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ABSTRACT: Land use regression models (LUR) frequently
use leave-one-out-cross-validation (LOOCV) to assess model
fit, but recent studies suggested that this may overestimate
predictive ability in independent data sets. Our aim was to
evaluate LUR models for nitrogen dioxide (NO2) and
particulate matter (PM) components exploiting the high
correlation between concentrations of PM metrics and NO2.
LUR models have been developed for NO2, PM2.5 absorbance,
and copper (Cu) in PM10 based on 20 sites in each of the 20
study areas of the ESCAPE project. Models were evaluated
with LOOCV and “hold-out evaluation (HEV)” using the correlation of predicted NO2 or PM concentrations with measured
NO2 concentrations at the 20 additional NO2 sites in each area. For NO2, PM2.5 absorbance and PM10 Cu, the median LOOCV
R2s were 0.83, 0.81, and 0.76 whereas the median HEV R2 were 0.52, 0.44, and 0.40. There was a positive association between the
LOOCV R2 and HEV R2 for PM2.5 absorbance and PM10 Cu. Our results confirm that the predictive ability of LUR models based
on relatively small training sets is overestimated by the LOOCV R2s. Nevertheless, in most areas LUR models still explained a
substantial fraction of the variation of concentrations measured at independent sites.

■ INTRODUCTION

Epidemiological studies have suggested that long-term exposure
to air pollution is associated with adverse health effects.1−3

Some of these studies have relied on estimating air pollution
concentrations at the home addresses of study participants
using land use regression methods.4,5 Within the ESCAPE
(European Study of Cohort for Air Pollution Effects) project, a
comprehensive measurement program was conducted in 36
European study areas between 2008 and 2011. Substantial
spatial variability of nitrogen oxide (NO2, NOx) and particulate
matter (PM) was identified within and between these areas.6,7

To explain and predict within-area variability, land use
regression (LUR) models were developed using a standardized
approach.8

LUR modeling is a geographic information system (GIS) and
statistics based method that exploits land use, geographic and
traffic characteristics (e.g., traffic intensity, road length,
population density) to explain spatial concentration variations
at measured sites.9 Within the ESCAPE project, PM and NO2/
NOx models have been developed in 20 and 36 study areas,
respectively, using a standardized method.8,10 These models
explained a large fraction of spatial variance in the measured
pollution concentrations, as measured by R2s ranging from
55−95% for NO2 and for PM2.5 absorbance.
Model evaluation is essential as the model R2 may be

artificially high.11 Two common evaluation approaches are the
internal “leave-one-out-cross-validation (LOOCV)” and the
external “hold-out-evaluation (HEV)” against independent
measurements set aside for model evaluation. The HEV is
preferable as it likely better reflects the predictive power of the
model at locations where no measurements were taken, such as
addresses of subjects in an epidemiological study, assuming that
validation sites are representative of the distribution of subject’s
addresses. In a study with 144 NO2 monitoring sites, we
previously reported that the model adjusted R2 decreased
slightly from 0.87 to 0.82 with the increasing size of the training
sets used for model development. In contrast, the HEV R2

increased from 0.60 to 0.74 with training set size from 24 to
120.12 This is likely due to some overfitting.11 Similar
evaluations have been conducted in Girona, Spain and in
Oslo, Norway with somewhat different results: in Girona,

differences between LOOCV R2 and HEV R2 were larger than
we found previously, in Oslo they were smaller.13,14

All these studies of LUR model performance evaluation were
conducted for NO2. Sampling of PM requires more effort and
usually the number of sampling sites is not sufficient to allow
for a separation into training and test data set (for validation
purpose) of sufficient size. To the best of our knowledge, no
evaluations have been conducted for particulate matter LUR
models.
Within the ESCAPE study area specific PM models were

developed based on 20 training sites per area in most of the
study areas.8 In view of the recent model evaluation studies
which were restricted to single areas, the goal of this paper is to
evaluate model performance in all 20 ESCAPE study areas for
spatial variation of PM and NO2.

■ MATERIALS AND METHODS

Study Design. ESCAPE study areas included 20 sites with
simultaneous measurements of both PM and NO2, and 20 sites
where only NO2 was measured in each area. As we did not have
PM concentration data available for sampling sites other than
the 20 PM sites in each area, we made use of the high
correlation between the annual average concentration of traffic-
related PM metrics such as PM2.5 absorbance, copper in PM10

(PM10 Cu), and NO2
7.We assessed the performances of LUR

models developed using the PM/NO2 sites to predict the NO2

concentrations at the sites where only NO2 was measured. We
used this as a surrogate for the true hold-out validation. In the
paper we will refer to the PM/NO2 sites as training sites and
the NO2 only sites as test sites.

Study Areas and Air Pollution Measurements. Details
of the ESCAPE study design and the measurement campaign
have been described previously.6,7 Briefly, an intensive
monitoring campaign was conducted in 20 European study
areas between October 2008 and May 2011. The abbreviations
regarding to the study areas are shown in Supporting
Information (SI) Table S1. In each area, we chose sampling
sites at street, urban background, and regional background
locations. These sites were selected to represent the spatial
distribution of residential addresses of participants of cohort
studies in these areas. Sampling of NO2 was conducted at
40 sites, at half of which we also sampled PM. In
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The Netherlands/Belgium and Cataluña measurements were
performed at 40 PM sites and 80 NO2 sites. At each of the PM
sites, NO2 was measured simultaneously. The site selection
procedure (http://www.escapeproject.eu/manuals/index.php)
specified that the 20 PM sites had to be a random selection
of the 40 sites in each area. This was not always achieved as it is
easier to find monitoring locations for the passive NO2 sampler
than for the active PM samplers. We compared the distri-
butions of NO2 concentrations measured at the sites where
only nitrogen oxides were measured, to those at the sites where
both nitrogen oxides and PM were measured. Each selected
site was measured in three two-week sampling periods in the
cold, warm and intermediate seasons. Due to limited amount of
samplers, five sites and the reference site were measured
simultaneously. The measured values were adjusted for
temporal variation using continuous measurements at a
background location which was not influenced by local
pollution and annual average concentrations for each site
were calculated and were used for model development.
NO2 was measured using Ogawa badges and following the

Ogawa analysis protocol (Ogawa & Co V 3.98, USA, Inc.).
PM2.5 and PM10 samples were collected on preweighted filters
using Harvard Impactors. These filters were then used to
measure absorbance and detect elemental composition (e.g., Cu)
by energy dispersive X-ray fluorescence (ED-XRF) at Cooper
Environmental Services (Portland, OR). More detail is
provided in a separate paper (de Hoogh, in preparation).
Briefly, 48 elements were measured. Quality assurance and
control included analysis of NIST reference material(SRM
1128 and SRM987). All analysis batches passed quality criteria
of the laboratory. In each study area, about 20 field blanks and
field duplicates were taken. We calculated the mean field blank
and the detection limit.
Predictor Variables for LUR Model. We extracted values

for the GIS predictor variables at the coordinates of sampling
sites using ArcGIS (ESRI, Redlands, California). Details of the
predictor variables have been described in previous papers.8,10

Briefly, the predictor variables were derived from both centrally
available Europe-wide GIS database and locally collected GIS
data from partners.
Central GIS predictor variables were comprised of road

network, land use, population density and altitude data. High
resolution digital road network was obtained from Eurostreets
version 3.1(1:10 000 resolution) which were based on the
TeleAtlas MultiNetTM data set for the year 2008. For all roads
and major roads, the total lengths of roads were calculated
within a buffer size of 25, 50, 100, 300, 500, 1000 m. Land use
variables were derived from the CORINE (coordination and
information on the environmental program) database for the
year 2000 for the buffer sizes of 100, 300, 500, 1000, and 5000 m.
Digital elevation data (SRTM 90m) were obtained through the
Shuttle Radar Topographic Mission (http://srtm.csi.cgiar.org/).
Detailed road network with linked traffic intensity were

available locally for most study areas. The accuracy should be at
least 10m compared to the central road network. Data on traffic
density were aggregated to annual means, as we were modeling
annual mean concentrations. We did not obtain traffic counts
for the exact monitoring hours as these traffic data were
generally not available. Local land use, population density,
altitude, and other local variables were also extracted for
modeling.
LUR Model Development. Models for PM2.5 absorbance

were developed by local partners supervised centrally while

models for PM10 Cu were built centrally at IRAS (Institute for
Risk Assessment Sciences, Utrecht University). Separate
models were built for each area, we did not attempt to build
a universal model to cover all study areas in view of differences
between areas not sufficiently characterized by the available GIS
data. For this paper we further developed models for NO2,
using only the data from the training sites. Detailed procedures
of model development and results have been published
elsewhere.8,10 LUR model results for elemental composition
will be published later. A supervised stepwise regression was
used to develop the LUR model. We first evaluated univariate
regression of the corrected annual concentrations by entering
all potential predictor variables. The variable producing the
highest adjusted R2 and having the a priori defined direction of
effect (e.g., positive for traffic intensity) was selected as the first
predictor. Second, the remaining variables were added
separately and we assessed whether the variable with the
highest increase in adjusted R2 improved the model by at least
1%. This process continued until no more variable with the a
priori specified sign could increase the model adjusted R2 by at
least 1%. In the final step, we excluded the variables which had a
p value >0.1. We checked whether the variance inflation factor
(VIF) was lower than 3 in order to avoid multicollinearity.

Model Evaluation. As previously described,12 we performed
two evaluation approaches:

1. Leave-one-out-cross-validation (LOOCV), which succes-
sively left out one site from the training data set and
estimated models based on the remaining N-1 sites. In
this procedure, the variables in the model were the same
as identified using the full training data set; only the
coefficients of the model changed.

2. Hold-out evaluation (HEV). For NO2 this was
straightforward as we compared NO2 model predictions
with measured NO2 concentrations at test sites. True
HEV for PM components was infeasible as training sets
for PM were too small to split up for model building and
validation. As an alternative, we evaluated PM models by
investigating the correlations between the predicted
values of PM metrics and the measured NO2 at the
test sets (HEV R2).

A systematic check of the model evaluations was conducted
in the following ways:

1. We restricted this analysis to PM components and areas
with high correlations with measured NO2 (squared
Pearson correlation coefficient R2 > 0.5).

2. We further evaluated whether the PM models could also
fit NO2 well by checking the correlations between
predicted PM concentrations and measured NO2

concentrations (R2
NO2) at the training sets and included

only areas where R2
NO2 was >0.5.

3. Finally, we compared the variability and tested the
distributions of NO2 in the training and the test sets of
each area by simple boxplot and t tests to assess similarity
of the two types of sites.

We compared the model performances of the PM metrics
with the model performance of the NO2 models, the latter
reflecting true HEV. We evaluated the accuracy of the HEV
only for the NO2 model by calculating the root mean squared
error (RMSE) and the mean difference between predictions
and observations (MD) as the HEV for PM2.5 absorbance and
PM10 Cu was indirect. As a check of our approaching using
correlation with NO2 as surrogate for HEV, we made use of
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two larger areas (The Netherlands & Belgium and Cataluña)
with 40 PM sites. Ten data sets were randomly generated for
model development (n = 20) and evaluation (n = 20) for PM2.5

absorbance and PM10 Cu. We compared the indirect HEV R2

(based on correlation with NO2) with true HEV in these two
areas.
We calculated the HEV R2 by truncating the values of

predictors in the test data sets that were outside the range of
the values observed in the data set for model development. This
is standard procedure within ESCAPE for exposure assignment
and was done to prevent unrealistic predictions based on model
extrapolations. Our previous study showed that with a small
amount of locations for model building, the range of the
variables for the model development may not cover the whole
range when they were extended to larger numbers of
independent test sites. Therefore, the predicted values may
strongly deviate from the observations, especially when
nonlinear functions are used such as 1/(distance to road).12

We explored the impact of truncation on HEV R2. Analyses
were conducted with SAS 9.2.

■ RESULTS

Table 1 shows the squared Pearson correlation coefficients between
NO2 and selected PM components. Median correlations were

high for both PM2.5 absorbance and PM10 Cu. Substantial
variability of correlations was found between study areas. For
PM2.5 absorbance, the R2 with NO2 in all the ESCAPE study
areas were higher than 0.5. For PM10 Cu, Gyor was the only
area with low correlation with NO2. The highest correlations
between NO2 and PM components were frequently observed in
big cities, for example, Munich (Germany), London/Oxford
(United Kingdom), Barcelona (Spain) and Paris (France) with
large spatial concentration contrasts compared with relatively

small cities with smaller spatial contrast, for example, Gyor
(Hungry) and Kaunas (Lithuania).7

The variability of NO2 concentrations was similar for the
training sites and the test sites for most areas (Figure 1). The
mean NO2 concentration did not differ significantly between
the training and the test sites, with the exception of the study
areas of Paris, Heraklion, Turin, Ruhr area, Oslo, and
Stockholm county (p < 0.05). Table 2 shows the distributions
of model R2 and LOOCV R2 for NO2, PM2.5 absorbance and
PM10Cu and R2 between predicted concentrations and
measured NO2 at the training sites (R2

NO2) and test sites
(HEV R2).
Figure 2 and SI Tables S2−S4 show the model performance

and structure for all individual study areas, including the
predictor variables in the identified LUR models. Vorarlberg
and Gyor were excluded from PM2.5 absorbance and PM10 Cu,
respectively, due to lower Correlation R2 with measured NO2

or R2
NO2 than 0.5. High median model R2s were observed as

0.82 for PM10 Cu, 0.87 for PM2.5 absorbance and 0.88 for NO2.
The median LOOCV R2s were 5−6% lower than the model
R2s. The median correlations (R2

NO2) of the PM model predic-
tions with the measured NO2 concentrations in the training
data sets were as high as the squared correlations (Pearson R2)
between observations (Table 1), ranging from 0.77 for PM10

Cu to 0.80 for PM2.5 absorbance. In contrast, the models
explained substantially less variation in the independent test
data sets. The NO2 models developed on the 20 training sites
had the best prediction ability (median HEV R2 = 0.52). The
RMSE and MD ranged from 3.18 to 18.57 μg/m3 (median:
6.53 μg/m3) and from −8.64 to 2.71 (median: −2.38 μg/m3),
respectively. The PM2.5 absorbance and PM10 Cu models
explained only a slightly smaller fraction of the measured NO2

concentration than the NO2 models (median HEV R2 = 0.44
and 0.40, respectively). The IQR of R2s of each pollutant was
higher for hold-out evaluations than for cross-validation and
model development, indicating substantial variability of HEV
R2s across study areas.
In the sensitivity analysis with 10 sets of random selected 20

training and test PM sites in The Netherlands and Belgium and
in Cataluña, the HEV R2 validated by the same PM metric did
not significantly deviate from the HEV R2 validated by NO2 for
PM2.5 absorbance and PM10 Cu (paired t test, p > 0.1). This
supports our approach of using of NO2 as proxy to evaluate the
PM models (Table 3 and SI Figure S2). Similar differences
were found between model R2 and HEV R2 for NO2 in these
two areas as in the analysis comprising all study areas.
The HEV was calculated with truncated predictors. We saw

that by restricting the predictors in the test sets to the range of
values that were obtained in the training sets, improved the
median HEV R2s by 8%, 5% and 8% for NO2, PM2.5

absorbance, and PM10 Cu, respectively (SI Table S5).
Figure 3 presents scatterplots of R2 of LOOCV versus R2 of

HEV in individual areas. In general, there were positive
associations between LOOCV R2 and HEV R2, indicating that
better models as judged from LOOCV were on average better
in HEV as well. The correlations were significant (p < 0.1) for
PM10 Cu and PM2.5 absorbance, but not for NO2 (p ≥ 0.1).
There was however a wide scatter. In some areas, models that
exhibited very stable performances in cross-validation reflected
much lower HEV R2s than the model R2. For instance, the models
of NO2 and PM10 Cu in Turin have both high model R2 (>0.87)
and high LOOCV R2 (>0.82), whereas the HEV R2 dropped
dramatically by over 66% from model R2 (SI Tables S2,S4).

Table 1. Squared Pearson Correlation Coefficients (R2)
between Measured NO2 and PM2.5 Absorbance and PM10 Cu
in 20 European Study Areas

study areas PM2.5 absorbance PM10 Cu

Oslo, Norway 0.75 0.73

Stockholm, Sweden 0.86 0.64

Helsinki, Turku, Finland 0.81 0.91

Copenhagen, Denmark 0.86 0.84

Kaunas, Lithuania 0.55 0.69

Manchester, UK 0.74 0.76

London, Oxford, UK 0.88 0.89

Netherlands & Belgium 0.86 0.83

Ruhr area, Germany 0.89 0.91

Munich, Germany 0.87 0.94

Vorarlberg, Austria 0.59 0.70

Paris, France 0.90 0.89

Györ, Hungary 0.65 0.25

Lugano, Switzerland 0.64 0.85

Turin, Italy 0.87 0.81

Rome, Italy 0.89 0.77

Barcelona, Spain 0.91 0.87

Catalunya, Spain 0.89 0.83

Athens, Greece 0.85 0.78

Herakion, Greece 0.63 0.66

Oslo, Norway 0.75 0.73

Median 0.86 0.82

Interquartile range 0.19 0.17
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This also applies to the models in a few other areas, for example,
Paris, Kaunas, Heraklion, and Athens (SI Tables S2−S4). For
NO2, the five areas with the lowest HEV R2 (<0.40) were
predominantly in southern Europe (Turin, Paris, Athens,
Heraklion and Rome). For absorbance, the lowest HEV R2

(<0.30) were found more spread, specifically in Oslo, Helsinki,
Kaunas, Athens, and Heraklion. For Cu, the lowest HEV R2

(<0.30) were found more spread, specifically in Kaunas, Gyor,
Turin, Athens, and Heraklion.

■ DISCUSSION

This study shows that for a wide range of study areas and
pollutants including NO2, PM2.5 absorbance and PM10 Cu,
model and LOOCV R2 from land use regression models based
on relatively small training sets overestimate predictive ability in
independent test sets. Despite this overestimation, in most
areas LUR models still explained a substantial fraction of the
spatial variation measured at independent sites. The predictions
were better for the areas, for example, Western Europe with
more detailed predictor variables.

Evaluations of LUR predictive power and the effects of
varying the number of sampling sites have been recently
reported in four studies conducted in single areas for the
pollutant NO2.

12−15 The conclusions of these studies were
variable, ranging from negligibly (LOOCV R2: 0.67, HEV R2:
0.64, N = 20)14 to seriously inflated R2 of model and LOOCV
R2s compared to HEV R2 (LOOCV R2: 0.72, HEV R2: 0.22,
N = 20).13 Our results for NO2 can be directly compared with
these studies. Our models based on a large multicenter study
showed similar patterns as observed in our recent work in The
Netherlands only,12 whereas the studies by Basagana et al.
(2012)13 and Johnson et al. (2010)16 showed larger gaps
between HEV R2 and model or LOOCV R2. In our current
study the median HEV R2 was still 52%, indicating that a
substantial fraction of the measured variation was explained by
the LUR models based upon 20 sites. In our previous work,12

we found a HEV R2 of 63% for models based upon 24 sites.
The differences between model R2 and HEV R2 for PM

absorbance and Cu were evaluated with the NO2 concentration
at the test sites, because independent PM data were not
available. The difference between model R2 and HEV R2 for

Figure 1. Boxplot of NO2 concentrations at PM/NO2 (training) sites and NO2-only (test) sites in 20 ESCAPE study areas. The upper, middle and
bottom layers of the box show the 75, 50, 25th percentiles of the data set. NOS: Oslo, Norway; SST: Stockholm, Sweden; FIH: Helsinki, Finland;
DCO: Copenhagen, Denmark; LIK: Kaunas, Lithuania; UKM: Manchester, UK; UKO: London/Oxford, UK; BNL:Netherlands and Belgium; GRU:
Ruhr area, Germany; GMU: Munich, Germany; AUV: Vorarlberg, Austria; FPA: Paris, France; HUG: Gyor, Hungry; SWL: Lugano, Switzerland;
ITU: Turin, Italy; IRO: Rome, Italy; SPB: Barcelona, Spain; SPC: Cataluña, Spain; GRA: Athens, Greece; GRH: Heraklion, Greece.

Table 2. Comparison between model R2 and LOOCV R
2 for NO2 and PM Components (Training Sites), R2 between Predicted

Concentrations and Measured NO2 at Training Sites (R
2
NO2) and R

2 between Predicted Concentrations and Measured NO2 at
Test Sites (HEV R

2) in 20 European Study Areas

amodel R2 bLOOCV R2 cR2
NO2

dHEV R2

modeled pollutant median IQR Median IQR Median IQR median IQR

NO2 0.88 0.05 0.83 0.10 1.00 0.00 0.52 0.24

PM2.5 absorbance 0.87 0.13 0.81 0.16 0.80 0.07 0.44 0.35

PM10Cu 0.82 0.18 0.76 0.22 0.77 0.11 0.40 0.25
aModel R2: Model adjusted R2. bLOOCV R2: Leave-One-Out-Cross-validation R2. cR2

NO2 shows the correlations between predicted NO2 or PM
components concentrations with measured NO2 concentrations at the training sites, being the NO2/PM sites. dHEV R2 is hold-out evaluation R2,
approximated by the correlation of model predictions with measured NO2 at test sites, which is NO2-only sites.
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PM2.5 absorbance and PM10 Cu was only slightly larger than for
NO2. For these PM metrics some of the gap is due to the use of
NO2 for the evaluation. To test this impact, we divided the
HEV R2 by the R2

NO2 in Table 3, which can be interpreted as
the highest possible squared correlation for PM metrics. This
resulted in median HEV R2 of 62% and 52% for PM2.5

absorbance and PM10 Cu, respectively. These adjusted HEVs
are still much larger than the LOOCV. These PM metrics have
strong relations to tailpipe and nontailpipe traffic emissions.16,17

We restricted the evaluation to the areas with high
correlation of the measured concentrations with NO2

(Table 1) and high correlations of PM model predic-
tions with NO2 at the sites used for model development
(SI Tables S2, S4) (R2 > 0.5). Our sensitivity analysis indicated
that use of NO2 proxy for HEV showed no significant
difference as compared to use of the same PM metrics for
true HEV in The Netherlands & Belgium and Cataluña,
suggesting that it was reasonable to use NO2 to evaluate the
prediction ability of PM2.5 absorbance and PM10 Cu models
in this study. A limitation of the use of NO2 for PM metrics
evaluation is that we can only evaluate the correlation and
not the accuracy of the model. The evaluation of the NO2

Figure 2. Model R2; LOOCV R2 (at NO2/PM sites) for NO2 & PM components; and R2 of model predictions with NO2 measurements (at NO2

-only sites, HEV R2) in 20 European countries. See Figure 1 for coding of the locations.

Table 3. Comparison between Model R2 and LOOCV R
2 for PM Components and Indirect and Direct Hold out Evaluation in

the Netherlands& Belgium and Cataluñaa

bmodel R2 cLOOCV R2 dR2
NO2

eHEV R2 (NO2)
fHEV R2(PM)

pollutants areas median IQR median IQR median IQR median IQR median IQR

PM2.5 absorbance BNL 0.90 0.06 0.87 0.08 0.83 0.04 0.68 0.11 0.76 0.13

SPC 0.85 0.10 0.81 0.14 0.82 0.10 0.56 0.15 0.51 0.17

PM10Cu BNL 0.84 0.04 0.79 0.11 0.83 0.07 0.57 0.12 0.56 0.09

SPC 0.82 0.08 0.77 0.09 0.71 0.10 0.45 0.32 0.45 0.36
aBNL: Belgium & the Netherlands; SPC: Cataluña, Spain. The 40 sites were randomly divided in test and training sets 10 times. bModel R2: Model
adjusted R2. cLOOCV R2: Leave-One-Out-Cross-validation R2. dR2

NO2 shows the correlations between predicted NO2 or PM components
concentrations with measured NO2 concentrations at the training sites, being the NO2/PM sites. eIndirect HEV R2(NO2): correlations between
predicted PM components and measured NO2 at the 20 test sites. fDirect HEV R2 (PM): correlations between predicted and measured PM
components at the 20 test sites.
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models suggested that the predictions may slightly under-
estimate concentrations in most of the study areas.
The differences between model R2 and HEV R2 were recognized

as a phenomenon of some overfitting, in combination with
incomplete representation of relevant area characteristics in
small training sets.11−13,18 The model R2 and LOOCV R2 may
be inflated when models are based on small number of training
sites and when many candidate predictors are available. In the
ESCAPE study, we used a supervised approach with a priori
defined directions of effects and restricted the potential
predictors to limit the risk of overfitting. Our results showed
that despite substantial variability of LOOCV R2 and HEV R2 in
study areas, the areas with higher LOOCV R2 tended to
produce better predictions for the independent data, and
therefore suggested more robust performances of models in
predicting values at the cohort addresses in some areas.
We also noted that in a few areas, LOOCV R2 was much

lower than HEV R2. This is likely explained at least in part by
simple random variation (associations might have been
different in these areas with other training and/or test sets in
these same areas). However, the scatterplots in Figure 3 show
that LOOCV R2 and HEV R2 were positively associated,
suggesting that models in some areas were truly more predictive
than in other areas. This is supported by SI Figure S1 which shows
that the HEV R2 is positively associated with the correlation
between NO2 and PM component measurements. The level of
the HEV R2 could be related to complexity of study areas and
quality of measurements and predictor variables. With more
detailed predictor variables, the models in the Western European
centers generally performed better than the models in other
areas. This suggests a sensitivity analysis in the epidemiological
analysis using HEV R2 rather than LOOCV R2. Previous studies
displayed a slight reduction of NO2 model R2s and LOOCV R2s
as a function of increasing number of training sites.12,13,15 Our
results supported this variation in model performances for a
large number of areas using a standardized sampling and
modeling method. We compared performances between NO2

models which were centrally built for testing by IRAS based on
20 sites (40 for Netherlands & Belgium and Cataluña) and
models which were optimized by local partners based on a full
set of 40 sites (80 for Netherlands & Belgium and Cataluña).
The median R2s of model and LOOCV decreased from 0.88 to

0.81 and from 0.83 to 0.73, respectively (SI Figure.S3). The
effect of restricting the out-of-range predictor values to the
range of the training sets has been discussed elsewhere.12,13 Our
results support that the range truncation approach increases the
HEV R2 of our LUR models in most study areas. It is therefore
important that the selected sites cover the variability of
predictor variables and pollutant concentrations in the study
area well.8

As the PM models will be applied to the epidemiological
studies in all the ESCAPE study areas, the quality of estimated
exposure of cohorts will largely depend on the prediction ability
of models to the independent data set, that is, the HEV R2.
Although we cannot directly estimate absolute errors of PM
metrics in the test sets, the HEV R2 with measured NO2 can
still be informative to the health studies. We will, for instance,
include model performance in meta-regressions of the cohort-
specific effect estimates which are currently being developed. In
summary, we found model R2 and LOOCV R2 to be
substantially higher than HEV R2 in LUR models developed
for PM2.5 absorbance and PM10 copper in 20 study areas across
Europe. Despite this overestimation, in most areas LUR models
still explained a substantial fraction of the variation measured at
independent sites.
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