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ABSTRACT 

The Qinghai-Tibet Plateau is one area with the most frequent landslide hazards due to its unique 
geology, topography, and climate conditions, posing severe threats to engineering construction and 
human settlements. The Sichuan-Tibet Railway that is currently under construction crosses the 
Qinghai-Tibet Plateau; there are frequent landslide disasters along the line, which seriously 
threaten the construction of the railway. This paper applied two deep learning (DL) algorithms, the 
convolutional neural network (CNN) and deep neural network (DNN), to landslide susceptibility 
mapping of the Ya’an-Linzhi section of the Sichuan-Tibet Railway. A geospatial database was 
generated based on 587 landslide hazards determined by Interferometric Synthetic Aperture Radar 
(InSAR) Stacking technology, field geological hazard surveys, and 18 landslide influencing 
factors were selected. The landslides were randomly divided into training data (70%) and 
validation data (30%) for the modeling training and testing. The Pearson correlation coefficient 
and information gain method were used to perform the correlation analysis and feature selection of 
18 influencing factors. Both models were evaluated and compared using the receiver operating 
characteristic (ROC) curve and confusion matrix. The results show that better performance in both 
the training and testing phases was provided by the CNN algorithm (AUC = 0.88) compared to the 
DNN algorithm (AUC = 0.84). Slope, elevation, and rainfall are the main factors affecting the 
occurrence of landslides, and the high and very high landslide susceptibilities were primarily 
distributed in the Jinsha, Lancang, and Nujiang River Basins along the railway. The research 
results provide a scientific basis for the construction of the Ya'an-Linzhi section of the 
Sichuan-Tibet Railway within the region, as well as the disaster prevention and mitigation work 
during future safe operations. 
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Landslides are one of the most destructive natural disasters and are caused by a combination of 
natural and human factors1. Under the influence of extreme climatic events, an increasing number 
of landslides are occurring worldwide, which results in significant economic and human losses2. 
The Sichuan-Tibet Railway was built on the eastern margin of the Qinghai-Tibet Plateau, where 
the plates collide and are structurally active. It is one of the regions where crustal deformation and 
tectonic activities are extremely intense today3,4. The Sichuan-Tibet Railway traverses the most 
complex geological, topographic, and topographical areas in the world, and the plate structures 
along the line are the most active. The active faults are dense within this region, topographic 
changes are significant, and natural disasters such as landslides, collapses, and mudslides are the 
most developed5. Preliminary investigation results indicate that a total of 3043 geological hazards 
such as collapses, landslides, and debris flows have been discovered on the Ya'an-Linzhi section of 
the Sichuan-Tibet Railway6. In 2000, a substantial high-speed landslide occurred on the Yigong 



Zangbo River in Bomi County, Tibet, which blocked the river and formed a barrier lake of 
3.0×108 m3; the debris flow caused by the dam break washed away the Tongmai Bridge about 17 
km downstream, resulting in huge casualties and property losses7. Two large sequential landslides 
formed a dam and the resulting lake along the Jinsha River on October 11 and November 3, 2018. 
About 24 and 9 × 106 m3 of material collapsed and rushed into the river8. Due to the large inflow 
rates at the time of damming, the barrier lake level rose rapidly, destroying the Jinsha River Bridge 
and other downstream coastal transportation facilities, posing considerable risks to the 
downstream residents and properties9. All of these disasters result in enormous damage to roads 
and the surrounding environment, cause serious threats and impacts to the construction and safe 
operation of major cross-river transportation projects such as the Sichuan-Tibet Railway. 
Therefore, it is imperative to evaluate the geological disaster susceptibility of the Sichuan-Tibet 
Railway Ya’an-Linzhi section, which can provide a scientific basis for the construction of the 
Sichuan-Tibet railway as well as disaster prevention and mitigation in future safe operations. 

Recently, with the rapid development of remote sensing (RS) and geographic information 
system (GIS) technologies, various machine learning methods have been applied to assess 
landslide susceptibility mapping, including naïve Bayes10,11, logistic regression12,13, artificial 
neural network14,15, decision trees16,17, random forest18,19, and support vector machines 20,21. 
Compared with the subjective and heuristic models, the machine learning models can successfully 
handle non-linear data with different scales in the fields of remote sensing and disaster 
mitigation22. However, with the continuous in-depth research on machine learning, these models 
only have a shallow learning structure with one or zero hidden layers; thus, they have 
shortcomings such as limited training time, unstable convergence, and local optimal23,24. To 
address this problem, the DL framework has recently received more attention. DL has significant 
advantages over traditional models; it has more non-linear operation levels than the single hidden 
layer neural network, support vector machine, and other "shallow learning" methods. In addition, 
the ability to build advanced features encourages the discovery of the deepest connection between 
the parameters, which generally obtain a robust performance for non-linear processing25,26. DL 
models, especially convolutional neural network (CNN) models and deep neural network (DNN) 
models, have been successfully used in a wide range of applications and are optimal for the 
handling of large data sets27-30. However, the accuracy of susceptibility is related to the method 
itself, and relates to the input training dataset including the historical landslides and landslide 
predisposing factors. In this study, InSAR Stacking technology was used to identify landslide 
hazards in the study area and use the landslide data to evaluate landslide susceptibility. The InSAR 
Stacking technology overcomes the limitations of time incoherence and avoids the long temporal 
separation, spatial incoherence, and atmospheric effects in traditional interferometry methods, 
producing land deformation results that are more continuous in time and space31,32. Therefore, this 
method has been widely used in landslide identification and deformation monitoring33,34. 

In this study, InSAR Stacking technology was used to identify landslides. The CNN and 
DNN models were used to evaluate the landslide susceptibility of the Ya’an-Linzhi section of the 
Sichuan-Tibet Railway. This study proposes: (1) applying the landslides identified by InSAR 
Stacking technology in the assessment of landslide susceptibility; (2) using deep learning to 
evaluate the landslide susceptibility of the Ya’an-Linzhi section of the Sichuan-Tibet Railway and 
compare the prediction performance of the CNN and the DNN models; (3) provide new ideas and 
valuable information for landslide related research, and provide the government with better use of 



land resources in order to achieve economic development. 

Study Area 

This study area is identified by the 25 km buffer of the Ya’an-Linzhi section of the Sichuan-Tibet 
Railway. The area is 50957 km2, which is about 1011 km long (Fig. 1). This area is primarily 
affected by the warm and humid air currents of the Pacific and Indian Oceans. The regional 
differentiation of climate along the route is extremely apparent. Along the line, it transitions from 
the mid-subtropical climate zone in the Sichuan Basin to the plateau sub-temperate 
humid-sub-temperature-humid zone and the plateau temperate sub-humid-sub-arid zone. The 
annual average temperature and annual rainfall decrease from east to west as the altitude increases. 
The vertical zoning characteristics of the climate zone of the Qinghai-Tibet Plateau are obvious, 
with significant temperature differences between winter and summer, day and night, and strong 
freeze-thaw weather. 

 

Fig. 1 General situation of the study area and landslide distribution. 

(a) geographic location, (b) geological background. 

The topography and geomorphology along the Sichuan-Tibet Railway are complex and 
highly variable. It passes through 5 geomorphological units, namely the Sichuan Basin, West 
Sichuan Alpine Canyon, West Sichuan High Mountain Plain, Hengduan Mountains in Southeast 
Tibet, and Southern Tibet. The railway traverses the Hengduan, Nyainqentanglha, and Himalayan 
Mountains, as well as other mountains, across the Dadu, Jinsha, Nu, and Yarlung Zangbo Rivers. 
Active faults and strong earthquakes along the line are frequent, such as the Longmenshan, 
Xianshuihe, Jinshajiang, Lancangjiang, and Nujiang fault zones. The active fault zone controls 
this area’s topography and geomorphology and plays an essential role in controlling the 
distribution of earthquakes. The formations along the route are diverse and are controlled by 
geological structures. Except for the Cambrian, it is distributed from the Quaternary to the Sinian. 



The main lithologies are sedimentary and metamorphic rocks dominated by sandstone, slate, and 
phyllite, dominated by granite, and soluble rock dominated by limestone. 

Results 

Selection of landslide influencing factors 

The Pearson correlation coefficient method was used to analyze the correlation of 18 
landslide influencing factors in the study area, and the results are shown in Table 1. It can be 
observed that the correlation coefficient between the factor SCD and TSC is 0.94, the correlation 
coefficient between the factor TRI and slope is 0.92, and the correlation coefficient is greater than 
0.7l; thus, there is a high correlation between the factors. Therefore, the SCD and TRI were 
removed from the initial factors to improve the data quality, and the remaining 16 factors with less 
correlation were evaluated for landslide susceptibility in the study area. 

Using the information gain method to predict the contribution weight of 16 factors on 
landslide occurrence, the factors with higher weights are more significant to the prediction 
methods. In contrast, factors with weights of zero cannot contribute to the landslide susceptibility 
model and should be excluded from further analysis. Fig. 2 demonstrates the factor weight of each 
factor determined by the information gain. Based on these results, the AM values of all sixteen 
factors were greater than zero, implying that these factors contributed to the landslide 
susceptibility modeling in our study area. The slope factor has the highest AM value of 0.242, 
indicating that it is the dominant factor to induce landslide occurrence. Secondly, the AM values 
of elevation, rainfall, and topographic relief are between 0.1 and 0.2, which influence the landslide. 
The remaining AM values are between 0 and 0.1, indicating that they have little contribution to the 
occurrence of the landslide.



Table 1 Pearson correlation coefficient results. (Elevation (Ele); Slope (Slo); Aspect (Asp); Plan curvature (Pla); Profile curvature (Pro); Lithology (Lit); Distance to 
faults (Fau); Land use (Lan); NDVI (NDV); Average annual rainfall (Rai); Distance to rivers (Riv); distance to roads (Roa). 

Factors Ele Slo Asp Pla Pro TSC SCD TRI TWI SPI STI Lit Fau Lan NDV Rai Riv Roa 

Ele 1.00 
                 

Slo -0.05 1.00 
                

Asp -0.02 -0.04 1.00 
               

Pla 0.05 0.08 -0.10 1.00 
              

Pro -0.07 0.02 0.07 -0.50 1.00 
             

TSC -0.10 0.69 0.03 0.03 0.02 1.00 
            

SCD -0.03 0.68 0.02 0.03 -0.02 0.94 1.00 
           

TRI -0.08 0.92 -0.04 0.08 0.05 0.64 0.62 1.00 
          

TWI 0.07 -0.49 -0.12 0.03 -0.02 -0.31 -0.31 -0.40 1.00 
         

SPI -0.03 0.48 0.03 -0.13 0.18 0.39 0.36 0.43 -0.16 1.00 
        

STI -0.07 0.57 0.03 -0.11 0.17 0.49 0.45 0.52 -0.19 0.64 1.00 
       

Lit 0.00 -0.05 -0.01 0.03 -0.05 -0.02 -0.04 0.01 0.10 -0.04 -0.01 1.00 
      

Fau 0.07 -0.10 -0.01 0.02 -0.06 -0.12 -0.10 -0.10 0.07 -0.03 -0.04 0.04 1.00 
     

Lan 0.37 0.07 -0.03 0.09 -0.02 0.11 0.10 0.09 -0.01 -0.01 0.02 0.15 0.02 1.00 
    

NDV -0.44 -0.01 -0.03 -0.02 0.01 -0.08 -0.09 -0.03 -0.17 -0.01 -0.01 -0.06 -0.03 -0.34 1.00 
   

Rai -0.32 0.00 -0.02 -0.08 0.01 0.04 0.06 -0.01 -0.02 -0.03 -0.02 0.10 0.13 -0.09 0.04 1.00 
  

Riv 0.29 -0.01 -0.02 0.02 -0.08 0.00 0.08 -0.05 -0.01 -0.01 -0.04 -0.06 0.07 0.02 -0.11 0.15 1.00 
 

Roa 0.40 0.10 0.02 -0.04 0.03 0.14 0.20 0.03 -0.06 0.07 0.07 -0.09 0.08 0.16 -0.22 0.09 0.32 1.00 



 

Fig. 2 Average merit (AM) of each landslide influencing factor. 

Analysis of landslide influencing factors 

The relationship between landslide occurrence and related influencing factors obtained by the FR 
model is shown in Fig. 3. If the FR value > 1, the corresponding area is more prone to landslide 
occurrences35,36. In the case of elevation, the highest FR of 1.57 is in the class of 4500-5500 m, 
indicating a high probability of landslide occurrence. For slope, the FR value between 20 and 40 is 
greater than 1, which positively affects the occurrence of landslides. For reference, the FR value of 
the east, north, and northeast classes is greater than 1, and the other slope directions are less than 1. 
The relationship between plan curvature and landslides demonstrates that the highest FR of 1.57 is 
in the class of > 1, followed by the class of 0.5-1 with an FR of 1.32. For profile curvature, the 
highest FR of 1.21 is in the class of 0.3-0.7. In the case of TSC, the FR value between 200-400 is 
greater than 1, promoting landslide occurrences. The relationship between landslide occurrence 
and TWI showed that the < 6 and > 12 classes have the highest and lowest FR values of 1.45 and 
0.15. For the SPI factor, the FR value greater than 90 is greater than 1, and the value of 0-90 is less 
than 1. For STI, the highest and lowest landslide occurrence probabilities can be reached in the 
classes of 45-60 and < 15, respectively. In the case of lithology, the groups B and F are more prone 
to high landslide susceptibility. For distance to faults, the highest FR value of 1.41 is in the class 
of 3000-4000 m. For land use, the class of grassland and bare land are more prone to higher 
susceptibility of landslide occurrence. In the case of NDVI, the FR value between 0 and 0.1 is 
greater than 1, which has a positive effect on the occurrence of landslides. The relationship 
between rainfall and landslides demonstrates the highest FR of 1.91 and is in the 800-1000 mm 
class, followed by the class of 600-800 mm with an FR of 1.31. In the case of distance to rivers, 
the FR becomes smaller as the distance increases. For distance to roads, the < 500 and >2000 
classes have the highest FR values of 1.0 and 1.06. 



 

Fig. 3 Frequency ratio chart of the combination factors. 

 

Evaluation of landslide susceptibility 

In this study, a CNN model was constructed based on the TensorFlow framework of Python for 
landslide susceptibility evaluation. Input the selected sample data set into the constructed CNN 
model for training, select the mean square error (MSE) as the loss function to measure the 
difference between the output value of the model and the true dependent variable value, and use 



AdamOptimizer as the optimizer. After approximately 1300 epochs, the CNN model converged, as 
illustrated in Fig. 4. Finally, the landslide susceptibility map was generated by the trained CNN 
model; based on the visual and easy interpretation and comparison of the areas, the susceptibility 
was classified into five categories: 10%, 10%, 10%, 20%, and 50% (from high to low), 
corresponding to very high, high, middle, low, and very low susceptibility regions, respectively 
(Pradhan and Lee 2010; Sun et al. 2020). Fig. 5 shows the landslide susceptibility map of 
Ya’an-Linzhi Section of the Sichuan-Tibet Railway, showing that the high susceptibility areas are 
primarily distributed in the Jinsha, Lancang, and Nujiang River Basins along the railway, which 
conforms with the distribution law of historical landslides. 

 

Fig. 4 The variation of MSE values during the training process. 

 

Fig. 5 Landslide susceptibility map generated by CNN model. 

The DNN-based approach was implemented using the Python package Keras with 
Tensorflow as the backend. Similarly, input the training sample data set into the constructed DNN 
model for training, select the mean square error (MSE) as the loss function, Relu as the activation 
function, and RMSProp as the optimizer. After approximately 45 epochs, the DNN model 
converged, as illustrated in Fig. 4. Input 16 factors into the trained DNN model for prediction and 
obtain the landslide susceptibility index in the study area; the susceptibility was classified into five 
categories: 10%, 10%, 10%, 20%, and 50%. Fig. 6 shows the landslide susceptibility map 
produced by the DNN model for the Ya’an-Linzhi Section of the Sichuan-Tibet Railway, overlaid 
with landslides. The distribution results of high and very high susceptibility areas are more 
consistent with those predicted by the CNN model. This indicates that the landslide susceptibility 
map matched well with the distribution of the actual historical landslides. 



 

Fig. 6 Landslide susceptibility map generated by DNN mode 

Model validation and comparison 

Evaluate the goodness-of-fit and the prediction performance of the two models, the results of the 
ROC curve are shown in Fig. 7, and the confusion matrix is shown in Table 2. It can be observed 
that the AUC of the training data of the CNN and DNN models are 0.99 and 0.98, respectively. 
The two deep learning models have a much better performance on the goodness-of-fit to the 
training data (success rate); the CNN model has the best performance (99%), followed by the 
DNN (98%). Using test data to verify the prediction performance of the two deep learning models, 
the AUC of the CNN and DNN models are 0.88 and 0.84, respectively. It can be observed that 
both models show higher predictive power; however the predictive power of the CNN model is 
higher than that of the DNN model. In addition, the ACC, recall, precision, and F1 of the 
confusion matrix are used to validate the test data of the two models. The results are shown in 
Table 3; these metrics ACC, recall, precision, and F1 of the CNN model were 84.68, 84.48, 84.39, 
and 84.64, respectively, while those of the DNN model was 79.48, 81.88, 75.72, and 78.68, 
respectively. All the metrics revealed that, although both models demonstrated reasonable 
goodness of fit, the CNN model performed better in terms of the training and test datasets. 
Therefore, the CNN model had a better prediction than the DNN model in this case. 

 

Fig. 7 ROC curves of the CNN (a) and the DNN (b) models. 

Table 2 Confusion matrix of the CNN and the DNN models 

Model\Parameters TP TN FP FN ACC (%) Recall (%) Precision (%) F1 

CNN 146 147 27 26 84.68 84.88 84.39 84.64 

DNN 131 144 42 29 79.48 81.88 75.72 78.68 

 



The two models were compared to the landslide density (number/km2) quantitative analysis 
based on the predicted landslide susceptibility zoning map and historical landslides. The results 
are shown in Table 3, it can be observed that in the landslide susceptibility maps generated by the 
two models, as the landslide susceptibility increases, the landslide density also increases, and the 
landslide density in extremely high-prone areas is the largest. The very high prone area (10%) of 
the CNN model is distributed with 204 historical landslides, which is 34.75% of the total number 
of landslides, while the DNN model distributed with 150 landslides (accounting for 25.55%), and 
57.41% of the landslides are distributed in the CNN model in very high and high prone areas, and 
only 48.21% in the DNN model. In addition, there are 70 landslides in the very low prone area 
(50%) of the CNN model and 80 landslides in the DNN model. I was found that the landslide 
distribution results of the CNN model are more reasonable than that of the DNN model when 
comparing the historical landslide distribution of the landslide susceptibility map of the two 
models. 

Table 3 Statistical results of landslide density of the CNN and the DNN models 

Model 
Landslide 

susceptible zones 

Area of zones  

(%) 

Number of  

landslides 

Landslides percentage 

(%) 

Landslide density 

(number/km2) 

CNN 

Very high 10 204 34.75 0.0400 

High 10 133 22.66 0.0261 

Middle 10 84 14.31 0.0165 

Low 20 96 16.35 0.0094 

Very low 50 70 11.93 0.0027 

DNN 

Very high 10 150 25.55 0.0294 

High 10 133 22.66 0.0261 

Middle 10 93 15.84 0.0183 

Low 20 131 22.32 0.0129 

Very low 50 80 13.63 0.0031 

Discussion 

Landslide susceptibility maps are essential for decision-makers to formulate reasonable policies 
and reduce the impact of landslides37. Therefore, it is of great significance to obtain high-quality 
landslide susceptibility maps. However, with insufficient data, these machine learning models 
often suffer from generalizing to areas other than the training area. Especially in landslide 
susceptibility mapping, gathering inventory data is expensive, and it is difficult to collect a 
complete list of landslides. In order to solve this problem, this paper uses InSAR Stacking 
technology to identify early landslide hazards in the Ya’an-Linzhi section of the Sichuan-Tibet 
Railway and uses the identified landslide and historical landslide data as modeling data to evaluate 
the landslide susceptibility. Zhao et al.38 used a combination of landslide data identified by InSAR 
Stacking technology and historical landslides to map landslide susceptibility. The study found that 
the optimized results of InSAR Stacking technology were more reliable than the results of only the 
historical landslides. The slopes deformation identified by the InSAR Stacking method is usually a 
precursor to the occurrence of landslides. In time series analysis, the slope deformation rate is an 
accelerating process. It usually indicates the occurrence of a landslide. Therefore, InSAR Stacking 
deformation monitoring results can provide an important basis for early identification and 
susceptibility evaluation of landslides and make the results of model predictions more reliable. 



The choice of prediction model has an important influence on the results of landslide 
susceptibility evaluation. Some scholars have conducted comparative studies on the application of 
deep learning and traditional machine learning in the evaluation of landslide susceptibility, and 
found that deep learning has higher predictive capabilities39-41. Therefore, this study uses CNN 
and DNN models to evaluate landslide susceptibility in the study area and compares the two 
models. Comparing the training and prediction accuracy of the two models using AUC and a 
confusion matrix, the results show that in this study area, the CNN model has a higher success and 
prediction rate than the DNN model, and the distribution of the landslide hazards in the 
susceptible areas results in a more reasonable CNN model. Although the two models have good 
predictive capabilities, the key parameter values of the two models are determined by trial and 
error; thus, the parameters determined by this method may not be the best model. Therefore, to 
compare the performance of the two models more accurately, it is necessary to conduct numerous 
research on the determination of the models’ parameters, and choose different research areas, that 
is, different geological environments and sample data for the comparative research. In the future, 
our research will further explore the application potential of deep learning techniques in the 
evaluation of landslide susceptibility. 

Conclusions 

In this study, two well-known deep learning algorithms, namely CNN and DNN based models, 
were applied to generate a landslide susceptibility map of the Ya’an-Linzhi section of the 
Sichuan-Tibet Railway, and simultaneously, combined with the application of InSAR Stacking 
technology to identify hidden danger points of landslides. A complete list of landslides improves 
the accuracy of landslide susceptibility evaluation. The results show that the two models have a 
higher success rate and prediction performance in this study area, but the CNN algorithm showed 
a 4% higher performance than DNN. According to the analysis of the landslide influencing factors 
in the study area, it was found that slope, elevation, and rainfall are the main influencing factors 
that affect the occurrence of landslides. High and very high landslide susceptibility were primarily 
distributed in the Jinsha, Lancang, and Nujiang River Basins along the railway, which can better 
reflect the distribution of landslide susceptibility in the study area, providing a scientific basis for 
the disaster prevention and mitigation work of the Ya’an-Linzhi section of the Sichuan-Tibet 
Railway. 

Methods 

There are four main stages using the CNN and DNN models for landslide susceptibility mapping: 
(1) the establishment of a spatial database, including InSAR Stacking technology and field survey 
to generate a list of landslides, as well as selecting the landslide impact factors; (2) assessing data 
accuracy and removing noisy data with null prediction power; (3) use CNN and DNN models to 
generate landslide susceptibility maps; (4) validation and comparison of the two models (Fig. 8). 



 

Fig. 8 Methodological flow chart of the study. 

Landslide inventory map 

Landslide inventory maps are prepared for multiple scopes, which is the first step toward 
modeling landslide susceptibility42,43. This study, combines the results of InSAR Stacking 
deformation44, using Google Earth satellite images and field surveys to prepare a landslide 
inventory map (Fig. 1). Consequently, a total of 587 landslides were identified in the inventory 
map. The area of landslides in the study area is 691 km2, and the largest and smallest landslides 
are 19688941 m2 and 1152 m2, respectively. The scale distribution of landslides is mainly small 
shallow surface landslides. Fig. 9 shows the hidden danger points of landslides near the Jinsha 
River Bridge identified by InSAR Stacking technology. 



 

Fig. 9 Hidden danger points of landslide identified by InSAR Stacking technology 

Using machine learning methods to model landslides is typical a binary classification45. 
Therefore, it is necessary to use positive samples (landslides) and negative samples 
(non-landslides) for modeling. Within the inventory map, 587 pixels of landslide occurrences have 
been extracted. In this study, in order to avoid the error rate of non-landslide selection, an equal 
number of non-landslide points were randomly selected out of landslide buffer area. The landslide 
and non-landslide samples were randomly selected 410 (70%) for model training, and the 
remaining 177 (30%) were used for model testing. 

Landslide influencing factors 

The causes of landslide occurrences are complex, and their mechanisms remain under debate. 
Generally, landslides result from a combination of internal geological conditions and external 
environmental factors46,47. Internal factors include topography, stratigraphic lithology, geological 
structure, and tectonic movement48. The external factors of landslides can be divided into human 
and natural factors. Natural factors include meteorological hydrology, hydrogeology, weathering, 
and new tectonic movements49. Human factors refer to human engineering activities, including 
constructing roads, buildings, factories, and mining of minerals. In general, the external factors are 
the inducing factors of landslide occurrence50,51. 

In this study, according to the data availability, geo-environmental conditions, as well as 
landslide occurrence mechanisms of the study area, eighteen landslide conditioning factors 
including elevation, slope, aspect, plan curvature, profile curvature, terrain surface convexity 
(TSC), terrain ruggedness index (TRI), surface cutting degree (SCD), topographic wetness index 
(TWI), stream power index (SPI), sediment transport index (STI), lithology, distance to faults, 
land use, normalized difference vegetation index (NDVI), rainfall, distance to rivers, and distance 
to roads (Fig. 10). Since the 18 factors are represented on different intervals or scales, all factors 
are converted into a grid with DEM resolution (30m×30m) for unification. Furthermore, all factor 
datasets can be divided into either continuous or discrete datasets. Continuous dataset of each 
factor was reclassified into discrete subclasses with data in specific intervals using a manual 



method; discrete datasets of the rest factors were classified using the original natural grouping. 
The detailed information of the classes of each landslide conditioning factor is shown in Table 4. 

 

Fig. 10 Landslide influencing factor maps. (a) Elevation, (b) Slope, (c) Aspect, (d) Plan curvature, 

(e) Profile curvature, (f) TSC, (g) TRI, (h) SCD, (i) TWI, (j) SPI, (k) STI, (l) Lithology, (m) 

Distance to faults, (n) Land use, (o) NDVI, (p) Average annual rainfall, (q) Distance to rivers, (r) 

Distance to roads 



Table 4 Influencing factors categories of landslides 

Factions Classification standard Type 

Altitude/m 
<1500; 1500-2500; 2500-3500; 3500-4500; 4500-5500; 
5500< 

Continuous 

Slope/° <10; 10-20; 20-30; 30-40; 40-50; 50< Continuous 

Aspect 
F (–1); N (0–22.5; 337.5–360); NE (22.5–67.5); E (67.5–
112.5); SE (112.5–157.5); S (157.5–202.5); SW (202.5–
247.5);W (247.5–292.5); NW (292.5–337.5) 

Categorical 

Plan curvature <-0.5; -0.5-0; 0-0.5; 0.5-1; 1< Continuous 

Profile curvature <-0.5; -0.5- -0. 1; -0.1- 0.3; 0.3-0.7; 0.7< Continuous 

TSC <200; 200-400; 400-600; 600-800; 800-1000; 1000< Continuous 

TRI <1.1; 1.1-1.2; 1.2-1.3; 1.3-1.4; 1.4< Continuous 

SCD <100; 100-200; 200-300; 300-400; 400< Continuous 

TWI <6; 6-8; 8-10; 10-12; 12< Continuous 

SPI <30; 30-60; 60-90; 90-120; 120< Continuous 

STI <15; 15-30; 30-45; 45-60; 60< Continuous 

Lithology A; B; C; D; E; F; G; H Categorical 
Distance to faults <1000; 1000-2000; 2000-3000; 3000-4000; 4000< Continuous 

Land use 
Arable land; Artificial land; Bare land; Glaciers and snow; 
Grassland; Shrubland; Water; Wetlands; Woodland 

Categorical 

NDVI <0; 0-0.05; 0.05-0.10; 0.10-0.15; 0.15< Continuous 

Average annual 
rainfall/mm 

<600; 600-800; 800-1000; 1000-1200; 1200< Continuous 

Distance to rivers /m <200, 200-400; 400-600; 600-800; 800< Categorical 
Distance to roads /m <500, 500-1000; 1000-1500; 1500-2000; 2000< Categorical 
 

Each factor has a different effect on the occurrence of landslides. Elevation has a significant 
impact on landslide development and determines the potential energy of the landslide; it also 
affects the movement characteristics of the landslides52. An increasing slope angle will cause the 
increasing size of the free face and shear strength on the potential slide surface, resulting in slope 
failure53. The slope aspect determines the illumination time received by the slope surface. There 
are differences in surface humidity, vegetation coverage, and different slope aspects, which affect 
the distribution of pore water pressure and the physical and mechanical characteristics of rock and 
soil masses54. Plan curvature affects convergence and divergence of flow. Profile curvature has 
great significance on the acceleration and deceleration of flow providing valuable information 
about erosion and deposition55,56. TSC describes the relief characteristics of the terrains surface57. 
TRI is a measure of the roughness and brokenness of the ground. The larger the roughness means 
the ground is broken, and the loose deposits are richer, which is conducive to the occurrence of a 
landslide58. SCD refers to the difference between the average and minimum value of the elevation 
of a point on the ground in a specific area, reflecting the degree to which the ground surface is 
cut59. TWI comprehensively analyzes the influence of topographical features on the spatial 
distribution of soil moisture60. SPI indicates the erosion power of streams which might affect 
landslide occurrences61. STI describes topographic variables of water and sediment transport in 
landslides52. Lithology is one of the basic factors affecting the occurrence of landslides62,63. 



According to the hardness and type of lithology, it is divided into the following eight groups, A 
(Harder sandstone, siltstone), B (Weaker gneiss, phyllite, mudstone), C (Soft and hard limestone 
interbedded with sandstone), D (Harder quartz sandstone, feldspar quartz sandstone), E (Hard 
basalt, ophiolite, syenite), F (Hard granite, diorite), G (Soft and hard silty slate, conglomerate 
sandstone), and H (Weak loose deposits). Faults have an important influence on the strength of the 
rock mass, the development of the terrain structure and the slope’s stability64. Land use influences 
slope stability by changing land use and disturbing the slope stability conditions65. NDVI 
represents vegetation coverage and groundwater content, which may affect the development of 
landslides66. Rainfall causes a large amount of rainwater to infiltrate, saturating the soil layer on 
the slope, increasing the weight of the sliding body, thus causing the occurrence of landslides67. 
When building roads, natural slopes must be excavated and repaired, which will inevitably 
interfere with the balanced conditions of the original slope, often leading to unstable slopes and 
landslides68. Distance to rivers is one of the conditioning factors that has an effective role in 
landslide stability. The wet saturated water of the river acting on the sliding area and part of the 
sliding body may reduce the shear strength of the soil and weaken the layers, thus, reducing the 
stability of the landslide69,70. 

Influencing factor evaluators 

Correlation analysis. When evaluating landslide susceptibility, it is essential that the influencing 
factors need to maintain mutual independence. If there appears to be a strong linear correlation in 
the aforementioned factors, then the predisposing factors are assumed to exist within a 
multicollinearity problem. The multicollinearity problem will affect the accuracy of the training 
model and may lead to errors in the prediction results71,72. In this paper, a Pearson correlation 
coefficient is used to analyze the correlation between the influencing factors. Its value ranges from 
-1 to 1. -1 means that the two variables are completely negatively correlated, 1 means that the two 
variables are completely positively correlated, and 0 means that they are not correlated. When the 
absolute value of the correlation coefficient between two factors is greater than 0.7, it is 
considered to have a high correlation73,74. 

Information gain. In this study, the feature selection method of information gain (IG) was used to 
select an optimal subset to improve the prediction performance in the evaluation of landslide 
susceptibility75. The information gain is determined by calculating the entropy reduction of the 
output category y to which the input factor xi corresponds. IG(y, xi) = E(y) − E(y|xi)          (1) 
where E(y|xi) is the conditional entropy and E(y) is a priori Shannon entropy, and they are 
calculated as follows: E(y) = −∑ yini=1 log2(yi)          (2) E(y|xi) = −∑ yiE(y)ni=1           (3) 

The average merit (AM) derived from this method uncovers the importance between 
conditioning factors and landslide occurrence. The greater the weight, the greater the contribution 
of the corresponding factors to the occurrence of landslides. If this value is less than or equal to 0, 
then this influencing factor has nothing to do with the occurrence of landslides and should be 
excluded when making predictions. 
Frequency ratio analysis 



The frequency ratio (FR) method can be employed to evaluate the correlation between 
landslide occurrence and influencing factors. In landslide susceptibility analysis, it is perceived 
that future landslides will occur under the same conditions as past landslides. The FR can be 
calculated as follows55: FR = N/N′A/A′          (4) 

where N is the number of each factor’s landslide; N′is the number of total landslides; A is the 
number of pixels in a particular class; and A′ is the number of total pixels. 

Landslide susceptibility models 

CNN. A CNN model exhibiting robust performance in visual image analysis is a class of 
feed-forward neural network whose artificial neurons respond to a portion of the surrounding 
elements76. The general CNN model structure includes an input layer, convolutional layers, 
maximum pooling, fully connected layers, and an output layer77, as shown in Fig. 11. The 
convolutional layer uses a sliding convolution window method to extract features from the input 
layer. The first convolutional layer usually extracts some low-level features, and more layers of 
the convolutional layers can iteratively extract higher-level features from low-level features. The 
output of the convolutional manipulation is defined as follows: Cj = ∑ f(wj ∗ vi + bj)Ni , j = 1,2,3… , k          (5) f(x) = tanh(x) = ex−e−xex+e−x          (6) 

where N is the number of factors affecting the landslide, f represents a nonlinear activation 
function and * denotes the convolutional operator, k is the number of convolutional kernels, and wj and bj denotes the weight and bias, respectively. 

 

Fig. 11 Convolutional neural network (CNN) structure. 

The pooling layer is used to realize the sample processing of the feature map, which can 
reduce the amount of data while retaining useful information, preventing over-fitting and 
improving the generalization ability of the model. Next, these local representations extracted by 
the convolutional and pooling operations are reorganized through the fully connected layers. 
Finally, the fully connected layer is connected to the output layer, which consists of two neurons 
representing landslide and non-landslide. The parameters in the CNN layer are optimized using 
the back-propagation algorithm. 

DNN. DNN is the basic algorithm of deep learning78. The general DNN model structure includes 
an input layer, several hidden layers, and an output layer. In this architecture, the neurons (nodes) 
in the previous layer are completely connected to all the neurons in the next dense layer. 
Afterward, more dense layers are added to extract hidden information in the learning process. Fig. 



12 presents the architecture of DNN. The basic processes of deep NN mechanisms are as follows: 
(1) the network correctly assigns inputs to their associated targets, (2) introduce a loss function to 
calculate the prediction and true target of the network, and (3) the training loop is repeated enough 
times to generate weights that minimize the loss function. 

 

Fig. 12 Deep neural network (DNN) structure 

In this study, the DNN model was applied to the evaluation of landslide susceptibility. The 
impact factor became the input signal received in the first layer and analyzed in the hidden layer. 
Finally, the prediction results are displayed in the output layer as landslide and non-landslide. The 
structure of the DNN model was determined through several trial and error methods, which 
consisted of a model of three hidden layers, including 16 neurons, two output neurons, and 3 
hidden layers of 64 neurons. 

Model evaluation methods 

In landslide susceptibility mapping, it is essential and necessary to validate the model’s 
performance. In this paper, the receiver operating characteristic curve (ROC) is used to evaluate 
the model’s training and prediction accuracy. The ROC curve is an indicator of the continuous 
variables of data specificity and sensitivity. The area under the ROC curve (AUC) represents the 
accuracy of the model; the closer the AUC is to 1, the better the model performance56,79. 
Simultaneously, a confusion matrix was used to evaluate the performance of the two models. 
Statistical indices including accuracy (ACC), recall, precision, and F-measure (F1) were acquired 
from the confusion matrix. The calculation is as follows: ACC = TP+TNTP+FP+TN+FN     (7) 

Recall = TPTP+FN     (8) 

Precision = TPTP+FP     (9) 

F1 = 2×TP2×TP+FP+FN     (10) 



Where TP (True Positive) and TN (True Negative) are the numbers of correctly classified 
landslides, FP (false positive) and FN (false negative) is the numbers of landslides incorrectly 
classified. For ACC, recall, precision, and F1, these values are between 0 and 1. With increasing 
numbers, the model’s performance improves. 
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