
000-3288-33

 HOPKINS COMPUTER RESEARCH REPORTS

REPORT 33

SEPTEMBER 1974

r

EVALUATION OF JHU MICROMACHINE
.

EMULATION OF THE PDP-11

BY

STEPHEN BRADLEY, JR.

AND

CHARLES NEUHAUSER

MASTER

RESEARCH PROGRAM IN COMPUTER SYSTEMS ARCHITECTURE

COMPUTER SCIENCE PROGRAM

THE JOHNS HOPKINS UNIVERSITY

BALTIMORE, MARYLAND

. .

:p

1 4 *,\
, \. *e

1

9)* g'0 .0
' ,

48 t
4. e

DISTRIBI ITIOT:t n"F THIc: nnrt 'n ,FRIT rs TINE[MiTED

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

EVALUATION' OF JHU MICROMACHINE EMULATION OF THE PDP-11*

ABSTRACT

A skeleton emulation of a DEC PDP-11 series machine on the JHU
micromachine (see Report #28.1) is given and evaluated. The report

- contains the following sections:

1) Short description of the microassembly language
2) Skeleton emulation of the PDP-11
3) Description of emulator and techniques used
4) Timing estimate and evaluation of micromachine performance

This emulation indicates that the instruction execution· rate of the
emulated machine is about one-half to one-third that of a PDP-11/20.
Architectural improvements are recommended which will allow the

emulated machine to execute PDP-11/20 code in approximately real time.

-NOTICE
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Atomic Energy
Commission, nor any of their employees, nor any of

4

their contractors, subcontractors, or their employees,
makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, com-
pleteness or usefulness of any information, apparatus,product or process disclosed, or represents that its use
would not infringe privately owned rights.

Stephen Bradley Jr. rMASTER
Charles Neuhauser
Electrical Engineering Department

The Johns Hopkins University
. Baltimore, Maryland 21218

*This work was supported by the U.S..Atomic Energy Commission under
Contract AT (11-1 3288).

 STRIBUTION OE THIS DOCUMENT IS [INOMI E i

\
L __ - · 1

CONTENTS

I. COMMENTS ON AND EVALUATION OF PDP-11 EMULATION

1. Introduction

2. Timing Estimate

3. Evaluation of Host Machine Performance

3.1 Timing
3.2 Coding

4. Conclusion

5. References

II DESCRIPTION OF EMULATOR

1. General

2. Differences Between 'Emulated' and 'Target' Machines

2.1 Interrupts
2.2 I/0 Device and Special References
2.3 Condition Code Handling
2.4 Possible PDP 11/45 Emulation
2.5 Comnmon Routines for Unimplemented Instructions
2.6 Stack Limit Test

3. Detailed Structure of Emulator

3.1 PDP-11 Registers
3.2 IFETCH Section
3.3 Decode Section
3.4 Address Calculation
3.5 Individual Instruction Implementation - Threaded Code

3.5.1 Individual Routines
3.5.2 References to Non-Existent Labels

III INFORMAL DESCRIPTION OF THE MICROASSEMBLY LANGUAGE

1. Introduction

2. T-machine Instruction Specification

2.1 Logical Opcodes
2.1 Arithmetic Opcodes
2.3 Shift/Rotate Opcodes
2.4 Extended Ar.ithmetic Opcodes
2.5 Insert/Extract Opcodes

.

3. A-machine Instruction Specification

3.1 Direct Memory Access Opcodes
3.2 Indirect Memory Access Opcodes
3.3 Pointer Modification Opcodes
3.4 Stacking Operation Opcodes

4. I-machine Instruction Specification

5. Miscellaneous

IV PDP-11 EMULATION CODE

I. COMMENTS ON AND EVALUATION OF PDP-11 EMULATION

1. Introduction

This study was undertaken to evaluate the effectiveness of the JHUmicromachine [l] as a host machine for the emulation of conventional
machines. We chose the PDP-11 as a benchmark because this machine is
powerful architecturally and has proven difficult to emulate on
existing host machines. Only a skeleton emulation is given, but all
memory accessing mode operations are fully coded.

The following assumptions concerning the host machine were used in
the construction of the PDP-11 emulator:

1) When a microinstruction consists Of both an A- and T-machine
sub-instruction we assume that both the A- and T-machines
execute simultaneously, end that date modifications by one
machine are not available to the other until the following
cycle.

2) It follows from assumption 1) above that the A-machine may not
branch conditionally upon T-machine results until the following
instruction cycle.

3) Main memory operates as follows:

a) One cycle must intervene between a request for main memory
data and its usage.

b) Two cycles must intervene between subsequent accesses to
main memory.

c) On main memory accesses registers containing address and
date to be sent (on writes) are stored internally and may be
changed in the following cycle.

4) Main memory accesses were assumed to be full word, that is 32
bits in width.

2. Timing Estimate

In order to estimate emulator timing the following PDP-11

instructions have been coded: ADD, INC, ASR, MUL, MOV, and BEQ. Figure
1 shows the flow of control through the the major microcode routinesused by the emulator. For each routine and sub-routine the number of
memory references are indicated. The following notation 15 used:

I - number of microinstruction fetches from control memory,
D.- number of data fetches from control memory, and
E - number of references to external memory.

In some cases a routine issues a call to one of three sub-routines
(WADCON, WRITES, WRITEW) which handle the accessing of main memory.

-1-

- 1

Where these sub-routines are used by a main emulator routine the I, D,
end E counts are included in the I, D, and E counts of the calling
routine, and only the number of sub-routine cells is indicated.

In general the timing for a given instruction may be calculated by
summing the contributions of the following microcoded routines:

1) IFETCH

2) DECODE (0 to 3 applications of TBLEn as reguired)
3) SMODE and subsequent execution of SMODn
4) DMODRD or DMODWT and subsequent execution of DMODnR or DMODnW
5) OP (emulation of instruction data transformation)

Timing in the actual PDP-11 consists of summing:

1) Base timing of the instruction (includes the instruction fetch)
2) Source mode fetch timing
3) Destination fetch timing (actually a read-modify-write cycle)

Below is a tabulation of the PDP-11/20 cycle times and the
corresponding number of host machine control store accesses (I and D).
Base timing estimates for the emulator include time for IFETCH, DECODE,
mode selection, and date transformation.

BASE TIMING

Ins. PDP EMULATOR
usec I D

ADD 2.3 35 12

INC 2.3 41 16
ASR 2.3 38 13
MOV 2.3 25 12
BEQ 2.6 31 12
MUL 8.9 57 15 (PDP-11/45 timing estimate)

SOURCE MODE TIMING

Mode PDP EMULATOR
U Sec I D

0 0.0 1 1
1 1.5 1 0 1
2 1.5 11 2
3 1.5 12 1
4 2.7 20 2
5 2.7 20 2
6 2.7 20 2
7 3.9 32 3

-2-

,--

¥

DESTINATION MODE TIMING

Mode PDP EMULATOR
usec I D

0 0.0 1 1
1 1.4 10 1
2 1.4 11 2
3 1.4 12 2

- 4 2.6 20 2
5 2.6 20 2
6 2.6 20 3
7 3.8 29 3

As an example, we use the above tebl·e to calculate the time of a common
PDP-11 instruction ADD in which both source and destination are mode 6(Indexed).

PDP-11/20 time: 2.3 + 2.7 +2.6 = 7.6 usec

Emulator time: 35 + 20 +20 = 75 I-fetch cycles end
1 2+2+3 = 17 D-fetch cycles

3. Evaluation of Host Machine Performance

3.1 Timing

Major time expenditures in emulator operation are as follows in
decreasing order:

1) Resource matching,
2) Accesses to control store for data,
3) Decoding, and
4) Condition code setting.

Matching of emulator resources to target machine needs consumes the
greatest portion of emulator time in the.PDP-11 emulator. This problemis particularly accute with respect to the acessing of main memory.
Routines concerned with accessing main memory spend most of their timetranslating a PDP-11 address into the appropriate host machine address
and extracting or inserting the 16 bit (or 8 bit) data word referenced
by the emulator into the 32 bit host machine word. Approximately two
thirds of the emulator's cycle time is concerned with this sort of
manipulation. A considerable savings in time could be realized by
providing an address mapping unit to translate between target and
emulator resource requirements. Such a unit could be located either on

- the host bus or within the main memory. To be most effective the mainmemory should also be operated in a read-modify-write cycle to
eliminate memory transfers to the host machine when only a write is

 required.

Assuming that emulator time is directly related to control store
accesses, we see that about 20% of emulator time is devoted to date

-3-

accesses to control store (as opposed to instruction fetches). A
possible solution to this problem would involve 'banking' of control
store to allow simultaneous assess to control store for instruction and
data fetches.

Depending on the target machine instruction being executed between
5% and 20% of emulator time is spent in the decoding process. However,
it is not clear that architectural changes could significantly reduce
this expenditure of t.ime ..

Evaluation and setting of condition codes consumes about 10% of
emulator timing. The introduction of short bit setting and unsetting
instructions into the T-machine could save some time here. In general,

«

however, it seems better to approach this problem by deferring the
processing of target machine condition codes as long as possible. Th is
is done by storing the host machine codes, data transformation results
and possibly instruction type on each target machine cycle. When
target machine code requires a decision based on condition codes the
stored target machine state is translated properly to direct the
decision.

3.2 Coding

Initial inspection of the host machine code leads to the following
c onc lu s ions:

1) Long instructions (except insert and extract) are rarely used,
and might be profitably eliminated.

2) Compare instructions are rarely used and might be eliminated,
being replaced by a SUB-TEST sequence.

3) Host machine condition codes need to be set only on ALU type
operations.

4) There is an arithmetic mismatch between the 32 bit arithmetic
unit and the 16 bit operands of the PDP-11. Addition of a
sign-extend instruction to the instruction set would help
reduce the space-time penalties imposed by thel situation. It
might be argued that all operands could be kept permanently
left Justified, but the addresses in the PDP-11 general
registers must be kept right Justified for convenience in
address arithmetic.

5) Manipulation of condition codes is difficult. An instruction
in the T-machine to specifically load the condition codes would
be useful.

-

6) Although it was found that one of the best ways to.save cycles
is to duplicate code, the entire emulator should easily fit
into the available AK of micromemory.

-4-

4. Conclusion

Assuming a 200 nsec control memory access time for the host
machine, the emulator describe here exhibits an instruction execution
rate of between one-half and one-third that of a PDP-11/20.
Reorganizing main memory so that it may be matched efficiently to the
target machine should improve emulator performance greatly, and real
time emulation of the PDP-11/20 should be possible.

5. References

Il] C. Neuhauser; -An Emulation Oriented, Dynamic Microprogrammable
Processor (Version II) ; Hopkins Computer Research Report #28.1

-5-

1 11
= 0., '.

IFETCH IZI 511 1 1

F- -7IDE.

1 TBLRE |3 ' - '\ PECOPE TREE
\ (As REQUIRED)ti

1 ' 3 c'h1 Terse

L - 1 1.1
t

-3

\ /
.

BINARY ir SPEC/AL
1

CROD) (rl OU) I D E wcZ b i wc 1
5 MODE 4 2 s MOD€ 4 1

SMOD0 1 1- -
5 r-10 0 0 1 1

SMODI '0 1 1 1 S MOD I t o i ' I

S 11'0 DZ „ Z 1 1 SnoD 2 1 1 2 1 1

" /8 S n o 0 3 1 1 2 2 Z 1/8 sr,OD) 12 2 2 2
SMODY 2 0 1 1 1

5/,00 4 2 0 2 1 1

SMODr 20 2 2 2 h f.to cr 1 0 2 2 2

s,1606 20 3 2 2 Sr,oDG 1 0 3 2 2

snpol 32 33 3 SrloD/ 3 2 3 3 3

- 1 UNARY

1(.79.'Asr,Pu ,1
v ' I,D'G 'wct ·E-- D '-

DnoDAD 4 2.
\ i 1%

1FlouOP S 3 -

DA6D$R ' 1

DA bp I R '0 , '

DRoDZR 11 2 1 1 y I D E Wc.w#t

1/9 Dr\(,D 3£ 12 2
1 2 DnoDLU-1- 41

PMODV R 20 2 1 * DMOD0(0 Z Z

*MobSR 20 2 2 2 DROD'w 8 1 1 1

DkuDGR 20 3 .2 Z DrioD 24�) /J' 2 1 1

DA007% 11 3 3,3_
1 8 DY,493(J /8 2 2 1 1'

w,9 4 -eMORY Dnobqw /9 2 2' '
4,

1

(01, 1 .

1

bhoosiv /9 2 2 1 1
V r o€w u 'npobv 19 3 2 1 1

ADDOP 15 3 2 0 DMOD,w zl ·3 12 1 1

INCNP 193 1 1

 AsROP /9 3 2 2
FULOP 39 5-

ast 4 8 2 1 -1-
.

,

i i

'
I D ENOTATION:

*
I- .MIC201Al S-IRUCI,0*0 FETCH WC - CALL TO wAP Cul)

7-1
4

1.D Co/t.17-Mel- STOrtE 1 ATA F €TC.4 , . uS1 - C.ALL 70 60 KITE S 8/i

E - EXTE£-AL , en,LoRY F,E
TCH ow - €ALL.TO.Eff,ZEW

i 6-2
*

JUMMARIGS. F40.91 Z I>4AA,D E 1-cluDE 3 861 CouA.15' ,0,€. 410'.U)46 (A'ul

• i t • .

··t 1

PAA- 11 Env,ArDE Ti m, NG: 1 E,i· 4 ;

CJ/0

1

II DESCRIPTION OF THE EMULATOR

1. General

The general structure of the emulator consists of three parts:

1) The instruction fetch (IFETCH) section,

2) The instruction decode section, including decode tables, and

3) Individual instruction handling routines, including those
routines common to a certain class or classes of PDP-.11

' instructions.

The flow of control is as follows:

__b I FETCH
D DECODE INSTRUCTION

.
EXECUTE

It is emphasized that this emulation is not 2 complete PDP-11

emulation. In particular, only the following instructions, thought to
be representative of various types, were microcoded in full:

Instruction Classes

MOV Logical, Binary
ADD Arithmetic, Binary
INC Arithmetic, Unary
ASR Shift, Unary
BEQ Branch
MUL Fixed Point Multiply, Register-Operand

Although a great number of specific instructions were not emulated,
the structure of the emulator has been well defined, so that the
addition of other PDP-11 instructions to the emulator is quite simple.
Adding an instruction consists of invoking the routines available in

the emulator for instruction decoding, operand address generation,

operand storage of results, etc., and then microcoding the instruction
dependent data transformation and the proper setting of the PDP-11
condition codes. Thus the amount of coding needed to add new

instructions is in many cases quite small.

It should be noted that at the time of this writing the design of
the micromachine ahd the microlanguage was still evolving, so the

ObJective of this emulation was not so much to. produce precise working

code as to evaluate the performance and suitability of the micromachine
and its resources in emulating a minicomputer as architecturally
powerful as the PDP-11. Specifically, two changes or proposed changes
to the micromachine have significant effects on the emulator:

-6-

L

E-

1) Alteration of the main memory address structure from word
addressable to byte or half word addressable.

2).Modification of the main micromachine cycle so that the A-half

of the microinstruction is performed subsequent to the T-half,
instead of in parallel with it.

The effect of 1) would be extremely beneficial, cutting the execution

time of some PDF-11 instructions by at least 50%. A significant
improvement in emulator performance would be realized. Several
subroutines that handle main memory fetches and stores could be
eliminated. This fact and 2) above would necessitate some recoding.

2. Differences Between 'Emulated' and 'Target' Machines

How 'faithfully' does the emulation match the target machine? A
number of PDP-11 features were not included in this first attempt, the
most important feature being a priority interrupt type of interaction
with the devices on the micromachine's external bus. It is fairly
clear, however, that there should be no great difficulty in adding the
necessary features to the emulator without any gross alterations of its
structure. We shall indicate some of these features.

2.1 Hardware Interrupts (From I/0 devices)

External device interrupt handling would be facilitated by the
addition of an interrupt handling unit on the external bus. At each
IFETCH, the micromachine would check to see if the handler indicated a
device had interrupted, and would then read a register in the handler
to identify which devices had interrupted and their associated

priorities were.

2.2 I/0 Device and Special References

The topmost 4K words of the address space spanned by 18 bit PDP-11
addresses are reserved for I/0 devices and special internal processor
registers such as the Processor Status (PS) Or Stack Limit (SL)

registers. In the absence of special address traslation hardware, this
18 bit address is generated from a 16 bit address by setting bits 16
and 17 to a value resulting from the logical 'and' of bits 13, 14, and
15. To handle this in the emulator, all main memory access routines
simnly check every address for this condition. Should the condition be
true, then the address must be compared against a list of addresses of
internal registers. These registers, along with the general registers,

are stored in micromemory. If there is no match, then the reference is
to an external device, and a transfer would then be made to a routine
that handles such communication.

-

-7-

2.3 Condition Code Handling

It was found that the differences in the representation of

condition codes in the PDP-11 (i.e. N, Z, V, C bits in the PS) vs.
those of the micromachine required too many cycles of manipulation to

resolve. Therefore, the micromachine codes are simply stored at a
location in micromemory (CCODES) at the appropriate times and represent
the PDP-11 codes. At present only the leftmost four bits of the
micro machine codes are stored. It may be desirable to store them 211,
since at present, conditions of overflow and zero result are not
simultaneously detectable. The remainder of th3 processor status word
is stored separately in micromemory (PS).

2.4 Possible PDP 11/45 Emulation

Space was reserved in micromemory for the eight additional general
registers used by the 11/45, but in general no attempt was made to
provide for the more sophisticated features of the machine such as the
floating point unit, the memory management unit, or the

multiprogramming mode control feature. The simplest implementation of
an 11/45 requires an interaction between almost every instruction and

the processor status to determine which physical register set to use,

which mode the machine is operating in, etc. Multiprogramming
protection features must also be accounted for, especially on
interrupts. All of this obviously adds overhead.

2.5 Common Routines for Unimplemented Instructions

As has been claimed above, the routines included in the emulator
facilitate the addition of many of the PDP-11 instructions. Only the
instruction dependent data transformations and setting of the condition
codes need be written. There are some exceptions however. A set of
routine needs to be coded to handle destination operands for the

instructions JMP and JSR. However, these routines would be nearly
identical to the destination mode routines already coded (DMODRD). The
differences are:

1) Mode 0 is illegal for these instructions, and

2) The final data fetch for the instruction is not done, but rather
the address of the datum is used as the operand (it is loaded

into the PC).

Also, a common routine for handling interrupt initiated accesses to

main memory should probably be coded. It would handle the loading of
the new PC and PS from the interrupt vector and the stacking of the old
PC and PS. This could be used in conjunction with instructions such as

BPT, IOT, TRAP, EMT (essentially software interrupts) as well as device
interrupts and break conditions (e.g. stack errors). Finally, although
full decoding was implemented for them, no PDP-11, byte instructions
were emulated. All that is required in the present context, however,
is the coding of main memory access routines to handle bytes as 16 bit
words are now handled,.and the modification of code that implements the

-8-

auto-increment and auto-decrement addressing modes to add or subtract
the correct amount for byte addressing.

2.6 Stack Limit Test

No stack limit testing is done in thi.s emulation, nor is the system
steck pointer (R6) checked to allow only word organization of the
stack. This could be handled by the main memory access routines.

3. Detailed Structure of Emulator

There are eight registers in the micromachine. Their uses 3re
indicated below. Because the registers are a relatively scarce Fachine
resource, it was necessary to use. them for different purposes in
different situations. Thus the uses given for registers 2-7 below are

subject to change throughout the emulator.

Register Symbolic Name Usage

0 MAR Micromachine memory address reaister

1 IR PDP-11 instruction register - holds
PDP-11 instruction

2 SR PDP-11 source register - holds
source addresses and operands

3 DR PDP-11 destination register - holds
destination addresses and operands

4 R4 General use - main memory addresses

5 RS Holds return address in. subroutine
calls

6 96 Micromemory stack pointer for
. threaded code

7 R 7 General use and main memory operands

3.1 PDP-11 Registers

The PDP-11 general registers are kept in the lowest locations in
micromemory, so that the register number is the micromemory address of
the register. The 16 bit contents are right Justified in micromemory.

3.2 IFETCH Section

The IFETCH portion of the emulator implements the fetching of the
next PDP-11 instruction. The PC is read from micromemory and checked

for legality (it mustn't be odd). The byte.address is converted to a

word address via a right shift two places. The two rightmost bits of

the byte address are saved in ICODE bits 22 and 23 of the MAR (see fig.

a). After the fetch of the instruction from main memory, a branch on

the ICODE bit determines whether the low or high order 16 bits of the
fetched word is the actual instruction. The PC is incremented by two.

-9-

The destination register field of the instruction is extracted for

l a t e r u s e. Bits 12-15 of the IR are used as an offset into the first
decode table, and an indirect Jump through this table begins the
decoding process.

3.3 Decode Section

The decoding of PDP-11 instructions is implemented by a group of
eight decode tables in micromemory. Associated with each table is a
corresponding table entry routine which loads the address of the table
base into a register and inserts an offset derived f·rom a selected bit
field in the IR to form the address of the proper entry in the table.
An indirect Jump transfers control to the proper routine. Each entry
in 311 of the decode tables is an address of either a specific

"

instruction handling routine or another table entry routine. T hu s t he

decoding of an instruction consists of a series of indirect Jumps
through decode tables until the specific routine for that instruction
i s r e a c h e d. Starting the tables on proper boundaries in memory saves a
cycle in each of the table entry routines. This complicated decoding

scheme is the result of the fact that decoding of PDP-11 instructions

does not involve only a fixed length opcode field; in some cases the
entire 16 bits must be· examined (see fig. 3). Decoding proceeds as
follows:

Instruction Type Example Decode Teble Sequence

Binary (Double Operand) MOV 1 => instruction

Binary Byte MOVB 1 => instruction

Unery (Single Operand) INC 1 => 2 => 4 => instruction

Unary Byte INCB 1 => 7 => 8 => instruction

Register-Operand MUL 1 => 3 => instruction

Branch (a) BEQ 1 => 2 => instruction

JMP, RTS, SWAB, CCOP, SPL JMP 1. => 2 => 5 => instruction

JSR JSR 1 => 2 => instruction

BRANCH (b), EMT, TRAP BPL 1 => 7 => instruction

OPERATE HALT 1 => 2 => 5 => 6 => instruction

The only decoding not completed by the tables is differentiation of RTS
from SPL. The longest decode is required by the operate instructions.
These are rather infrequently used instructions, with the except.ton of

RTI. Perhaps something special could be done.to speed decoding for
these.

-10-

r-

3.4 Address Calculation

It is useful at this point to enumerate several non-disjoint

classes of PDP-11 instructions (byte instructions are omitted for
s i m p l i c i t y) .

C 1 ass Members

Double Operand MOV, CMP, BIT, BIC, ADD, SUB

Register-Operand MUL, DIV, ASH, ASHC, XOR

Operate HALT, WAIT, RTI, BPT, IOT, RESET, RTI

I-class CMP, TST, BIT, MUL, DIV, MFP, ASH, ASHC

0-class MOV, CLR, MTP

P-ClaSS COM, INC, DEC, NEG, ADC, SBC, ROR, ROL,
ASR, ASL, SXT, SWAB, ADD, SUB, BIS, BIC,
XOR, MOVB (Mode 0)

The last three classes are important as to their implications on the
structure of the emulator. For binary (double operand) instructions,
the source operand is always fetched. For I-class instructions, the
destination operand is read, but the result of the instruction is not 3
modification of the destination location. For 0-class instructions the
destination is never fetched but only written into. P-dlass
instructions, the most common type, read the destination operand,

perform some transformation on it, and then store the result back in
this location. Note that, for P-class instructions, once the
destination address· has been computed in order to read the destination,
it is unnecessary to perform the address calculations again to store

the result; the address must simply be preserved while the
transformation is accomplished.

The preceding.analysis gives rise to a set of three different

address computation routines:

Name Function

S MO DE - computes address of and fetches source operand for binary
instructions.

DMODRD - computes addres of and fetches destination operand for I and
P-class instructions.

DMODWT - computes address of and stores destination operand for· 0-class
instructions only.

Each of these routines is similar.in structure; the main difference
between them is the main memory access subroutine which is called.
Each routine uses the appropriate mode field from the IR to index

through a table of routines that handle each possible mode. The mode
routine performs the appropriate main memory or micromemory references

-11-

in the correct sequence; some call one of the main memory access
subroutines: Each mode routine also follows conventions as to operand
placement, so that the code that implements particular instructions has

no dependence on the addressing mode(s).

There are also three main memory access routines:

N2me Function

WADCON - Given a byte address, this routine returns a 16 bit operand
that corresponds to the given address (1.e. a general main

memory fetch).

WRITES - Given a byte address and a 16 bit operand, the routine writes
the operand to the corresponding main memory address. This is
used by the 0-class instructions.

WRITEW - Given a byte address and a left Justified 16 bit operand, the
routine writes the operand to the corresponding main memory
address. This routine is used by the P-class instructions and

is called directly from the code that performs the instruction
data transformation.

There is one additional routine used by P-class instructions in certain
Cases:

MODO - Performs the same.function as WRITEW, but handles only the case
of destination mode 0. The result ts stored in one of the
PDP-11 general registers in micromemory.

3.5 Individual Instruction Implementation - Threaded Code

Each instruction is implemented in a convenient, uniform way that

allows for ease of coding and of following the flow of control through
the emulator. A technique called threaded code is used which
eliminates a subroutine call type of implementation in favor of one in
which each routine calls the next one in succession rather than
returning to some main routine. By convention, the first
microinstruction of each PDP-11 instruction execution routine sets up a
stack in micromemory which immediately follows the instruction. The
stack consists of a list of addresses of routines to be sequentially
invoked in the execution of the instruction. An indirect load of the
MAR calls the first routine. It and each subsequent routine return· to
the sequince by doing a POP from R6 (the stack pointer) into the MAR.

The last address on the list for each instruction is that of IFETCH, so
that the emulator cycle is completed. The only difference in the

stacks between instructions in the same class is in most cases simply
the address of the routine that does the actual data manipulation and

sets the condition codes (e.g. INCOP vs. ASROP).

3.5.1 Individual Routines

The code for implementing the individual instruction routines is

for the most part self-explanatory, but a few remarks are in order:

-12-

 - ·

1) In many cases, to take advantage of the micromachine condition

codes on logical and especially arithmetic operations, the
16-bit operands are left Justified first, and then operated on

to give a result which is also left Justified. .This is.taken

into account in the WRITEW routine.

2) In the multiply (MUL) instruction implementation, two 16 bit

operands are multiplied to give a 32 bit result. The multiplier
is left Justified so that after the proper number of multiply
steps and shifts, the entire 32 bit result is contained in
micromachine register 4.

3.5.3 References to Non-existent Labels

Other than non-emulated instructions, the following labels are not
coded: ODDPC, RBYTE, WBYTE, .WBYTES, RESVD.

«

-,

-13-

!

.1 -1....1. -]..... 1 -1.- 1 -1. 1
'

1 . t f. - i +
1 F - 4 1- 1- .- 1 1

. - : 1 1 -. 1 , 1 1. - 2 ...
* 30 29'2#.27 *.zr:29 23.22 2/·20i/9 /9 /7 /65/J '/y /3 /1 , 4 i/0 9 10 , 7 6' 3-' 9 3.2 , 0

1

CCODE
1 1 Z CeDe i IrTATr i , /11 AR

· 1 1- _ -4 -1-.1' ., :- i.

C.C 'Cl#ILID Pler. cok,)n (OA). c.o)€i iler..Bip- 17--/w </,/UE
, i. 10;0

01
. LES,4 'HfAI L I b 1._.. 11,11 1l

i' 0. : dg.*Ri«. 7'44'. .1. $-'. ...1 r .' 1 : I I i
1 / 1 1 1Ouf""'9"' '

0
CA RY i 1

1

1I
1

0
Ald" B tr (atir ,) 1 2 1 1 · . I . .

. 1 1: .
'

Alt
1 1. 1. 11. 1 11. 11 .1 1 1 1

1, ti:
I .,1 1

I Lor FIT (84rf) I i : 1 . . 1 1 1
i

0 0, J J" ,4�I r i fi 8, "1 01
-31, No-r #Amq !1.1

1

. ,
1

i l 84 m , e l. av SA /46, '

,

It,1.1 i

P*.RInl · I E ; · i i -1 1 I lilI,
1

,
::

0
t pus Rele Sll'r '5 NO Rd,T.11'Ac ,Al'E :94,Quitsr 1,/F'&6*e*S! 1

1 4 146 7- 4.,A*H/Br *E-961 EST' /*1 1 26/it'35 i
1 '1 : 1 111

1 1 1 4,8DEJ +I 1 t 1.»1,(4'ola.r,64 4,4 4, pH«.e.™.«.
i

i
!

1- 1. 1.- f«t:'1.,"le""'1,1-, 4."fe l i l l I

r RBZ - - 1 ' {:

1

O ·Herr MACH,NE NALTED
1

i

h --.--'

- *1£*r MAcut«. Ro"Ai NG \
1 1

0 - tru,10£ f / A'TEBE u Fh-St

1 4 8„ 1 82£ 1 82£74-Rivpts : . F i i'f f: !1 i
1 ; MAR '; 1

Int, 80,1,�'11,"1"jP" R,&"tiei I I

...1..] Po,Nfs fra!*ekr: MICAO I. N TRUC.tr' oh).
.l i l l I Ii i FEr€ H A DDLEISS

ill;
1 .1

1

MAR. Rfic,=72* ,SkA#r

F, 6 UAK -121 1

: i -1
1!

'1 1.1 1 1 1
1 1, 1' :

i 1.1
11..ti.

2 1. 1 1 1. 1

8 i./ 1 i ./ 1 - 1
1.lili

1 1 1. - I ' 111 111 1

1
:

1 1 111
1.1. :.1

IR IR IR IR IR IR IR

15 14-12 11-09 08 07-06 05-03 02-00

I PC AND PS CHANGE (1 OF 2)

00 io ,

, BR
OFFSET i 1 2 RTI

0 0 9 =L; 1

'' T :;& &:til 3 BPT |

r-- 10 BGE OFFSET 1 JMP DST 4 RESERVED 4 IOT

DOUBLE-EpERANBI , ' l BLT OFFSET S RESET |

 . t: 0:Ov1 S.C. OST 1 1 : 'S" REG. OST 1 7 :S 8::=; 2 0 RTS REG

7
1 6

 RTT

7 RESERVED

RESERVED 12 CMP SRC. OST
2 RESERVED

SINGLE OPERAND (1 OF 2) 3 SPL PRIORITY

3 BIT SRC. OST
3 SWAB OST

4 SIC SRC, OST

5 O

 1 0 COR OST
 CCOP IJ

ICROINSTRUCTION

It COM OST 7) -----1'
1 828 81;

5 BIS

SRC.OST 1 NA 8 1
2 SBC OST

| 6 ADD SRC, OST
;

3 Tsr DST
- - - - - - C 1 0 AOR OST

I

1 ROL OST
2 ASR OST
3 ASL OST

7 RESERVED 1-- i 0 MARK OFFSET
- --711 MFPI SAC

� '1 2 MTPI OST
FREGISTER AND OPERAND

 '3 SXT OST
7 0 MUL AEG, SAC

1 DIV REG, SRC
2 ASH REG. SRC

: =C :8; 1:E
5 RESERVED

6 RESERVED
7 SOB REG, OFFSET

PC AND PSCHANGE (2 OF 2)

1 0 0 i l BPL OFFSET
11 BMI OFFSET

1 10 BHI OFFSET
1 1 BLOS OFFSE'

-.----- OFFSET
I DOUBLE OPERAND .' 1 7 Acs OFFSET

| 12 OF 2) · 3 S 8:Zil : il
1 MOVB SRC, OST 1

| , TRAP CODE

2 CMPB SRC. OST

SINGLE OPERAND (2 OF 2)

3 BITB SRC, OST 5 1 0 CLRB OST
1 COMB OST

-1 BICB
SRC.OST 2 INCS OST3 DECB OST

BISB SRC. OST
1 0 NEGB OST

1

: St, S., DS,
I i tsr: osI

1 1 ADCB OST

--- C lot
, 0 ROM OST

1 POLB OST

I i :5:: DS;
1 0 RESERVED

it WFPO SRC
2 MTPO OST

7 RESERVED 3 RESERVED

11„= 1
FLOATING POINT OPERATE

1 0. 0 CFCC

, 1 11 i <:t" 1 2

1 SE.F

3 LOUB
FOST I

4 LCSQ
5 5#/

FLOATING ,«,·„C AN, e„=11 I i :ii 1,51 :iii I
 6 VRS

7 STOO
1 0

1 SETO:1 i31 1 iII iiitl'- - - - - - - ' ·i. 2 SETL
It LO(F/01 AC. FSRCI 4 3

3 0 SUBIF/O) AC. FSAC I 41 CMPiF/01 AC. vSAC i 5

7 6
7

5 --

C i; iwi. :ti:3: E:'/aitiLOEXP
lc: s#c I7 1 O LOCCI/L)(F/DI

1

1 LOCIF/0)10/F) AC, FStEJ---

F,GoR€ 3

PDA-/1 Ens-TRuc-r,ow CODE

r

III INFORMAL DESCRIPTION OF THE MICROASSEMBLY LANGUAGE

1. Introduction

For the purposes of evaluating the micromachine we have specified a

simple microassembly language. Since this language will not be used in
the actual laboratory system we will only give an informal description
here.

Internally the micromachine consists of three submachines each
receiving control information from the current microinstruction and
acting independently except when data dependent conflicts occur. These
machines and their function are as follows:

1) T-machine - functional processing of. register deta with

logical and arithmetic operations.

2) A-machine - .handling of communications between control
store, the registers and external devices.
The A-machine also performs elementary
calculations oriented toward address formation.

3) I-machine - fetching of the next microinstruction and
conditional testing.

In terms of the hardware representation, microinstructins are 32
b its in length. For convenience we consider each microinstruction to
be divided into a left half (14 bits) and a right half (18 bits). In
general, the. left half of the instruction specifies a T-machine

operation and the right half specifies an A-machine operation.
Occasionally, one or both halves may be used to specify an I-machine
operation. In addition, there are cases when the entire instruction is
used to specify only a T-machine operation, in which case, the right
hal f of the instruction is interpreted as immediate data. Thus we have
the following general forms of instruction format:

<label>: <T-machine spec> / <A-machine spec> ; <comment>
<label>: <I-machine spec> / <A-machine spec> ; <comment>
<label>: <T-machine spec> /.<I-machine spec> ; <comment>

<label>: <I-machine spec> / <I-machine spec> i <comment>
<label>: <long T-machine spec> ; <comment>

Label and comment fields are optional. If a spec field is blank then
the assumption is that a NOP is specified.

2. T-machine Instruction Specification

T-machine operations perform the following functions:

1) Logical
2) Arithmetic
3) Shift/Rotate

-14-

L __ _

./

4) Extended Arithmetic
5) Insert/Extract

Insert/Extract operations are long format instructions, in addition the
other instruction types may be either long format or short format
depending upon whether immediate data is used or not. Short format
instructions may, in some cases, specify immediate data. T he

particular format used is identified by the symbol following the the
T-machine opcode:

1) .6 - short format instruction, no immediate data
2) S - short format instruction, immediate data included
3) L - long format instruction, immediate data from right half

Thus, except for INSERT/EXTRACT instructions, the T-machine
specifications may be as follows:

<opcode> <regA>,<regB>

<opcode>S <regA>,<immediate data>
<opcode>L <regA>,<immediate data>

2.1 Logical Opcodes

Logical instructions may use either one or two register
specifications as required. The opcodes are as follows:

CLR clear register
NOP no operation
OR logical 'or'
XOR logical 'exclusive or'
XNOR logical 'exclusive nor'
NOR logical 'nor'
AND logical 'and'
NAND logical 'nand
COM logical 'not'
XFR register transfer
CXFR complemented register transfer

TEST register unchanged but condition codes set
ONE set register to ones

2.2 Arithmetic Opcodes

Arithmetic operations consist of additon end subtract.ion. In

addition, and arithmetic operation may be used for comparison purposes
by following the opcode specification with a 'C' in which case the
micromachine performs the indicated arithmetic operation but does not
store the result in the destination register. Usually two registers
are specified (2 destination, <regA>, and a source, <regB>) in
operations involving small immediate data values one register may be
replaced by an immediate data specification in the range -8 to decimal.
The arithmetic opcodes are:

ADD two's complement addition

-15-

L

ADC two's complement addition with carry
SUB two's complement subtraction
SBB two's complement subtraction with borrow

2.3 Shift/Rotate Opcodes

In a Shift/Rotate instruction the <regA> specification identifies
the register to be modified. The regB specification may either

specifiy the immediate shift amount (-8 to or identify a register
holding the shift amount. On long format instructions the right half
immediate date field provides the shift amount. Shift/Rotate opcodes

are as fo.llows:

LSS left shift single (logical)
LRS left rotate single
RSS right shift single <logical)
RAS right shift arithmetic single
LSD left shift double (logical)
LRD left rotate double
RSD right shift double (logical)
RAD right shift arithmetic double

2.4 Extended Arithmetic Opcodes

Extended arithmetic operations use either the short format wlth two
register specifications or the long format with immed·late data from the
right half. The extended arithmetic opcodes are:

MULT multiply step
DIVD divide step
XSS form excess sixes
DEL delay cycle
BTD binary to decimal conversion step
DTB decimal to binary cnverslon step
DAD decimal addition
DSU decimal subtraction

2.5 Insert/Extract Opcodes

Insert/Extract instructions have a separate format:

<oncode> <regA>,<regB>,<rotate amount>,<mask data>

The rotate amounte is specified in decimal (0'to 32) and the mask data
is immediate data from the right half field of the microinstruction.
Register specification <regA> denotes the destination and <regB>
indicates the source.

The two opcodes are:

INS insert
EXT extract

-16-

3. A-machine Instruction Specification

A-machine instructions are used by the microprogrammer to acdess
control store and external memory,.perform simple address calculations
and provide short loops in the microprogram. Specifically the
operation codes may be divided into the following classes:

1) Direct memory access,
2) Indirect memory access,
3) Pointer modification, and
4) Stacking operations.

3.1 Direct Memory Access Opcodes

The format for direct memory access operations is as follows:

<opcode> <regC>,<address>

The specification, <regC>, represents the source or destination
register for the operation and <address> represents a 12 bit address in
control store. The three opcodes are:

LR load register from control store
SR store register in control store
RI load register with address immediate

3.2 Indirect Memory Access Opcodes

Indirect memory access operations are used to move date between the
registers, ccntrol memory and the external memory system. These
operations have the following format:

<opcode> <regC>,<regD>,<subopcode>,<immediate data>

By convention, the <regC> specification will identify the destination
for the memory move operation and <regD> will identify the source.
Depending upon the opcode the register contents may be used directly or
as a pointer to control or external memory. After each operation the
contents of either, neither or both registers is incremented by the
amount specified in the <immediate data> field,as specified by' the
<subopcode> specification. Immediate data may be in the range from -8
to.decimal. Opcodes are:

RR register to register
RM register to control memory
RE register to external memory
MR control memory to register
MM control memory to control memory
ME control memory to external memory
ER ' external memory to register
EM external memory to control memory

-17-

Subopcode specifications are:

MN modify neither pointer register
MS modify source pointer register
MD modify destination pointer register
MB modify both pointer registers

3.3 Pointer Modification Opcodes

The pointer.modification instructions allow the microprogrammer to

perform simple address calculations and to control the fetching of the
next microinstruction based on the outcome of the operation. The two
Dossible formats of these instructions are:

<opcodel> <regC>,<regD>,<subopcode>,<address modifier>

<uncoaee> <regC>,<immediate data>,<subopcode>,<address modifier>

Instructions with the <opcodel> specification use the two registers
specified in the address calculation, while the instructions with
<opcode2> specifications use a single register and immediate data in
the range of -8 to decimal. The <subopcode> specification defines a
test on the result of the address calculation. When the test is 'true'
the address modifier (-8 to is added to the address of the following
microinstruction to provide the address where the·next micrcinstruction
is to be fetched from.

The SDecifications for <opcodel> are:

ADD two s complement addition of registers
SUB two's complement subtraction of registers

The specifications for <opcode2> are:

INC two's complement increment of a register
DEC two's complement decrement of a register

The specifications for the <subopcode> test are:

NL no looping
LLT loop if less than zero
LLE loop if less than or equal to zero
LZ loop if zero
LNZ loop if not zero
LGE loop if greater than or equal to zero
LGT loop if greater than zero
AL always loop

3.4 Stacking Operation Opcodes
(.

Stacking operations are used by the programmer to manipulate stacks
in control memory. The format is:

-18-

<opcode> <regC>,<regD>,<subopcode>,<immed,iate data>

On Stacking operations the <regC> specification identifies a register
which is the source or destination of the stack data. The <regD>
specif ication identifies a register containing control information.
The <subopcode> specification is used to indicate whether or not data
transfer takes place and whether or not the stack pointer is to be
tested against. The opcodes are:

POP control memory to register -
PIJSH register to control memory

The sub opcodes are:

NLNT no limit test, no transfer
NLT no limit test, transfer
LNT limit test, no transfer
LT limit test, transfer

4. I-machine Instruction Specifications

Asside from the pointer modification instruction described above
there are two I-machine instructions. One, the conditional
instruction, is used in the left half specification to conditionally
control the execution of the right half instruction. The other, the
branch instruction, is used in the right half specification to cause
conditional branching by short relative amounts.

The formats for these instructions are·as follows:

COND <test spec>
COND <mask>,<test code>

BRN <test spec>,<address modifier>
BRN <mask>,<test code>,<address modifier>

In specifying the test the microprogrammer may either give an eleven
bit quantlty which contains both the mask and the test code, or specify
the mask and use one of the test codes listed below.

CAT test condition codes for 311, execute if true
CAF test condition codes for all, execute if false
COT test condition codes for any, execute if true
COF test condition codes for any, execute if false
IAT test indicator codes for all, execute if true·
IAF test indicator codes for all, execute if false
IAT test indicator codes for any, execute if true -
IOT test indicator codes for any, execute if false

5. Miscellaneous

In specifying microinstructions an empty left or right half
specification is used to indicate a 'NOP instruction to the T- and

-19-

A-machines respectively.

Constants are either decimal or octal as specified in the formats

above. Decimal constant·s are written directly, while octal quantities
are preceeded by a zero (e.g. 077 is.the octal representation of 63
decimal).

Some of the assembler directives used are

.WORD reserve a word and initialize to constant

.BLKW reserve a block of words

.= set location counter

.END end of program
% register definition

direct assignment

In addition labels are used in branch instructions, in direct memory
access and in point modification instructions, with the resulting
<address> or <address modifier>.field calculated by the assembler.

4

-20-

PDP-11 EMULATION CODE

MAR = %0 ;REGISTER DEFINITIONS
IR = %1
SR = %2
DR = % 3

R4 = %4
RS = %5
R 6 = %6
R 7 = %7

L (1, ON 0110 ;MASK FOR LOW BIT TEST
Z ERO 0772 ;MASK FOR ZERO TEST
DON 0040 ;MASK FOR DIFFERENCE TEST
N ZERO 0776 ;MASK FOR NOT ZERO TEST
MOOVF 03000 ;MASK FOR NO OVERFLOW TEST
D:ADD 0200 ;MASK FOR WORD ADDRESS TEST
BADD 0100 ;MASK FOR BYTE ADDRESS TEST

LCK,T 16 0177777 ;MASK FOR LOW 16 CONTIGUOUS BITS
HIGH16 037777600000 ;MASK FOR HIGH 16 CONTIGUOUS BITS
BABITS 060000000 ;MASK TO STORE BITS IN ICODES
BI T 02 07 .· ;MASK FOR LOW 3 CONTIGUOUS BITS
BIT03 017 ;MASK FOR LOW 4 CONTIGUOUS BITS
A DDMS K 030000177777 ;MASK FOR WORD ADDRESS COMPUTATION

.=0 ;LAYOUT OF PDP-11 REGISTERS IN CONTROL STORE
PDPRO: .WORD 0 ;REGISTER 0
PDPRl: .WORD 0 ; REGISTER 1
P DPR2: .WORD 0 ;REGISTER 2
P DPR3: .WORD 0 ;REGISTER 3
PDPR4: .WORD 0 ;REGISTER 4
P DPR5: .WORD 0 ;REGISTER 5
P DP SP: .WORD 0 ;STACK POINTER (KERNEL)
P DPPC: .WORD 0 ;PROGRAM COUNTER

.BLKW 8 ;RESERVE NEXT 8 LOCATIONS FOR POSSIBLE
;PDP-11/45 EMULATION

CCODES·: .WORD 0 ;CONDITION CODE STORAGE
PS: .WORD 0 ;PROCESSOR STATUS WORD STORAGE

;(THE USUAL PS WITHOUT CCODES)
.BLKW 10 ;RESERVED FOR SPECIAL INTERNAL REGISTERS

; (FOR FUTURE USE)

-21-

.=01000 ;START AT LOCATION 01000
IFETCH: CLR DR /LR R7,PDPPC ;GET PC

TEST R7 /RR R4,R7,MD,+2 ;R4 <= PC+2
COND LOWON /RI MAR,ODDPC ;IS PC ODD?
INS MAR,R7,22,BABITS ;SET LOWER 2 BITS OF BYTE

;ADDRESS INTO MAR<23:22>
RSSS R7,2 /SR R*,PDPPC ;CONVERT TO WORD ADDRESS

;PC <= PC+2
ADDS DR,+7 /ER IR,R7,MN ;FETCH THE WORD
XFR SR,DR /BRN WADD,IAT,1$;HIGH OR LOW 16 BITS
EXT IR,IR,0,LOW 16 ;LOW 16 BITS
AND DR,IR /RI RS,TBLl ;SELECT DEST. FIELD

;LOAD DECODE TABLE BASE
LSSS SR,+6 /MR DR,DR,MN ;READ OUT DEST. REGISTER
INS RS,IR,20,BIT03 ;GET BITS 12-15 OF IR
AND SR,IR /MR MAR,RS,MN ;JUMP VIA DECODE TABLES

l S: EXT IR,IR, 16,LOW 16 ;HIGH 16 BITS
AND DR,IR /RI RS,TBLl ;SELECT DEST. FIELD

;LOAD DECODE TABLE BASE
LSSS SR,+6 /MR DR,DR,MN ;READ OUT DEST. REGISTER
INS RS,IR,20,BIT03 ;GET BITS 12-15 OF IR
AND SR,IR /MR MAR,RS,MN ;JUMP VIA DECODE TABLES

.1

\

-22-

TBLt: .WORD TBL2E ;FIRST DECODE TABLE STARTS ON 16 WORD BOUNDARY
.WORD MOV ;OFFSET IS BITS 12-15 OF IR
.WORD CMP
.WORD BIT
.WORD BIC
.WORD BIS
.WORD ADD
.WORD TBL3E ;REGISTER-OPERAND TYPE
.WORD TBL 7E

. WO RD MOVB

.WORD CMPB

.WORD BITB

.WORD BICB

.WORD BISB

.WORD SUB

. WORD RESVD ;NOTE FLOATING POINT ON 11/45

TBLS: •WORD TBL5E ;SECOND DECODE TABL-E
.WORD BR ;STARTS ON 16 WORD BOUNDARY OFFSET IS
.WORD BNE ;OFFSET IS BITS 8-11 OF IR
.WORD BEQ
.WORD BGE
.WORD BLT
.WORD BGT
.WORD BLE
.WORD JSR
.WORD JSR
.WORD TBL4E ;SINGLE OPERAND INSTRUCTIONS
. WO RD TBL4E
.WORD TBL4E
.WORD TBL4E
.WORD RESVD
.WORD RESVD

TBL3: .WORD MUL ;THIRD DECODE TABLE
.WORD DIV ;STARTS ON 8 WORD BOUNDARY
. WORD ASH ;OFFSET IS BIES 9-11 OF IR
.WORD ASHC ;HANDLES REGISTER-OPERAND INSTRUCTIONS
. WO RD XOR
.WORD RESVD
.WORD RESVD
.WORD SOB

-23-

TBL4: .WORD ROR ;FOURTH DECODE TABLE
. WORD ROL ;STARTS ON 16 WORD BOUNDARY
.WORD ASR ;OFFSET IS BITS 6-9 OF IR
.WORD ASL
.WORD MARK
.WORD MFPI
.WORD MTPI
.WORD SXT
. WORD CLR
.WORD COM

-

.WORD INC

. WO RD DEC

.WORD NEG

.WORD ADC

. WORD SBC

.WORD TST

TBLS: .WORD TBL6E ;FIFTH DECODE TABLE
. WO RD RESVD ;STARTS ON 16 WORD BOUNDARY
.WORD RESVD ;OFFSET IS BITS 4-7 OF IR
.WORD RESVD
.WORD JMP
· WO RD JMP
. WO RD JMP
.WORD JMP
. WO RD RTS ;RESERVED IF BIT 3=1
.WORD SPL ;RESERVED IF BIT 3=0
. WO RD CCOP
.WORD CCOP
.WORD SWAB
.WORD SWAB
�WORD SWAB
.WORD SWAB

TBL6: .WORD HALT ;SIXTH DECODE TABLE
.WORD WAIT ;STARTS ON 16 WORD BOUNDARY
. WO RD RTI ;OFFSET IS BITS 0-3 OF IR
.WORD BPT
.WORD IOT
.WORD RESET
.WORD RTT
.WORD RESVD
.WORD RESVD
.WORD RESVD
.WORD RESVD
.WORD RESVD
.WORD. RESVD
.WORD RESVD
.WORD RESVD
.WORD RESVD

-24-

TBL7: .WORD BPL ;SEVENTH DECODE TABLE
.WORD ·BMI ;STARTS ON 16 WORD BOUNDARY
.WORD BHI ;OFFSET IS BITS 8-11 OF IR
.WORD BLOS
.WORD BVC
.WORD BVS
.WORD BHIS
.WORD BLO
.WORD EMT

" .WORD TRAP
.WORD TBLBE ;SINGLE OPERAND (BYTE)
.WORD TBLBE
.WORD TBLBE
.WORD TBLBE
� WO RD RESVD
. WO RD RESVD

TBLBt .WORD RORB ;EIGHTH DECODE TABLE
. WORD ROLB ;STARTS ON 16 WORD BOUNDARY
.WORD ASRB ;OFFSET IS BITS 6-9 OF IR
.WORD ASLB
.WORD RESVD
.WORD MFPD
.WORD MTPD
.WORD RESVD
.WORD CLRB
.WORD· COMB
.WORD INCB
. WO RD DECB
.WORD NEGB
.WORD ADCB
.WORD SBCB
.WORD TSTB

(

-25-

l

TBL2E: /RI RS,TBL2 ;LOAD TABLE BASE
INS .RS,IR,24,BIT03 ;GET BITS 8-11 OR IR

/MR MAR,RS,MN ;INDIRECT JUMP THRU TABLE

TBL3E: /RI RS,TBL3 ;LOAD TABLE BASE
INS RS,IR,23,BIT02 ;GET BITS 9-11 OF IR

/MR MAR,RS,MN ;INDIRECT JUMP THRU TABLE

TBL4E: /MR RS,TBL4 ;LOAD TABLE BASE
INS RS,IR,26,BIT03 ;GET;BITS 6-9 OF IR

/MR MAR,RS,MN ;INDIRECT JUMP THRU TABLE

TBL5E: /RI RS,TBLS ;LOAD TABLE BASE
INS RS,IR,28,BIT03 ;GET BITS 4-7 OF IR

/MR MAR,RS,MN ;INDIRECT JUMP THRU TABLE

TBL6E: /RI RS,TBL6 ;LOAD TABLE BASE
INS RS,IR,0,BIT03 ;GET BITS 0-3 OR IR

/MR MAR,RS,MN ;INDIRECT JUMP THRU TABLE

TBL7E: /RI RS,TBL7 ;LOAD TABLE BASE
INS RS,IR,24,BIT03 ;GET BITS 8-11 OF IR

/MR MAR,RS,MN ;INDIRECT JUMP THRU TABLE

TBLBE: /RI RS,TBL8 ;LOAD TABLE BASE
INS R5,IR,26,BIT03 ;GET BITS 6-9 OR IR

/MR MAR,RS,MN ;INDiRECT JUMP THRU TABLE

-26-

SMODE: EXT R7,IR,23,BIT02 ;GET SOURCE MODE
RSSS SR,+6. /RI RS,SMDBAS ;LOAD TABLE BASE
ADD RS,R7 /MR R4,SR,MN ;ADD OFFSET, FETCH REG[SR]
ADDS R6,+1 /MR MAR,RS,MN ;JUMP THRU TABLE

SMDBAS: .WORD SMODO
.WORD SMODl
.. WO RD SMOD2
.WORD SMOD3
.WORD S MO D4

.WORD SMODS

. WO RD SMOD6

.WORD SMOD7

SMODO.: XFR SR,R4 /POP MAR,R6,NLT ;SR <= OPERAND; RETURN

SMODl: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFn SR,R7 /POP MAR,R6,NLT ;SR <= OPERAND; RETURN

S MO D2: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR SR,R7 /RM SR,RA,MN ;STORE BACK INCREMENTED VALUE

;SR <= OPERAND
/POP MAR,R6,NLT ;RETURN

S MOD3: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4,R7 /RM SR,R4,MN ;STORE BACK INCREMENTED VALUE
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR SR,R7 /POP MAR,R6,NLT ;SR <= OPERAND; RETURN

SMOD4: SUBS R4,2 /
/RM SR,R4,MN ;STORE AUTO-DECREMENTED VALUE

XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR SR,R7 /POP MAR,R6,NLT ;SR <= OPERAND; RETURN

S MO DS : SUBS R4,2 /
/RM SR,R4,MN ;STORE AUTO-DECREMENTED VALUE

XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R*,R 7 /

1 XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND '
XFR SR,R7 /POP MAR,R6,NLT ;SR <= OPERAND; RETURN

S MO D6: XFR SR,R4 /LR R4,PDPPC ;GET PC
XFR RS,MAR /RI MAR,WADCON ;GET INDEX WORD
ADD SR,R7 /SR PDPPC,R4 ;PC <= PC+2
XFR R4,SR / ;FORM OPERAND ADDRESS
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR SR,R7 /POP MAR,R 6,NLT ;SR <= OPERAND; RETURN

SMOD7: XFR SR,R4 /LR R4,PDPPC · ;GET PC
XFR RS,MAR /RI MAR,WADCON ;GET INDEX WORD
ADD SR,R7 /SR PDPPC,R4 ;PC <= PC+2
XFR R4,SR / ' ;FORM ADDRESS
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4,R7 /
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR SR,R7 /POP MAR,R6,NLT ;SR <= OPERANDj RETURN

-27-

DMODRD: EXT R7,IR,29,BIT02 ;GET DEST. MODE
/RI RS,DMRBAS ;LOAD TABLE BASE

ADD RS,R7 /MR R4,DR,MN ;ADD OFFSET; FETCH REG[DR]
ADDS R6,+1 /MR MAR,RS,MN ;JUMP THRU TABLE

DMRBAS: .WORD DMODOR
.WORD DMODiR
. WO RD DMOD2R
.WORD DMOD3R
.WORD DMOD4R -.WORD DMODSR
.WORD DMOD6R
.WORD DMOD7R

DMODOR: XFR DR,R4 /POP MAR,R6,NLT ;DR <= OPERAND; RETURN

DMODt R: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR DR,R7 /POP MAR,R 6,NLT ;DR <= OPERAND; RETURN

DMOD2R: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERANDD
XFR DR,R 7 /RM DR,R4,MN ;STORE BACK INCREMENTED VALUE

;DR <= OPERAND
/POP MAR,R6,NLT ;RETURN

DMOD3 R: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4,R7 /RM DR,R4,MN ;STORE INCREMENTED VALUE
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR DR,R 7 /POP MAR,R6,NLT ;DR <= OPERAND; RETURN

DMOD*R: SUBS R#,2 / ;AUTO-DECREMENT
/RM DR,R4,MN ;STORE DECREMENTED VALUE

XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR DR,R7 /POP MAR,R6,NLT ;DR <= OPERAND; RETURN

DMODSR: SUBS R4,2 /
/RM DR,R4,MN ;STORE DECREMENTED VALUE

XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4,R7 /
X FR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR DR,R7 /POP MAR,R6,NLT ;DR <= OPERAND; RETURN

DMOD6R: XFR DR,R4 /LR R4,PDPPC ;GET PC
XFR RS,MAR /RI MAR,WADCON ;GET INDEX WORD
ADD DR,R7 /SR PDPPC,R4 ;PC <= PC+2
XFR R4,DR / ;FORM OPERAND ADDRESS
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR DR,R 7 /POP MAR,R6,NLT ;DR <= OPERAND; RETURN '

DMOD7 R: XFR DR,R4 /LR R4,PDPPC ;GET PC
XFR RS,MAR /RI MAR,WADCON ;GET INDEX WORD
ADD DR,R 7 /SR PDPPC,R4 ;PC <= PC+2
XFR R4,DR / ;FORM ADDRESS
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4,R 7 /
XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND
XFR DR,R 7 /POP MAR,R6,NLT ;DR <= OPERAND; RETURN

-28-

DMODWT: ;USED ONLY BY MOV, CLR, AND MTP
EXT R7,IR,29,BIT02 ;GET DEST. MODE

/RI RS,DMWBAS ;LOAD TABLE BASE
ADD RS,R7 /MR R4,DR,MN ;ADD OFFSET, FETCH REG[DR]
ADDS 36,+1 /MR MAR,RS,MN ;JUMP.THRU TABLE

DMWBAS: .WORD DMODOW
. WO RD WRITES
. WO RD DMOD2W
. WO RD DMOD3W
.WORD DMOD4W
.WORD DMODSW
.WORD DMOD6W
.WORD DMOD7W

DMODOW: /RM DR,SR,MN ;REG[DR] <= OPERAND
/POP MAR,RO,NLT ;RETURN

DMOD2W: ADDS R4,+2 / ;AUTO-INCREMENT
/RM DR,R4,MS,-2 ;STORE BACK. INCREMENTED VALUE
/RI MAR,WRITES ;STORE OPERAND

DMOD3W: XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4,R7 /RM DR,R4,MN ;AUTO-INCREMENT

/RI MAR,WRITES ;STORE OPERAND

DMOD4W: SUBS R4,+2 / ;AUTO-DECREMENT
/RM .DR,R4,MN ;STORE DECREMENTED VALUE
/RI MAR,WRITES ;STORE OPERAND

DMODSW: SUBS R*,+2 / ;AUTO-DECREMENT
/RM DR,R4,MN ;STORE DECREMENTED VALUE

XFR RS,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR R4, R7 /RI MAR,WRITES ;STORE OPERAND

DMOD6W: XFR DR,R4 /LR R4,PDPPC ;GET PC
XFR RS,MAR /RI MAR,WADCON ;GET INDEX WORD
ADD DR,R 7 /SR PDPDC,R4 ;PC <= PC+2
XFR R4,DR /RI MAR,WRITES ;STORE OPERAND

DMOD7W: XFR DR,R4 /LR R4,PDPPC ;GET PC
XFR RS,MAR /RI MAR,WADCON ;GET INDEX WORD
ADD DR,R 7 /SR PDPPC,R4 ;PC <= PC+2
XFR R4,DR / ;FORM ADDRESS
XFR 95,MAR /RI MAR,WADCON ;FETCH OPERAND ADDRESS
XFR' R*,R7 /RI MAR,WRITES ;STORE OPERAND,

t

-29-

/

WADCON: ;WORD ADDRESS CONVERSION ROUTINE
;READ WORD FROM MAIN MEMORY

INS MAR,R4,22,BABITS ;SET LOWER TWO BITS OF BYTE
;ADDRESS IN MAR<23:22>

COND BADD,.IAT /RI MAR,RBYTE ;ODD (BYTE) ADDRESS?
EXT R4,R4,30,ADDMSK ;MAKE INTO A WORD ADDRESS
LRSS R4,+2 /ER R7,R4,MN ;FETCH WORD (32 BITS)
A DDS R4, +2 /BRN WADD, IAT,35 ;LOW OR HIGH 16 BITS

;INCREMENT ORIGINAL ADDRESS
EXT R 7, R 7 , 0, LO W 1 6 ;LOW 16 BITS
XFR MAR,RS / ;RETURN

3$: EXT R7,R7,16,LOW 16 ;HIGH 16 BITS
XFR MAR,RS / ;RETURN

WRITES: ;WRITE WORD TO MAIN MEMORY (SPECIAL)
INS MAR,R4,22,BABITS ;SET LOWER TWO BITS OF BYTE

;ADDRESS INTO MAR<23:22>
COND BADD,IAT /RI MAR,WBYTES ;ODD (BYTE) ADDRESS?
EXT R4,R4,30,ADDMSK ;MAKE WORD ADDRESS

/ER R 7,R4,MN ;FETCH WORD (32 BITS)
/BRN WADD, IAT,4$;LOW OR HIGH 16 BITS TO

;BE WRITTEN
INS R7,SR,O,LOW 16 ;LOW 16 BITS

/RE R4,R7,MN ;WRITE BACK WORD
/POP MAR,R6,NLT ;RETURN

4 S: INS R7,SR, 16,HIGH16 ;HIGH 16 BITS
/RE R4,R7,MN ;WRITE BACK WORD
/POP MAR,R6,NLT ;RETURN

WR ITEW : ;WRITE WORD (16 BITS) TO MAIN MEMORY
INS MAR,R4,22,BABITS ;SET LOWER TWO BITS OF BYTE

;ADDRESS INTO MAR<23:22>
COND BADD,IAT /RI MAR,WBYTE ;ODD (BYTE) ADDRESS?
EXT R4,R4,30,ADDMSK ;GET WORD ADDRESS

/ER R 7,R4,MN ;FETCH WORD (32 BITS)
ADDS R6,+1 /BRN WADD,IAT,5$;LOW OR HIGH 16 BITS TO

;BE WRITTEN
INS R7,DR,16,LOW16 ;LOW 16 BITS
XFR MAR,R5 /RE R4,R7,MN ;WRITE BACK WORD; RETURN

5$: INS R7,DR,O,HIGH16 ;HIGH 16 BITS
XFR MAR,RS /RE R4,R7,MN ;WRITE BACK WORD; RETURN

MODOC: EXT RS,R7,4,BIT03 ;EXTRACT CCODES FROM SAVED MAR '
MODO: /SR RS,CCODES ;STORE PDP-11 CCODES

EXT R4,IR,0,BIT02 ;EXTRACT DR FIELD FROM IR
RSSL DR,16 ;RIGHT SHIFT RESULT BY 16 '
ADDS R6,+1 /RM R4,DR,MN ;STORE RESULT IN REGCDR]

/POP MAR,R6,NLT ;RETURN

-30-

MOV: ;MOV INSTRUCTION
XFR 96,MAR /LR MAR,MOVST ;SET UP TOP OF STACK

MOVST: . WO RD SMODE ;GET SOURCE
. WO RD MOVOP ;SET CONDITION CODES
.WORD DMODWT ;STORE RESULT IN DESTINATION
.WORD IFETCH ;FETCH NEXT INSTRUCTION

MOVOP: EXT R7,SR, 16,HIGHt.6 ;SET HOST MACHINE CCODES
X FR R 7,MAR /LR RS,CCODES ;SAVE HOST MACHINE CCODES

;FETCH PDP-11 CCODES
INS RS,R7,4,015 ;DON'T CHANGE PDP-11 'C' BIT

ADDS R6,+1 /SR RS,CCODES ;STORE PDP-11 CCODES
/POP MAR,R6,NLT ;RETURN

1

I

ADD: ;ADD INSTRUCTIUN
XFR R6,MAR /LR MAR,ADDST ;SET TOP OF STACK

ADDST: . WO RD SMODE ;GET SOURCE
. WO RD DMODRD ;GET DESTINATION
.WORD ADDOP ;ADD, STORE RESULT IN DEST.
.WORD IFETCH ;FETCH NEXT INSTRUCTION

ADDOP: LSSL SR,16 ;LEFT JUSTIFY SOURCE OPERAND
LSSL DR,16 ;LEFT JUSTIFY DEST. OPERAND
ADD DR,SR /LR RS,DMDMSK ;DO THE ADD; LOAD MASK

;FOR DESTINATION MODE
AND RS,IR /RR· R 7,MAR,MN ;SAVE HOST MACHINE CCODES
SUBS R4,+2 /BRN ZERO,MODOC ;DEST. MODE=0?
XFR RS,MAR /RI MAR,WRITEW ;NO, CALL SUBROUTINE TO WRITE

;RESULT TO MAIN MEMORY
EXT RS,R7,4,BIT03 ;EXTRACT CCODES FROM SAVED MAR '
ADDS R6,+1 /SR RS,CCODES ;STORE PDP-11 CCODES

/POP MAR,R6,NLT ;RETURN
DMDMSK: .WORD 070

<

-31-

t

1

1

INC: ;INC INSTRUCTION
XFR R6,MAR /LR MAR,INCST ;SET TOP OF STACK

INCST: .WORD DMODRD ;GET OPERAND
.WORD INCOP ;INC & STORE RESULT; SET COI
. WORD IFETCH ;FETCH NEXT INSTRUCT ION

INCOP: LSSL DR,16 ;LEFT JUSTIFY OPERAND
ADDL DR,+0200000 ;DO THE INCREMENT
XFR R7,MAR /LR RS,CCODES ;SAVE HOST MACHINE CCODES

'

;FETCH PDP-11 CCODES
INS RS,R7,4,015 ;DON'T CHANGE PDP-11 'C' BIT
EXT R7,IR,29,BIT02 ;EXTRACT DEST. MODE FROM IR
COND ZERO /RI MAR,MODO ;DESTINATION MODE=0?
SUBS R4,+2 /SR RS,CCODES ;STORE PDP-11 CCODES
XFR RS,MAR /RI MAR,WRITEW ;NO, CALL ROUTINE TO WRITE

;RESULT TO MAIN MEMORY
/POP MAR,R 6,NLT ;RETURN

A SR: ;ASR INSTRUCTION
XFR R6,MAR /LR MAR,ASRST ;SET TOP OF STACK

A SRST: .WORD DMODRD ;GET OPERAND
.WORD ASROP ;SHIFT, STORE RESULT, CODE SET
.WORD IFETCH ;FETCH NEXT INSTRUCTION

ASROP: LSSL DR,16 ;LEFT JUSTIFY OPERAND
RASS DR,+1 / ;DO SHIFT
EXT RS,MAR,4,015 ;EXTRACT CCODES
INS RS,DR, 18,02 ;INSERT THE SHIFTED OUT BIT

;INTO 'C' OF PDP-11 CCODES
EXT R7,IR,29,BIT02 ;EXTRACT DEST. MODE FROM IR
COND ZERO /RI MAR,MODO ;DESTINATION MODE=0?
SUBS R4,+2 /SR RS,CCODES ;STORE PDP-11 CCODES
XFR RS,MAR /RI MAR,WRITEW ;WRITE BACK RESULT

/POP MAR,R6,NLT ;RETURN

BEQ: ;BEQ INSTRUCTION
/LR RS,CCODES ;GET PDP-11 CCODES

INS MAR,R5,16,03600000 ;INSERT INTO ICODES BITS
;16-19 OF MAR

COND NZERO /RI MAR,IFETCH ;BRANCH CONDITION FAILS
.

EXT R*,IR, 0,0377 ' ;EXTRACT OFFSET FROM IR
LSSS R4,+1 /LR R 7,PDPPC ;CONVERT OFFSET TO BYTES

;GET PC
ADD R7,R4 /LR R4,IFETCH ;ADD OFFSET TO. PC >
EXT R7,R7,0,LOW 16 ;16 BITS ONLY
XFR' MAR,R4 /SR R 7,PDPPC ;STORE NEW PC; RET. TO IFETCH

-32-

MUL: ;MUL INSTRUCTION
XFR R6,MAR /LR MAR,MULST ;SET TOP OF STACK

MULST: .WORD DMODRD ;GET DEST. OPERAND
.WORD MULOP ;MULTIPLY
.WORD IFETCH ;FETCH NEXT INSTRUCTION

MULOP: RSSS SR,+6 /RR RS,DR,MN ;FINISH EXTRACTING SR FIELD
;RS <= MULTIPLICAND

CLR R4 /MR R 7,SR,MN ;SET UP 94 FOR MULTIPLY
;FETCH REG[SR] (MULTIPLIER)

LSSL R7,16 - ;LEFT JUSTIFY MULTIPLIER

 ADDS R6,+1 /LR DR,FIFTEEN ;SET MULTIPLY STEP COUNT
MULSTP: MULT RA,R7 /DEC DR,1,LGT,MULSTP

;EXECUTE FIFTEEN STEPS
TEST RS / ;MULTIPLICAND POS OR NEG
RASS R4,+1 /BRN LOWON,NEG ;SINGLE RIGHT ARITHMETIC

;SHIFT IN ANY CASE
POS: RASS R4,+1 /RI MAR,CCSET ;MULTIPLICAND POSITIVE: NO

;CORRECTION REQUIRED
NEG: SUB 34,R7 / _ ;MULTIPLICAND NEGATIVE:

;MAKE CORRECTION
RASS R4,+1 /BRN NOOVF,CCSET ;OVERFLOW ON S·UBTRACTION?
COM R7 / ;THERE WAS OVERFLOW:

;FLIP SIGN OF MULTIPLIER
INS R4,R7,0,020000000000 ;AND MAKE IT THE SIGN

;O F T H E R E S U L T

C C SET: EXT DR,MAR,4,BIT03 ;SAVE CONDITION CODES SET
;BY 32 BIT RESULT NOW IN R4

EXT R5,R4,0,LOW16 ;EXTRACT LOW ORDER 16 BITS
;OF PRODUCT AND PLACE IN R5

EXT R7,R4,17,0377777 ;SAVE MOST SIGNIFICANT 17
;BITS OF PRODUCT

EXT R#,24,16,LOW 16 ;EXTRACT HIGH ORDER 16 3 ITS
INS R7 ,R7,15,037777400000 ;REPLICATE BITS FOR

;SIGNIFICANCE CHECK
CLR R7 /BRN DON,STORCC ;ALL 0'S OR l'S => DON'T

;SET 'C' BIT IN CCODES
ANDL DR,+2 ;TWO 16 BIT WORDS REQUIRED

;FOR PRODUCT SO SET 'C'
STORCC: ADDS R7,+1 /SR DR,CCODES ;STORE CONDITION CODES

OR R7,SR /RM SR,R4,MN ;STORE HIGH ORDER RESULT
;IN REGISR]

/RM R 7,RS,MN ;STORE LOW ORDER RESULT
;IN REG[SR OR 1]

/POP MAR,R6,NLT ;RETURN
FIFTEN: .WORD 017

.END

-33-

1 1

