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Abstract

In this paper we present a comparative study of local

features for the task of person (re-)identification. A com-

bination of state-of-the-art interest point detectors and de-

scriptors is evaluated. The experiments are performed on a

novel dataset which we make publicly available for future

research in this area. The results indicate that there are sig-

nificant differences between the evaluated descriptors, with

GLOH and SIFT outperforming both Shape Context and

SURF descriptors. The evaluated interest point descrip-

tors perform equally well, with a slight advantage for the

Hessian-Laplace detector. The Harris-Affine and Hessian-

Affine affine invariant region detectors do not provide any

performance advantage and therefore do not justify their

additional computational expense.

1. Introduction

Person re-identification has attracted a lot of research at-

tention in recent years. For many applications it is not nec-

essary to actually uniquely identify a person, it suffices to

determine previous or future occurrences of the same person

in other images or image sequences. As such it can serve

as building block in person tracking for connecting tracks

over blind gaps between multiple cameras or occlusions, in

person retrieval to search for specific persons of interest in

multimedia data or surveillance footage, or for short-term

identification of persons surveillance camera network.

Since unique identification is not required for person

re-identification, it is prudent to take other than biometric

features into account, which often are unreliable in uncon-

trolled environments. Many recent approaches utilize the

whole-body appearance of a person based on the assump-

tion that it does not change significantly within a relevant

time-frame and thus is well suited for re-identification. In

fact, full body appearance is also very well exploited by hu-

mans [7]. For a recent overview over appearance-based per-

Figure 1: Responses from different interest point detec-

tors. From top left to bottom right: Harris, Harris-Laplace,

Hessian-Laplace, Harris-Affine, Hessian-Affine and Fast-

Hessian.

son re-identification approaches the reader is referred to [6].

We will focus here on person re-identification ap-

proaches based on local features [8, 10, 13] (in this paper,

we will use the term local features as synonym for local in-

terest points in combination with local descriptors). Local

features have shown to be able to successfully establish cor-

respondences between related images. Accordingly, they

have been utilized among others in image retrieval [20],

object recognition [15], pedestrian detection [22], person

tracking [12] and face recognition[4]. We will briefly re-

view some local feature-based approaches to person re-

identification in the following.

With a focus on real-time performance, Hamdoun et

al. [10] extract SURF features [2] from video frames in

intervals of 0.5 seconds. Features are matched efficiently

using kd-trees. A simple voting model is employed for

closed-set recognition. Gheissari et al. [8] use the Hessian

affine invariant interest point operator [16] to locate inter-

est points. The local region around an interest point is de-

scribed by an HSV-edgel descriptor. Two interest points be-

tween two images are matched if one is the nearest neighbor

of all interest points in the other’s image and vice versa. A

final validation step further prunes false correspondences.
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Jüngling et al. [13] build upon a SIFT-based person track-

ing approach [12, 15] for person re-identification in infrared

images. Instead of finding nearest neighbors of the features

directly, features are matched to visual words, which are

learned beforehand. Two person tracks are compared by in-

dividually comparing features that match to the same visual

word.

While all of the above approaches are basically indepen-

dent of the actual local feature type, in their implementa-

tion and evaluation they all focus on a single feature type.

However, previous evaluations of local features suggest that

not every local feature type is equally suitable for a given

task (e.g. [17, 18, 22]). The main aim of this paper is

to determine which features are most suited for person re-

identification. Our contributions are the following: (i) We

perform a comparative study of state-of-the-art local fea-

tures for open-set person re-identification. (ii) We propose a

simple approach to person re-identification using local fea-

tures, exploiting multiple connected frames from a person

tracker if available. (iii) We present a novel dataset for per-

son re-identification with properties unavailable in previous

datasets to further encourage research in this area.

2. Local Features for Person Re-Identification

For the evaluation, we use local features for person re-

identification in the following way: First, we detect interest

points in frames where a person is present (we assume that

we have a person tracker which provides us with a rough

bounding box around the person). We then compute fea-

tures for all interest points that lie within a persons bound-

ing box. A person model is trained from one or multiple

sample sequences. We model a person as a bag of features,

i.e. we collect the set of extracted features without any addi-

tional information about their spatial layout within the im-

age. For the identification of a new person, we match the

extracted features to all previously trained person models

and compute scores based on the distances of the features

to the models. If multiple frames from a person track are

available, we fuse the scores from the individual frames to

achieve a better identification.

We will now first introduce the evaluated interest point

detectors and descriptors, and then explain the training and

testing of the person models in more detail.

2.1. Local Interest Point Detectors

For the nomination of interest points, we evaluate six

state-of-the-art interest point detectors. Some example de-

tections are visualized in Figure 1.

Harris The Harris corner detector [11] detects image struc-

tures with a high cornerness such as corners and T-

junctions. Harris and Stephens define a cornerness measure

which is large if both eigenvalues of the second moment

matrix are simultaneously large, i.e. when there are strong

intensity changes in orthogonal directions at a given point.

Interest points are selected at local maxima of the corner-

ness function. Harris corners are invariant with respect to

translation and rotation but not to scale changes.

Harris-Laplace The Harris-Laplace detector [17] adds

scale invariance to the Harris detector. For this, a scale-

adapted second moment matrix is used, i.e. the local deriva-

tives are calculated at different coarse scale levels. Local

maxima of the Harris cornerness function (now based on

the scale-adapted second-moment matrix) nominate interest

point candidates. A characteristic scale is determined for

each interest point candidate by finding a local extremum

over scale of the Laplacian-of-Gaussian response at that

point. Candidates without a significant local extremum in

scale-space are discarded.

Hessian-Laplace interest points [17] are very similar to

Harris-Laplace interest points. However, the detection of

interest point candidates is based on the determinant of the

scale-adapted Hessian matrix, where a local maximum cor-

responds to a blob-like structure, i.e. a round or ellipse-

shaped intensity pattern.

Harris-Affine, Hessian-Affine The affine invariant ver-

sions of both Harris and Hessian detectors [16] aim at

achieving invariance with respect to arbitrary affine trans-

formations. After finding interest points at characteristic

scales, the shape of a characteristic elliptical affine region

around the interest point is determined in an iterative way.

This is done by repeatedly estimating the shape of the affine

region based on the second moment matrix, then transform-

ing the region to a circle, until conversion.

Fast-Hessian interest points [2] are based on an approx-

imate version of the Hessian matrix, efficiently calculated

from integral images without the need for a scale-space im-

age pyramid. The determinant of the approximate Hessian

is used for both interest point and characteristic scale selec-

tion by searching for local 3D maxima. The detected image

structures are similar to the ones detected by the Hessian-

Laplace detector. The detector is not affine invariant.

2.2. Local Descriptors

With the success of local features in computer vision, a

great number of local descriptors have been proposed. We

focus here on some of the most prominent ones.

SIFT The scale invariant feature transform (SIFT) descrip-

tor [15] is computed as a histogram of the gradient distri-

bution in the region around a detected interest point. The

gradient’s orientation is quantized to 8 orientation bins, its

location to one of 4 × 4 square regions, resulting in a 128-

dimensional descriptor. The descriptor is normalized in or-

der to obtain illumination invariance.

Shape Context (SC) is an edge-based descriptor. Edges



are computed using the Canny edge detector [5]. The de-

scriptor consists of a histogram over the edge points, taking

into account the location in 9 log-polar bins and edge ori-

entation in 4 bins. The resulting descriptor is an extended

version of the original Shape Context descriptor [3] and has

36 dimensions.

Gradient Location and Orientation Histogram (GLOH)

descriptors [18] combine ideas from both SIFT and shape

context. The descriptor is computed from gradients as in

SIFT, but the location binning is performed in a log-polar

manner similar to shape context. With 17 location bins

and 16 orientation bins the intermediate descriptor has 272

dimensions, which are reduced to 128 dimensions using

PCA.

Speeded-up Robust Features (SURF) descriptors [2] are

the accompanying descriptors to the fast-hessian interest

point detector. It is computed as sums of local intensity

differences within a 4 × 4 grid around the interest point.

These intensity differences are calculated as responses of

first-order Haar-Wavelets which can be computed very ef-

ficiently on arbitrary scales using integral images. For il-

lumination invariance the descriptor is normalized to unit

length.

2.3. Bag­of­Features Person Model

We model a person’s appearance using a bag-of-features

representation, i.e. we describe it as a collection of local

parts, ignoring their spatial (and for videos also their tem-

poral) structure. This simple model has first been used for

text retrieval, but also successfully been adapted to object

recognition (e.g. [23]) and person re-identification [8, 10].

We chose it for its simplicity and the ability to evaluate the

local features performance without any influence of a spa-

tial model such as in [13]. Of course it can be expected that

adding spatial information improves the overall results, but

this shall not be our focus here.

Given a set of training images for a number of persons,

we build one bag of features for each person by extracting

all local features covering the person in the training images.

The person’s location in the image is determined from la-

beled ground truth data. We use ground truth instead of

the output of a person tracker in order to be independent of

tracking failures in our evaluation.

The obtained person models allow us to find a test fea-

ture’s nearest neighbor with respect to each of the trained

persons separately. For a test image, we compute the dis-

tance of all features within the person’s bounding box to

each of the person models by summing up the distances of

all test features to their respective nearest neighbors in the

person models:

di(k) = di(Xk) =

|Xk|∑

j

d (xj ,NNi (xj)) , (1)

where Xk is the set of local features in test frame k, xj is

the j-th feature in Xk, and NNi (xj) is the nearest neighbor

of xj to any local feature in the model of person i. The

assumption behind this scoring method is that a local feature

from an unseen test image is more similar to a feature from

the same person (i.e. the distance to the nearest neighbor is

smallest) than to a feature from a different person.

Obviously, we need to find a lot of nearest neighbors in

large sets of local features. In order to make this compu-

tationally tractable, we approximate the nearest neighbor

search by using kd-trees which in our experiments speeds

up the search by one to two orders of magnitudes compared

to the naı̈ve brute-force linear scan method. We will show

that the speedup comes with basically no penalty in recog-

nition performance (cf. Figure 3).

2.4. Normalization and Temporal Fusion

In camera networks we usually acquire videos instead of

still images. A person tracker can therefore provide multi-

ple, temporally connected instances of a person as a track.

In order to determine the identity of a person using a

whole track of test frames, we first compute the model

distances for each of the track’s frames individually as

described in Section 2.3 and then perform sum-rule fu-

sion [14] over all track frames (Eq. 4). Since every frame’s

person bounding box can contain a different number of fea-

tures, it is not beneficial to combine the frame-based dis-

tances directly but to normalize them first (Eq. 2 and 3). In

detail, the person scores for a track are calculated from the

individual frame distances as follows:

1. Min-max-normalization of the model distances to the

interval [0, 1]. For each frame, the lowest model distance

for the frame min(di(k)) is mapped to 1, the highest dis-

tance max(di(i)) to 0, and all remaining distances linearly

between 1 and 0 according to

si(k) =
di(k)−min(di(k))

max(di(k))−min(di(k))
, (2)

where si(k) is the resulting raw frame score for person

i in frame k. Besides making distances between different

frames comparable, this also has the nice property of turn-

ing distances into scores in a parameter-less way.

2. L1-Normalization of the obtained scores, i.e. so that

their sum equals 1:

s∗i (k) =
si(k)∑
i si(k)

, (3)

3. The fusion is performed by averaging the normalized

scores over the whole track (sum-rule fusion):

s
seq
i =

1

N

N∑

k

s∗i (k) . (4)

The normalization by the length of the track N is neces-

sary for open-set recognition. Since the decision whether



Figure 2: Example frames of 30 of the 61 labeled persons

from our person re-identification dataset.

the person is known or unknown is based on whether the

best sequence score s
seq
i is higher or lower than a thresh-

old θ, shorter tracks would otherwise be biased towards the

unknown class.

3. Performance Evaluation

For the evaluation we use a subset of the publicly avail-

able CAVIAR dataset1. The dataset shows people walking

down a corridor in a Lisbon shopping center. The resolu-

tion of the 26 clips is 384× 288 pixels with a frame rate of

25 frames per second. We labeled the identities of 61 dif-

ferent persons and extracted 281 tracks using the provided

bounding box labels from the original dataset2.

Among the 61 persons are actually some who changed

clothes between different clips. We labeled those as two

different persons, since our goal is person identification

from full-body appearance under the assumption that peo-

ple do not change their clothes significantly between train-

ing and recognition. In order to obtain a larger number of

tracks per person, we divided in some cases one longer track

into multiple tracks of the same person with at least a 10

frame gap between the tracks. See Figure 2 for examples of

the extracted persons. This dataset overcomes some short-

comings of the few other publicly available datasets for per-

son re-identification since it contains videos instead of still

images (opposed to [9, 24]) and actually multiple, differ-

ent tracks of a large number of persons (as opposed to [21]

where there is only one track of each person).

For the computation of interest points and descriptors,

we use the implementations of Mikolajczyk3 and Bay et

al.4. For the approximate nearest neighbor search we use

the FLANN library [19]. The number of kd-trees in all ex-

periments conducted in this paper was set to 32 and training

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1.
2We will make our identity and track labels available for download at

http://cvhci.anthropomatik.kit.edu/projects/pri.
3http://www.robots.ox.ac.uk/˜vgg/research/affine/
4http://www.vision.ee.ethz.ch/˜surf/

precision to 0.95.

3.1. Baseline

In order to show that a local feature-based approach jus-

tifies the additional computational expense, we also com-

pare it to the performance obtained by describing a per-

son’s appearance by color histograms, which is by far the

most widely used method due to its simplicity, and robust-

ness against articulation changes, for example as appear-

ance model for person tracking [1].

For this baseline method, we compute RGB color his-

tograms from the bounding box region labeled in the data.

Each channel is divided in 8 bins, resulting in a 8× 8× 8 =
512 dimensional descriptor. From the color histograms we

similarly build bag-of-feature person models as described

in Section 2.3, i.e. each person model consists of the his-

tograms extracted from all frames in the training tracks.

3.2. Evaluation Criteria

We perform the evaluation on the task of open-set per-

son re-identification. An open-set classifier first needs to

decide whether a person has been seen in the training set

or is unknown. If a person is classified as known, we fur-

ther determine the identity among the trained persons. We

can evaluate the recognition performance in terms of False

Acceptance Rate (FAR), Correct Classification Rate (CCR)

and False Classification Rate (FCR), defined as

FAR =
#false acceptances

#unknown samples
=

∣

∣

{

C
(

x−1

k

)

= Si : i > 0
}∣

∣

|Xunknown|

CCR =
#correct classific.

#known samples
=

∣

∣

{

C
(

xi
k

)

= Si : i > 0
}∣

∣

|Xknown|

FCR =
#false classific.

#known samples
=

∣

∣

{

C
(

xi
k

)

6= Si : i > 0
}
∣

∣

|Xknown|
,

where we denote the sets of known and unknown test

sequences as

Xknown =
{

xi
k|i ∈ 1, . . . , n

}

,

Xunknown =
{

xi
k|i = −1

}

.

and our open-set classifier as a function

C (x) = Si, i ∈ {−1, 1, . . . , n}.

3.3. Temporal Fusion, Normalization and NN Ap­
proximation

In this section we will briefly discuss the influence of the

usage of videos over single frames, the normalization and

the effect of the nearest neighbour approximation. The re-

sults presented in this section are based on Hessian-Laplace

interest points (t = 200) in combination with the GLOH

descriptor.

The min-max-normalization in combination with the

subsequent L1-normalization provides a significant increase
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Figure 3: (top) Normalization and track-based recognition

(Frame/* denote single frame results, while Track/* denote

results after fusion.) (bottom) Recognition performance

comparison of exact Nearest Neighbor computation and ap-

proximate Nearest Neighbor computation.

in recognition performance for both frame- and track-based

identification (cf. Figure 3(top)). Track-based identification

with normalization outperforms the frame-based classifica-

tion significantly due to the additional robustness gained by

the fusion over time.

Using kd-trees instead of brute-force linear scan for near-

est neighbour search, we achieved a speed-up of one to two

orders of magnitude, resulting in an average classification

time per track of 1.75 seconds compared to 65.5 seconds

for the linear scan. The approximation does not have any

significant impact to the recognition performance (cf. Fig-

ure 3(bottom)).

3.4. Evaluation of Interest Point Detectors

We will now investigate the performance of the different

interest point detectors from Section 2.1. As descriptor we

use the GLOH descriptor (which we will show in the next

section is quite suitable for that task). We consistently used

a detection threshold of t = 200, yielding a good coverage

for all interest point types (cf. Figure 1).

Figure 4 shows the frame-based and track-based results

(both with normalization). While the frame-based results

indicate quite a clear advantage of the Hessian-Laplace in-

terest point detector, after track-level fusion there is no clear

outperformer. On track-level they perform equally well be-

tween around 60% and 70% correct classification rate at

equal error rate (EER). The slight underperformance of Har-

ris can be explained by the lack of scale invariance of the
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Figure 4: Comparison of frame-based (top) and track-based

detector performance (bottom) for different interest point

types.

Harris detector, since training and test images of a person

can be of largely different sizes when people are walking

along the corridor. This result is consistent with other ex-

periments which also showed a disadvantage of the Harris

detector in the presence of scale changes [17].

More surprising is the fact that the affine version of the

detectors cannot achieve a clear performance advantage.

One could have expected that an affine invariant detector

could better handle articulation variations of a walking per-

son. One reason could be that the variations are too irregular

to be found consistently by an affine invariant detector. The

low resolution of the images could also render the benefits

of an affine approximation of the transformation of a region

around an interest point useless. Their additional computa-

tional effort therefore cannot be justified.

3.5. Evaluation of Interest Point Descriptors

Since there was no clear advantage of any of the interest

point types, we performed the experiments for the descrip-

tor evaluation with the Hessian-Laplace detector. Figure 5

shows the results for both frame- and track-based recog-

nition with normalization. The gradient-based descriptors

GLOH and SIFT significantly outperform the other two de-

scriptors and both achieve a recognition performance of

around 70% CCR at EER. Their histogram binning seems

to be able to best cope with the non-rigid deformation of the

human body. The shape context descriptor also displays a

remarkable performance, given its low dimensionality com-

pared to SIFT and GLOH. The SURF descriptor achieves

only around 52% CCR at EER.
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Figure 5: Comparison of descriptor performance. Frame-

based (top) and track-based classification (bottom).

4. Conclusion

In this paper we have presented an evaluation of local

features for person re-identification. We found that none of

the tested state-of-the-art interest point detectors provides a

significant performance advantage. The Harris corner de-

tector performed slightly below average, due to its missing

scale invariance. Surprisingly, affine region detectors did

not outperform the scale invariant detectors, therefore their

additional computational requirements cannot be justified.

Within the set of tested interest point descriptors, GLOH

and SIFT outperformed SC and SURF, achieving around

70% CCR at EER.

The performance differences between different types of

descriptors underline the need for comparative studies as

we conducted in this paper. Despite recent advances, per-

son re-identification using local features remains challeng-

ing, which might in part be due to the fact that the current

descriptors describe mainly shape and texture. We will ex-

plore in future research if extending local features to color

can overcome some of the problems.
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