projected.

Figure 4. Projection mechanism. An overhead projector casts black
dots on the scene.

homography. A least median square method makes the
computation robust.

While recording the sequence, the scene and the pro-
jection mechanism (overhead projector) remain fixed.

Figure 5. Comparison of Harris and ImpHarris. On the left the repeatability rate for an image rotation and on the right the rate for a scale
change.ε = 1.5.

Only the camera or the light source move. The projec-
tion mechanism is displayed in Fig. 4.

3.3. Results for Repeatability

We first compare the two versions of Harris (Sec-
tion 3.3.1). The one with better results is then included
in the comparison of the detectors (Section 3.3.2–
3.3.6). Comparisons are presented for image rotation,
scale change, illumination variation, change of view-
point and camera noise. Results are presented for the
“Van Gogh” scene; results for the “Asterix” scene are
given in Appendix B. For the images used in our experi-
ments, we detect between 200 and 1200 interest points
depending on the image and the detector used. The
mean distance between a point and its closest neighbor
is around 10 pixels. Measuring the repeatability rate
with ε= 1.5 or less, the probability that two points are
accidentally within the error distance is very low.

3.3.1. Comparison of the Two Harris Versions.Fig-
ure 5 compares the two different versions of the Harris
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detector in the presence of image rotation (graph on
the left) and scale change (graph on the right). The re-
peatability of the improved version of Harris (ImpHar-
ris) is better in both cases. The results of the standard
version vary with image rotation, the worst results be-
ing obtained for an angle of 45◦. This is due to the
fact that the standard version uses non-isotropic dis-
crete derivative filters. A stable implementation of the
derivatives significantly improves the repeatability of
the Harris detector. The improved version (ImpHarris)
is included in the comparison of the detectors in the
following sections.

Figure 6. Image rotation sequence. The left image is the reference image. The rotation angle for the image in the middle is 38◦ and for the
image on the right 116◦.

Figure 7. Interest points detected on the images of Fig. 6 using the improved version of Harris. There are 610, 595 and 586 points detected in
the left, middle and right images, respectively. For a localization errorε of 1.5 pixels the repeatability rate between the left and middle images
is 91% and between the left and right images 89%.

Figure 8. Repeatability rate for image rotation.ε = 0.5 for the left graph andε = 1.5 for the right graph.

3.3.2. Image Rotation. In this section, we compare
all detectors described in Section 2.2 for an image rota-
tion. Image rotations are obtained by rotating the cam-
era around its optical axis using a special mechanism.
Figure 6 shows three images of the rotation sequence.
The left image is the reference image. The rotation an-
gle for the image in the middle is 38◦ and for the image
on the right 116◦. The interest points detected for these
three images using the improved version of Harris are
displayed in Fig. 7.

The repeatability rate for this rotation sequence is
displayed in Fig. 8. The rotation angles vary between



160 Schmid, Mohr and Bauckhage

Figure 9. Repeatability rate as a function of the localization error
ε. The rotation angle is 89◦.

0◦ and 180◦. The graph on the left displays the repeata-
bility rate for a localization errorε of 0.5 pixels. The
graph on the right shows the results for an error of 1.5
pixels, that is the detected point lies in the pixel neigh-
borhood of the predicted point.

For both localization errors the improved version of
Harris gives the best results; results are not dependent
on image rotation. Atε= 1.5 the repeatability rate of
ImpHarris is almost 100%. Computing Harris only on
the image contours (Cottier) makes the results worse.
Results of the Heitger detector depend on the rotation
angle, as it uses derivatives computed in several fixed

Figure 10. Scale change sequence. The left image is the reference image. The scale change for the middle one is 1.5 and for the right one 4.1.

Figure 11. Interest points detected on the images of Fig. 10 using the improved version of Harris. There are 317, 399 and 300 points detected
in the left, middle and right images, respectively. The repeatability rate between the left and middle images is 54% and between the left and
right images 1% for a localization errorε of 1.5 pixels.

directions. Its results are worse for rotation angles be-
tween 40◦ and 140◦. The detector of F¨orstner gives bad
results for rotations of 45◦, probably owing to the use
of anisotropic derivative filters. The worst results are
obtained by the method based on the intersection of
line segments (Horaud).

Figure 9 shows the repeatability rate as a function
of the localization errorε for a constant rotation angle
of 89 degrees. The localization error varies between
0.5 pixels and 5 pixels. When increasing the local-
ization error, the results improve for all the detectors.
However, the improved version of Harris detector is al-
ways best and increases most rapidly. For this detector,
good results are obtained above a 1 pixel localization
error.

3.3.3. Scale Change. Scale change is investigated by
varying the focal length of the camera. Figure 10 shows
three images of the scale change sequence. The left
image is the reference image. The scale change for the
middle one is 1.5 and for the right one 4.1. The scale
factors have been determined by the ratios of the focal
lengths. The interest points detected for these three im-
ages using the improved version of Harris are displayed
in Fig. 11.

Figure 12 shows the repeatability rate for scale
changes. The left graph shows the repeatability rate for
an ε of 0.5 and the right one for anε of 1.5 pixels.
Evidently the detectors are very sensitive to scale
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Figure 12. Repeatability rate for scale change.ε = 0.5 for the left graph andε = 1.5 for the right graph.

Figure 13. Repeatability rate as a function of the localization error
ε. The scale change is 1.5.

changes. For anε of 0.5 (1.5) repeatability is very poor
for a scale factor above 1.5 (2). The improved version of
Harris and Cottier detectors give the best results. The
results of the other are hardly usable. Above a scale
factor of about 2.5, the results are mainly due to arti-
facts. At larger scales many more points are found in
the textured regions of the scene, so accidental corre-
spondences are more likely.

Figure 14. Uniform illumination variation: from left to right images with relative greyvalue 0.6, 1 and 1.7.

Figure 13 shows the repeatability rate as a function
of the localization errorε for a constant scale change
of 1.5. Results improve in the presence of larger local-
ization errors; the repeatability rates of ImpHarris and
Cottier increase more rapidly than those of the other
detectors.

3.3.4. Variation of Illumination. Illumination can
vary in many different ways. In the following we con-
sider both a uniform variation of illumination and a
more complex variation due to a change of light source
position.

Uniform variation of illumination: Uniform illumi-
nation variation is obtained by changing the camera
aperture. The change is quantified by the “relative
greyvalue”—the ratio of mean greyvalue of an image to
that of the reference image which has medium illumi-
nation. Figure 14 shows three images of the sequence,
a dark one with a relative greyvalue of 0.6, the refer-
ence image and a bright one with a relative greyvalue
of 1.7.

Figure 15 displays the results for a uniform illu-
mination variation. Even for a relative greyvalue of
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Figure 15. Repeatability rate for uniform illumination variation.ε = 0.5 for the left graph andε = 1.5 for the right graph.

1 there is not 100% repeatability due to image noise
(two images of a relative greyvalue of 1 have been
taken, one reference image and one test image). In both
graphs, the repeatability decreases smoothly in propor-
tion to the relative greyvalue. The improved version of
Harris and Heitger obtain better results than the other
detectors.

Complex variation of illumination: A non-uniform
illumination variation is obtained by moving the light

Figure 16. Complex illumination variation. The reference image is on the left (image # 0), the light source is furthest right for this image. For
the image in the middle the light source is in front of the scene (image # 6). For the one on the right the light source is furthest left (image # 11).

Figure 17. Repeatability rate for complex illumination variation.ε = 0.5 for the left graph andε = 1.5 for the right graph.

source in an arc from approximately−45◦ to 45◦.
Figure 16 shows three images of the sequence. The
light source is furthest right for the left image (im-
age # 0). This image is the reference image for our
evaluation. For the image in the middle the light source
is in front of the scene (image # 6). Part of this image is
saturated. The light source is furthest left for the right
image (image # 11).

Figure 17 displays the repeatability results. The im-
proved version of Harris obtains better results than
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the other detectors. For anε of 0.5, results slightly
decrease as the light position changes. For anε of
1.5 results are not modified by a complex illumina-
tion variation. Illumination direction has little effect on
the results as the interest point measures are computed
locally.

3.3.5. Viewpoint Change. To measure repeatability
in the presence of viewpoint changes, the position of
the camera is moved in an arc around the scene. The
angle varies from approximately−50◦ to 50◦. The dif-
ferent viewpoints are approximately regularly spaced.
Figure 18 shows three images of the sequence. The left
image is taken at the rightmost position of the camera
(image # 0). For the image in the middle the camera
is in front of the painting (image # 7). This image is
the reference image for our evaluation. For the right
image the camera is at its leftmost position (image
# 15).

Figure 19 displays the results for a viewpoint change.
The improved version of Harris gives results superior
to those of the other detectors. The results degrade
rapidly for ε= 0.5, but significantly more slowly for

Figure 18. Viewpoint change sequence. The left image is taken at the rightmost position of the camera (image # 0). For the middle image the
camera is in front of the painting (image # 7). This image is the reference image for our evaluation. For the right image the camera is at its
leftmost position (image # 15).

Figure 19. Repeatability rate for the viewpoint change.ε = 0.5 for the left graph andε = 1.5 for the right graph.

ε= 1.5. For thisε the repeatability of ImpHarris is al-
ways above 60% except for image 0. The ImpHarris
detector shows a good repeatability in the presence of
perspective deformations.

3.3.6. Camera Noise. To study repeatability in the
presence of image noise, a static scene has been re-
corded several times. The results of this experiment are
displayed in Fig. 20. We can see that all detectors give
good results except the Horaud one. The improved ver-
sion of Harris gives the best results, followed closely
by Heitger. Forε= 1.5 these two detectors obtain a rate
of nearly 100%.

3.4. Conclusion for Repeatability

Repeatability of various detectors has been evaluated
in the presence of different imaging conditions: image
rotation, scale change, variation of illumination, view-
point change and noise of the imaging system. Two
different scenes have been used: “Van Gogh” and “As-
terix”. The results for these two sequences are very
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Figure 20. Repeatability rate for the camera noise.ε = 0.5 for the left graph andε = 1.5 for the right graph.

similar; the “Asterix” sequence (cf. Appendix B) con-
firms the results presented above.

Results of the previous section show that a stable
implementation of the derivatives improves the results
of the standard Harris detector. The improved version
of Harris (ImpHarris) gives significantly better results
than the other detectors in the presence of image rota-
tion. This is due to the rotation invariance of its image
measures. The detector of Heitger combines compu-
tations in several directions and is not invariant to ro-
tations. This is confirmed by Perona (1995) who has
noticed that the computation in several directions is
less stable to an image rotation. ImpHarris and Cottier
give the best results in the presence of scale changes.
Moreover, the computation of these detectors is based
on Gaussian filters and can easily be adapted to scale
changes. In the case of illumination variations and cam-
era noise, ImpHarris and Heitger obtain the best results.
For a viewpoint change ImpHarris shows results which
are superior to the other detectors.

In all cases the results of the improved version of
the Harris detector are better or equivalent to those of
the other detectors. For this detector, interest points are
largely independent of the imaging conditions; points
are geometrically stable.

4. Information Content

4.1. Information Content Criterion

Information content is a measure of the distinctiveness
of an interest point. Distinctiveness is based on the
likelihood of a local greyvalue descriptor computed at

the point within the population of all observed interest
point descriptors. Given one or several images, a de-
scriptor is computed for each of the detected interest
points. Information content measures the distribution
of these descriptors. If all descriptors lie close together,
they don’t convey any information, that is the informa-
tion content is low. Matching for example fails, as any
point can be matched to any other. On the other hand
if the descriptors are spread out, information content is
high and matching is likely to succeed.

Information content of the descriptors is measured
using entropy. The more spread out the descriptors are,
the higher is the entropy. Section 4.2 presents a short
introduction to entropy and shows that entropy mea-
sures the average information content. In Section 4.3
we introduce the descriptors used for our evalua-
tion, which characterize local greyvalue patterns. Sec-
tion 4.4 describes how to partition the set of descriptors.
Partitioning of the descriptors is necessary to compute
the entropy, as will be explained in Section 4.2. The
information content criterion of different detectors is
compared in Section 4.5.

4.2. Entropy

Entropy measures the randomness of a variable. The
more random a variable is the bigger the entropy. In
the following we are not going to deal with continu-
ous variables, but with partitions (Papoulis, 1991). The
entropy of a partitionA={Ai } is:

H(A) = −
∑

i

pi log(pi ) (2)
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where pi is the probability ofAi . Note that the size
of the partition influences the results. IfB is a new
partition formed by subdivisions of the sets ofA then
H(B)≥ H(A).

Entropy measures average information content. In
information theory the information contentI of a
messagei is defined as

Ii = log

(
1

pi

)
= − log(pi )

The information content of a message is inversely re-
lated to its probability. Ifpi = 1 the event always occurs
and no information is attributed to it:I = 0. The aver-
age information content per message of a set of mes-
sages is then defined by−∑i pi log(pi ) which is its
entropy.

In the case of interest points we would like to know
how much average information content an interest point
“transmits”, as measured by its descriptor. The more
distinctive the descriptors are, the larger is the average
information content.

4.3. Descriptors Characterizing Local Shape

To measure the distribution of local greyvalue patterns
at interest points, we have to define a measure which
describes such patterns. Collecting unordered pixel val-
ues at an interest point does not represent the shape of
the signal around the pixel. Collecting ordered pixel
values (e.g. from left to right and from top to bot-
tom) respects the shape but is not invariant to rota-
tion. We have therefore chosen to use local rotation
invariants.

The rotation invariants used are combinations of
greyvalue derivatives. Greyvalue derivatives are com-
puted stably by convolution with Gaussian deriva-
tives. This set of derivatives is called the “local jet”
(Koenderink and van Doorn, 1987). Note that deriva-
tives up toNth order describe the intensity function
locally up to that order. The “local jet” of orderN at
a pointx = (x, y) for imageI and scaleσ is defined
by:

JN [ I ](x, σ ) = {Li1..in(x, σ )
∣∣(x, σ ) ∈ I × IR+;

n = 0, . . . , N
}

where Li1..in(x, σ ) is the convolution of imageI
with the Gaussian derivativesGi1..in(x, σ ) and i k ∈
{x, y}.

To obtain invariance under the groupSO(2) (2D
image rotations), Koenderink (Koenderink and van
Doorn, 1987) and Romeny (Romeny et al., 1994)
compute differential invariants from the local jet.
In our work invariants up to second order are
used:

EV [0..3]=


Lx Lx + L yL y

LxxLx Lx + 2LxyLx L y + L yyL yL y

Lxx + L yy

LxxLxx + 2LxyLxy+ L yyL yy

 (3)

The average luminance does not characterize the
shape and is therefore not included. Note that the first
component ofEV is the square of the gradient magnitude
and the third is the Laplacian.

4.4. Partitioning a Set of Descriptors

The computation of entropy requires the partitioning
of the descriptorsEV . Partitioning is dependent on the
distance measure between descriptors. The distance be-
tween two descriptorsEV 1 and EV 2 is given by the Ma-
halanobis distance:

dM( EV 2, EV 1) =
√
( EV 2− EV 1)T3−1( EV 2− EV 1)

The covariance matrix3 takes into account the vari-
ability of the descriptorsEV , i.e. their uncertainty due to
noise. This matrix3 is symmetric positive definite. Its
inverse can be decomposed into3−1= PT DP where
D is diagonal andP an orthogonal matrix representing
a change of reference frame. We can then define the
square root of3−1 as3−1/2= D1/2P whereD1/2 is a
diagonal matrix whose coefficients are the square roots
of the coefficients ofD. The Mahalanobis distance can
then be rewritten as:

dM( EV 2, EV 1) = ‖D1/2P( EV 2− EV 1)‖

The distancedM is the norm of the difference of the
normalized vectors:

EV norm= D1/2P EV (4)

Normalization allows us to use equally sized cells in
all dimensions. This is important since the entropy is
directly dependent on the partition used. The probabil-
ity of each cell of this partition is used to compute the
entropy of a set of vectorsEV.
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4.5. Results for Information Content

In this section, we compute the information content of
the detectors which are included in our comparison.
To obtain a statistically significant measure, a large
number of points has to be considered. We use a set of
1000 images of different types: aerial images, images
of paintings and images of toy objects. The information
content of a detector is then computed as follows:

1. Extract interest points for the set of images.
2. Compute descriptors (cf. Eq. (3)) for all extracted

interest points(σ = 3).
3. Normalize each descriptor (cf. Eq. (4)). The covari-

ance matrix takes into account the variability of the
descriptors.

4. Partition the set of normalized descriptors. The cell
size is the same in all dimensions, it is set to 20.

5. Determine the probability of each cell and compute
the entropy with Eq. (2).

The results are presented in Table 1. It shows that
the improved version of Harris produces the highest
entropy, and hence the most distinctive points. The re-
sults obtained for Heitger are almost as good. The two
detectors based on line extraction obtain worse results.
This can be explained by their limitation to contour
lines which reduces the distinctiveness of their grey-
value descriptors and thus their entropy.

Random points are included in our comparison: for
each image we compute the mean numberm of in-
terest points extracted by the different detectors. We
then selectm random points over the image using a
spatially uniform distribution. Entropy is computed as
specified above using this random point detector. The
result for this detector (random) is given in Table 1. Un-
surprisingly, the results obtained for all of the interest
point detectors are significantly better than those for
random points. The probability to produce a collision

Table 1. The information content
for different detectors.

Detector Information content

ImpHarris 6.049526

Heitger 5.940877

Horaud 5.433776

Cottier 4.846409

Förstner 4.523368

Random 3.300863

is e−(3.3−6.05)≈ 15.6 times higher for Random than for
Harris.

5. Conclusion

In this paper we have introduced two novel evaluation
criteria: repeatability and information content. These
two criteria present several advantages over existing
ones. First of all, they are significant for a large num-
ber of computer vision tasks. Repeatability compares
interest points detected on images taken under varying
viewing conditions and is therefore significant for any
interest point based algorithm which uses two or more
images of a given scene. Examples are image match-
ing, geometric hashing, computation of the epipolar
geometry etc.

Information content is relevant for algorithms which
use greyvalue information. Examples are image match-
ing based on correlation and object recognition based
on local feature vectors. Furthermore, repeatability as
well as information content are independent of human
intervention and apply to real scenes.

The two criteria have been used to evaluate and com-
pare several interest point detectors. Repeatability was
evaluated under various different imaging conditions.
In all cases the improved version of Harris is better than
or equivalent to those of the other detectors. Except for
large scale changes, its points are geometrically sta-
ble under all tested image variations. The results for
information content again show that the improved ver-
sion of Harris obtains the best results, although the
Heitger detector is a close second. All of the detec-
tors have significantly higher information content than
randomly selected points, so they do manage to select
“interesting” points.

The criteria defined in this paper allow the quanti-
tative evaluation of new interest point detectors. One
possible extension is to adapt these criteria to other
low-level features. Another extension would be to de-
sign an improved interest point detector with respect to
the two evaluation criteria. Concerning repeatability,
we have seen that detectors show rapid degradation in
the presence of scale change. To solve this problem,
the detectors could be included in a multi-scale frame-
work. Another solution might be to estimate the scale
at which the best results are obtained. Concerning in-
formation content, we think that studying which kinds
of greyvalue descriptors occur frequently and which
ones are rare will help us to design a detector with even
higher information content.
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Appendix A: Derivation of the
Auto-Correlation Matrix

The local auto-correlation function measures the lo-
cal changes of the signal. This measure is obtained by
correlating a patch with its neighbouring patches, that
is with patches shifted by a small amount in different
directions. In the case of an interest point, the auto-
correlation function is high for all shift directions.

Given a shift(1x,1y) and a point(x, y), the auto-
correlation function is defined as:

f (x, y) =
∑
W

(I (xk, yk)− I (xk+1x, yk+1y))2 (5)

where(xk, yk) are the points in the windowW centered
on (x, y) and I the image function.

If we want to use this function to detect interest points
we have to integrate over all shift directions. Integra-
tion over discrete shift directions can be avoided by
using the auto-correlation matrix. This matrix is de-
rived using a first-order approximation based on the
Taylor expansion:

I (xk +1x, yk +1y)

≈ I (xk, yk)+ (Ix(xk, yk) I y(xk, yk))

(
1x
1y

)
(6)

Substituting the above approximation (6) into Eq. (5),

Figure 21. Comparison of Harris and ImpHarris. On the left repeatability rate for an image rotation and on the right the rate for a scale change.
ε= 1.5.

we obtain:

f (x, y) =
∑
W

((
Ix(xk, yk) I y(xk, yk)

)(1x

1y

))2

= (1x 1y)


∑
W
(Ix(xk, yk))

2 ∑
W

Ix(xk, yk)I y(xk, yk)∑
W

Ix(xk, yk)I y(xk, yk)
∑
W
(I y(xk, yk))

2


(
1x

1y

)

= (1x 1y)A(x, y)

(
1x

1y

)
(7)

The above Eq. (7) shows that the auto-correlation func-
tion can be approximated by the matrixA(x, y). This
matrix A captures the structure of the local neighbor-
hood.

Appendix B: Repeatability Results
for the “Asterix” Scene

In this appendix the repeatability results for the “As-
terix” scene are presented. Experimental conditions are
the same as described in Section 3.

B.1. Comparison of the Two Harris Versions

Figure 21 compares the two different versions of the
Harris detector in the presence of image rotation (graph
on the left) and scale change (graph on the right). The
repeatability of the improved version of Harris version
is better in both cases. Results are comparable to those
obtained for the “Van Gogh” scene (cf. Section 3.3.1).
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Figure 22. Image rotation sequence. On the left the reference image for the rotation sequence. On the right an image with a rotation angle of
154◦.

Figure 23. Repeatability rate for the sequence image rotation.ε= 0.5 for the left graph andε= 1.5 for the right graph.

B.2. Image Rotation

Figure 22 shows two images of the rotation sequence.
The repeatability rate for the rotation sequence is dis-
played in Fig. 23. The improved version of Harris gives
the best results as in the case of the “Van Gogh” scene
(cf. Section 3.3.2). Figure 24 shows the repeatability
rate as a function of the localization errorε for a con-
stant rotation angle of 93◦.

B.3. Scale Change

Figure 25 shows two images of the scale change se-
quence. The scale factor between the two images is
4.1. The repeatability rate for the scale change se-
quence is displayed in Fig. 26. The improved version of
Harris and the Cottier detector give the best results as
in the case of the “Van Gogh” scene (cf. Section 3.3.3).

Figure 24. Repeatability rate as a function of the localization error
ε. The rotation angle is 93◦.
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Figure 25. Scale change sequence. On the left the reference image for the scale change sequence. On the right an image with a scale change
of a factor 4.1.

Figure 26. Repeatability rate for the sequence scale change.ε= 0.5 for the left graph andε= 1.5 for the right graph.

Figure 27 shows the repeatability rate as a function
of the localization errorε for a constant scale change
of 1.5.

B.4. Uniform Variation of Illumination

Figure 28 shows two images of the uniform variation of
illumination sequence, a dark one with a relative grey-
value of 0.6 and a bright one with a relative greyvalue
of 1.5. The repeatability rate for a uniform illumination
variation is displayed in Fig. 29. ImpHarris and Heitger
give the best results as in the case of the “Van Gogh”
scene (cf. Section 3.3.4).

B.5. Camera Noise

The repeatability rate for camera noise is displayed in
Fig. 30. ImpHarris and Heitger give the best results.

Figure 27. Repeatability rate as a function of the localization error
ε. The scale change is 1.5.
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Figure 28. Uniform variation of illumination sequence. On the left an image with a relative greyvalue of 0.6. On the right an image with a
relative greyvalue of 1.5.

Figure 29. Repeatability rate for the sequence uniform variation of illumination.ε= 0.5 for the left graph andε= 1.5 for the right graph.

Figure 30. Repeatability rate for camera noise sequence.ε= 0.5 for the graph on the left andε= 1.5 for the graph on the right.
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