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Abstract

Local space-time features have recently become a popular video representation for
action recognition. Several methods for feature localization and description have been
proposed in the literature and promising recognition results were demonstrated for a
number of action classes. The comparison of existing methods, however, is often limited
given the different experimental settings used. The purpose of this paper is to evaluate
and compare previously proposed space-time features in a common experimental setup.
In particular, we consider four different feature detectors and six local feature descriptors
and use a standard bag-of-features SVM approach for action recognition. We investigate
the performance of these methods on a total of 25 action classes distributed over three
datasets with varying difficulty. Among interesting conclusions, we demonstrate that
regular sampling of space-time features consistently outperforms all tested space-time
interest point detectors for human actions in realistic settings. We also demonstrate a
consistent ranking for the majority of methods over different datasets and discuss their
advantages and limitations.

1 Introduction
Local image and video features have been shown successful for many recognition tasks such
as object and scene recognition [8, 17] as well as human action recognition [16, 24]. Local
space-time features capture characteristic shape and motion in video and provide relatively
independent representation of events with respect to their spatio-temporal shifts and scales
as well as background clutter and multiple motions in the scene. Such features are usually
extracted directly from video and therefore avoid possible failures of other pre-processing
methods such as motion segmentation and tracking.

Many different space-time feature detectors [6, 10, 14, 22, 26, 27] and descriptors [12,
15, 16, 25, 26] have been proposed in the past few years. Feature detectors usually select
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spatio-temporal locations and scales in video by maximizing specific saliency functions. The
detectors usually differ in the type and the sparsity of selected points. Feature descriptors
capture shape and motion in the neighborhoods of selected points using image measurements
such as spatial or spatio-temporal image gradients and optical flow.

While specific properties of detectors and descriptors have been advocated in the liter-
ature, their justification is often insufficient due to the limited and non-comparable exper-
imental evaluations used in current papers. For example, results are frequently presented
for different datasets such as the KTH dataset [6, 10, 12, 16, 24, 26, 27], the Weizmann
dataset [3, 25] or the aerobic actions dataset [22]. For the common KTH dataset [24], results
are often non-comparable due to the different experimental settings used. Furthermore, most
of the previous evaluations were reported for actions in controlled environments such as in
KTH and Weizmann datasets. It is therefore unclear how these methods generalize to action
recognition in realistic setups [16, 23].

Several evaluations of local space-time features have been reported in the past. Laptev [13]
evaluated the repeatability of space-time interest points as well as the associated accuracy of
action recognition under changes in spatial and temporal video resolution as well as un-
der camera motion. Similarly, Willems et al. [26] evaluated repeatability of detected features
under scale changes, in-plane rotations, video compression and camera motion. Local space-
time descriptors were evaluated in Laptev et al. [15], where the comparison included fami-
lies of higher-order derivatives (local jets), image gradients and optical flow. Dollár et al. [6]
compared local descriptors in terms of image brightness, gradient and optical flow. Scovan-
ner et al. [25] evaluated the 3D-SIFT descriptor and its two-dimensional variants. Jhuang et
al. [10] evaluated local descriptors in terms of the magnitude and orientation of space-time
gradients as well as optical flow. Kläser et al. [12] compared space-time HOG descriptor
with HOG and HOF descriptors [16]. Willems et al. [26] evaluated the extended SURF de-
scriptor. However, evaluations in these works were usually limited to a single detection or
description method as well as to a single dataset.

The current paper overcomes above-mentioned limitations and provides a fair compari-
son for a number of local space-time detectors and descriptors. We evaluate performance of
three space-time interest point detectors and six descriptors along with their combinations on
three datasets with varying degree of difficulty. Moreover, we compare with dense features
obtained by regular sampling of local space-time patches, as recently excellent results were
obtained by dense sampling in the context of object recognition [7, 11]. We, furthermore,
investigate the influence of spatial video resolution and shot boundaries on the performance.
We also compare methods in terms of their sparsity as well as the speed of available im-
plementations. All experiments are reported for the same bag-of-features SVM recognition
framework. Among interesting conclusions, we demonstrate that regular sampling consis-
tently outperforms all tested space-time detectors for human actions in realistic setups. We
also demonstrate a consistent ranking for the majority of methods across datasets.

The rest of the paper is organized as follows. In Section 2, we give a detailed presentation
of the local spatio-temporal features included in our comparison. Section 3 then presents the
experimental setup, i.e., the datasets and the bag-of-features approach used to evaluate the
results. Finally, Section 4 compares results obtained for different features and Section 5
concludes the paper with the discussion.
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2 Local spatio-temporal video features
This section describes local feature detectors and descriptors used in the following evalua-
tion. Methods were selected based on their use in the literature as well as the availability of
the implementation. In all cases we use the original implementation and parameter settings
provided by the authors.

2.1 Detectors

The Harris3D detector was proposed by Laptev and Lindeberg in [14], as a space-time ex-
tension of the Harris detector [9]. The authors compute a spatio-temporal second-moment
matrix at each video point µ(·; σ ,τ) = g(·; sσ ,sτ) ∗ (∇L(·; σ ,τ)(∇L(·; σ ,τ))T ) using in-
dependent spatial and temporal scale values σ ,τ , a separable Gaussian smoothing function
g, and space-time gradients ∇L. The final locations of space-time interest points are given
by local maxima of H = det(µ)− k trace3(µ), H > 0. The authors proposed an optional
mechanism for spatio-temporal scale selection. This is not used in our experiments, but we
use points extracted at multiple scales based on a regular sampling of the scale parameters
σ ,τ . This has shown to give promising results in [16]. We use the original implementa-
tion available on-line1 and standard parameter settings k = 0.0005, σ2 = 4,8,16,32,64,128,
τ2 = 2,4.

The Cuboid detector is based on temporal Gabor filters and was proposed by Dollár
et al. [6]. The response function has the form: R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2, where
g(x,y;σ) is the 2D spatial Gaussian smoothing kernel, and hev and hod are a quadrature
pair of 1D Gabor filters which are applied temporally. The Gabor filters are defined by
hev(t;τ,ω) =−cos(2πtω)e−t2/τ2

and hod(t;τ,ω) =−sin(2πtω)e−t2/τ2
with ω = 4/τ . The

two parameters σ and τ of the response function R correspond roughly to the spatial and
temporal scale of the detector. Interest points are the local maxima of the response function
R. We use the code from the authors’ website2 and detect features using standard scale values
σ = 2,τ = 4.

The Hessian detector was proposed by Willems et al. [26] as a spatio-temporal extension
of the Hessian saliency measure used in [2, 18] for blob detection in images. The detector
measures the saliency with the determinant of the 3D Hessian matrix. The position and scale
of the interest points are simultaneously localized without any iterative procedure. In order
to speed up the detector, the authors used approximative box-filter operations on an integral
video structure. Each octave is divided into 5 scales, with a ratio between subsequent scales
in the range 1.2−1.5 for the inner 3 scales. The determinant of the Hessian is computed over
several octaves of both the spatial and temporal scales. A non-maximum suppression algo-
rithm selects joint extrema over space, time and scales: (x,y, t,σ ,τ). We use the executables
from the authors’ website3 and employ the default parameter setting.

Dense sampling extracts video blocks at regular positions and scales in space and time.
There are 5 dimensions to sample from: (x, y, t, σ , τ), where σ and τ are the spatial and
temporal scale, respectively. In our experiments, the minimum size of a 3D patch is 18×18
pixels and 10 frames. (In Section 4.4, we evaluate different spatial patch sizes for dense
sampling.) Spatial and temporal sampling are done with 50% overlap. Multi-scale patches

1http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
2http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
3http://homes.psat.kuleuven.be/~gwillems/research/Hes-STIP/

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://homes.psat.kuleuven.be/~gwillems/research/Hes-STIP/
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are obtained by multiplying σ and τ by a factor of
√

2 for consecutive scales. In total, we
use 8 spatial and 2 temporal scales since we consider the spatial scale to be more important
than the time scale. We consider all combinations of spatial and temporal scales, i.e., we
sample a video 16 times with different σ and τ parameters.

2.2 Descriptors

For each given sample point (x,y, t,σ ,τ), a feature descriptor is computed for a 3D video
patch centered at (x,y, t). Its spatial size ∆x(σ),∆y(σ) is a function of σ and its temporal
length ∆t(τ) a function of τ . Dollár et al. [6] proposed the Cuboid descriptor along with the
Cuboid detector. The size for the descriptor is given with ∆x(σ) = ∆y(σ) = 2 · ceil(3σ)+1
and ∆t(τ) = 2 · ceil(3τ) + 1. We follow the authors’ setup and concatenate the gradients
computed for each pixel in the patch into a single vector. Then, principal component analysis
(PCA) is used to project the feature vector to a lower dimensional space. We download the
code from the authors’ website2 and use the default settings (e.g., the size of descriptor after
PCA projection is 100). The PCA basis is computed on the training samples.

The HOG/HOF descriptors were introduced by Laptev et al. in [16]. To characterize
local motion and appearance, the authors compute histograms of spatial gradient and optic
flow accumulated in space-time neighborhoods of detected interest points. For the combi-
nation of HOG/HOF descriptors with interest point detectors, the descriptor size is defined
by ∆x(σ) = ∆y(σ) = 18σ ,∆t(τ) = 8τ . Each volume is subdivided into a nx×ny×nt grid of
cells; for each cell, 4-bin histograms of gradient orientations (HOG) and 5-bin histograms of
optic flow (HOF) are computed. Normalized histograms are concatenated into HOG, HOF
as well as HOG/HOF descriptor vectors and are similar in spirit to the well known SIFT
descriptor. In our evaluation we used the grid parameters nx,ny = 3, nt = 2 as suggested by
the authors. We noticed low dependency of results for different choices of the scale factor
for σ ,τ in general. We use the original implementation available on-line1. When comput-
ing HOG/HOF descriptors for Hessian detectors, we optimized the mappings σ = ασh and
τ = βτh w.r.t. α,β for HOG/HOF scale parameters σ ,τ and the scale parameters σh,τh re-
turned by the Hessian detector. For the Cuboid detector (computed at low space-time scale
values) we fixed the scales of HOG/HOF descriptors to σ2 = 4 and τ2 = 2.

The HOG3D descriptor was proposed by Kläser et al. [12]. It is based on histograms
of 3D gradient orientations and can be seen as an extension of the popular SIFT descrip-
tor [20] to video sequences. Gradients are computed using an integral video representation.
Regular polyhedrons are used to uniformly quantize the orientation of spatio-temporal gra-
dients. The descriptor, therefore, combines shape and motion information at the same time.
A given 3D patch is divided into nx × ny × nt cells. The corresponding descriptor concate-
nates gradient histograms of all cells and is then normalized. We use the executable from
the authors’ website4 and apply their recommended parametric settings for all feature detec-
tors: descriptor size ∆x(σ) = ∆y(σ) = 8σ ,∆t(τ) = 6τ , number of spatial and temporal cells
nx = ny = 4,nt = 3, and icosahedron as polyhedron type for quantizing orientations.

Willems et al. [26] proposed the extended SURF (ESURF) descriptor which extends
the image SURF descriptor [1] to videos. Like for previous descriptors, the authors divide
3D patches into nx × ny × nt cells, The size of the 3D patch is given by ∆x(σ) = ∆y(σ) =
3σ ,∆t(τ) = 3τ . For the feature descriptor, each cell is represented by a vector of weighted

4http://lear.inrialpes.fr/software

http://lear.inrialpes.fr/software
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Walking Jogging Running Boxing Waving Clapping

Diving Kicking Walking Skateboarding High-Bar-Swinging

AnswerPhone GetOutCar HandShake HugPerson Kiss

Figure 1: Sample frames from video sequences of KTH (top), UCF Sports (middle), and
Hollywood2 (bottom) human action datasets.

sums v = (∑dx,∑dy,∑dt) of uniformly sampled responses of the Haar-wavelets dx, dy, dt
along the three axes. We use the executables from the authors’ website3 with the default
parameters defined in the executable.

3 Experimental setup
In this section we describe the datasets used for the evaluation as well as the evaluation
protocol. We evaluate the features in a bag-of-features based action classification task and
employ the evaluation measures proposed by the authors of the datasets.

3.1 Datasets
We carry out our experiments on three different action datasets which we obtained from the
authors’ websites. The KTH actions dataset [24]5 consists of six human action classes:
walking, jogging, running, boxing, waving, and clapping (cf. Figure 1, top). Each action
class is performed several times by 25 subjects. The sequences were recorded in four dif-
ferent scenarios: outdoors, outdoors with scale variation, outdoors with different clothes and
indoors. The background is homogeneous and static in most sequences. In total, the data
consists of 2391 video samples. We follow the original experimental setup of the authors,
i.e., divide the samples into test set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22) and training set
(the remaining 16 subjects). As in the initial paper [24], we train and evaluate a multi-class
classifier and report average accuracy over all classes as performance measure.

The UCF sport actions dataset [23]6 contains ten different types of human actions:
swinging (on the pommel horse and on the floor), diving, kicking (a ball), weight-lifting,
horse-riding, running, skateboarding, swinging (at the high bar), golf swinging and walking
(cf. Figure 1, middle). The dataset consists of 150 video samples which show a large intra-
class variability. To increase the amount of data samples, we extend the dataset by adding

5Available at http://www.nada.kth.se/cvap/actions/
6Available at http://www.cs.ucf.edu/vision/public_html/

http://www.nada.kth.se/cvap/actions/
http://www.cs.ucf.edu/vision/public_html/
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a horizontally flipped version of each sequence to the dataset. Similar to the KTH actions
dataset, we train a multi-class classifier and report the average accuracy over all classes.
We use a leave-one-out setup and test on each original sequence while training on all other
sequences together with their flipped versions (i.e., the flipped version of the tested sequence
is removed from the training set).

The Hollywood2 actions dataset [21]7 has been collected from 69 different Hollywood
movies. There are 12 action classes: answering the phone, driving car, eating, fighting,
getting out of the car, hand shaking, hugging, kissing, running, sitting down, sitting up, and
standing up (see Figure 1, bottom). In our experiments, we used the clean training dataset
(the authors also provide an automatic, noisy dataset). In total, there are 1707 action samples
divided into a training set (823 sequences) and a test set (884 sequences). Train and test
sequences are obtained from different movies. The performance is evaluated as suggested
in [21], i.e., by computing the average precision (AP) for each of the action classes and
reporting the mean AP over all classes (mAP).

3.2 Evaluation framework
A video sequence is represented as a bag of local spatio-temporal features [24]. Spatio-
temporal features are first quantized into visual words and a video is then represented as the
frequency histogram over the visual words. In our experiments, vocabularies are constructed
with k-means clustering. We set the number of visual words V to 4000 which has shown
to empirically give good results for a wide range of datasets. To limit the complexity, we
cluster a subset of 100,000 randomly selected training features. To increase precision, we
initialize k-means 8 times and keep the result with the lowest error. Features are assigned to
their closest vocabulary word using Euclidean distance. The resulting histograms of visual
word occurrences are used as video sequence representations.

For classification, we use a non-linear support vector machine [5] with a χ2-kernel [16]

K(Hi,H j) = exp(− 1
2A

V

∑
n=1

(hin−h jn)2

hin +h jn
) , (1)

where Hi = {hin} and H j = {h jn} are the frequency histograms of word occurrences and V is
the vocabulary size. A is the mean value of distances between all training samples [28]. For
multi-class classification, we apply the one-against-rest approach and select the class with
the highest score.

4 Experimental results
This section presents experimental results for various detector/descriptor combinations. Re-
sults are presented for the different datasets in Sections 4.1-4.3. Section 4.4 evaluates differ-
ent parameters for dense sampling. The computational complexity of the tested methods is
evaluated in Section 4.5

Due to high memory requirements of some descriptor/detector code, we subsample orig-
inal UCF and Hollywood2 sequences to half spatial resolution in all our experiments. This
enables us to compare all methods on the same data. We evaluate the effect of subsampling
for the Hollywood2 data set in Section 4.3. The ESURF and Cuboid descriptors are not

7Available at http://www.irisa.fr/vista/Equipe/People/Laptev/download.html

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
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HOG3D HOG/HOF HOG HOF Cuboids ESURF
Harris3D 89.0% 91.8% 80.9% 92.1% – –
Cuboids 90.0% 88.7% 82.3% 88.2% 89.1% –
Hessian 84.6% 88.7% 77.7% 88.6% – 81.4%
Dense 85.3% 86.1% 79.0% 88.0% – –

Table 1: Average accuracy for various detector/descriptor combinations on the KTH dataset.

HOG3D HOG/HOF HOG HOF Cuboids ESURF
Harris3D 79.7% 78.1% 71.4% 75.4% – –
Cuboids 82.9% 77.7% 72.7% 76.7% 76.6% –
Hessian 79.0% 79.3% 66.0% 75.3% – 77.3%
Dense 85.6% 81.6% 77.4% 82.6% – –

Table 2: Average accuracy for various detector/descriptor combinations on the UCF dataset.

evaluated for other detectors than those used in original papers. Unfortunately, separate im-
plementations of these descriptors were not available. Note that due to random initialization
of k-means used for codebook generation, we observed a standard deviation of approxi-
mately 0.5% in our experiments.

4.1 KTH actions dataset
KTH actions [24]5 is to date the most common dataset in evaluations of action recognition.
Among recently reported results, Laptev et al. [16] obtain 91.8% using a combination of
HOG and HOF descriptors, while Kläser et al. [12] get 91.4% with the HOG3D descriptor.
Both methods use the Harris3D detector and follow the original experimental setup of [24].
Adopting the Cuboid detector, Liu and Shah [19] report 94.2%, and Bregonzio et al. [4]
obtain 93.2% with a 2D Gabor filter based detector. Note, however, that these results were
obtained for a simpler Leave-One-Out Cross-Validation setting and are not directly compa-
rable to results in this paper.

Our results for different combinations of detectors and descriptors evaluated on KTH
are presented in Table 1. The best results are obtained for Harris3D + HOF (92.1%) and
HOG/HOF (91.8%). These results are comparable to 91.8% reported in [16] for Harris3D +
HOG/HOF. For Harris3D + HOG3D, we only reach 89.0%, about 2.5% lower than the orig-
inal result in [12]. This could be explained by the different strategy of codebook generation
(random sampling) used in [12]. For the Cuboid detector, the best result 90.0% is obtained
with the HOG3D descriptor. The performance of Hessian and Dense detectors are below
Harris3D and Cuboids. The low performance of dense sampling on KTH may be explained
by the large number of features corresponding to the static background. When comparing
performance of different descriptors, we note that HOG/HOF and HOF give best results in
combination with Harris3D, Hessian and Dense features.

4.2 UCF sports dataset
The results for different combinations of detectors and descriptors evaluated on UCF sport
actions are illustrated in Table 2. The best result 85.6% over different detectors is obtained
by the dense sampling. This can be explained by the fact that dense features capture different
types of motions. Furthermore, they also capture background which may provide useful
context information. Scene context indeed may be helpful for sports actions which often
involve specific equipment and scene types as illustrated in Figure 1. The second-best result
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HOG3D HOG/HOF HOG HOF Cuboids ESURF
Harris3D 43.7% 45.2% 32.8% 43.3% – –
Cuboids 45.7% 46.2% 39.4% 42.9% 45.0% –
Hessian 41.3% 46.0% 36.2% 43.0% – 38.2%
Dense 45.3% 47.4% 39.4% 45.5% – –

Table 3: Mean AP for various detector/descriptor combinations on the Hollywood2 dataset.

HOG3D HOG/HOF HOG HOF
reference 43.7% 45.2% 32.8% 43.3%
w/o shot boundary features 43.6% 45.7% 35.3% 43.4%
full resolution videos 45.8% 47.6% 39.7% 43.9%

Table 4: Comparison of the Harris3D dector on (top) videos with half spatial resolution,
(middle) with removed shot boundary features, and (bottom) on the full resolution videos.

82.9% is obtained for the Cuboid detector. Also above 80% are dense points in combination
with HOG/HOF and HOF. Harris3D and Hessian detectors perform similar at the level of
80%. Among different descriptors, HOG3D provides best results for all detectors except
Hessian. HOG/HOF gives second-best result for UCF. The authors of the original paper [23]
report 69.2% for UCF. Their result, however, does not correspond to the version of UCF
dataset available on-line6 used in our evaluation.

4.3 Hollywood2 dataset
Finally, evaluation results for Hollywood2 actions are presented in Table 3. As for the UCF
dataset, the best result 47.4% is obtained for dense sampling while interest point detectors
demonstrate similar and slightly lower performance. We assume dense sampling again ben-
efits from a more complete description of motions and the rich context information. Among
different descriptors, HOG/HOF performs best. Unlike in results for KTH actions, here the
combination of HOF and HOG improves HOF with about 2 percent. The HOG3D descriptor
performs similar to HOF.

Shot boundary features. Since action samples in Hollywood2 are collected from movies,
they contain many shot boundaries, which cause many artificial interest points. To investi-
gate the influence of shot boundaries on recognition results, we compare in Table 4 the
performance of the Harris3D detector with and without shot boundary features. Results for
HOG/HOF and HOG demonstrate 0.5% and 2% improvement respectively when removing
shot boundary features while the change in performance for other descriptors is minor. We
conclude that shot boundary features do not influence our evaluation significantly.

Influence of subsampling. We also investigate the influence of reduced spatial resolu-
tion adopted in our Hollywood2 experiments. In Table 4 recognition results are reported for
videos with full and half spatial resolution using the Harris3D detector. The performance is
consistently and significantly increased for all tested descriptors for the case of full spatial
resolution. Note that for full resolution, we obtain approximately 3 times more features per
sequence than for half resolution.

4.4 Dense sampling parameters
Given the best results obtained with dense sampling, we further investigate the performance
as a function of different minimal spatial sizes of dense descriptors (cf. Table 5). As before,
further spatial scales are sampled with a scale factor of

√
2. As in Sections 4.2 and 4.3, we
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Spatial Hollywood2 UCF
Size HOG3D HOG/HOF HOG HOF HOG3D HOG/HOF HOG HOF

18×18 45.3% 47.4% 39.4% 45.5% 85.6% 81.6% 77.4% 82.6%
24×24 45.1% 47.7% 39.4% 45.8% 82.0% 81.4% 76.8% 84.0%
36×36 44.8% 47.3% 36.8% 45.6% 78.6% 79.1% 76.5% 82.4%
48×48 42.8% 46.5% 35.8% 45.5% 78.8% 78.6% 73.9% 79.0%
72×72 39.7% 45.2% 32.2% 43.0% 77.8% 78.8% 69.6% 78.4%

Table 5: Average accuracy for dense sampling with varying minimal spatial sizes on the
Hollywood2 and UCF sports dataset.

Harris3D + Hessian + Cuboid Detector + Dense + Dense +
HOG/HOF ESURF Descriptor HOG3D HOG/HOF

Frames/second 1.6 4.6 0.9 0.8 1.2
Features/frame 31 19 44 643 643

Table 6: Average speed and average number of generated features for different methods.

present results for Hollywood2 and UCF videos with half spatial resolution. We observed
no significant improvements for different temporal lengths, therefore we fixed the temporal
length to 10 frames. The overlapping rate for dense patches is set to 50%. We can see that
the performance increases with smaller spatial size, i.e., when we sample denser. However,
the performance saturates in general at a spatial size of 24×24 for Hollywood2 and 18×18
for UCF.

4.5 Computational complexity
Here we compare the tested detectors by their speed and the number of detected interest
points. The comparison was performed on a set of videos from Hollywood2 with spatial
resolution of 360× 288 pixels (half resolution) and about 8000 frames length in total. The
run-time estimates were obtained on a Dell Precision T3400 Dual core PC with 2.66 GHz
processors and 4GB RAM. Table 6 presents results for the three detectors and dense sampling
in terms of average number of frames per second and average number of features per frame.
Note that feature computation is included in the run time. Among the detectors, Cuboid ex-
tracts the densest features (44 features/frame) and it is the slowest one (0.9 frames/second).
Hessian extracts the sparsest features (19 features/frame) and is consequently the most effi-
cient (4.6 frames/second). As for the dense sampling, since there was no feature detection as
such, the overall computational time was mainly spent on the feature description. Obviously,
dense sampling extracts many more features than interest point detectors. Note that the time
of descriptor quantization was not taken into account in this evaluation.

5 Conclusion
Among the main conclusions, we note that dense sampling consistently outperforms all
tested interest point detectors in realistic video settings, but performs worse on the simple
KTH dataset. This indicates both (a) the importance of using realistic experimental video
data as well as (b) the limitations of current interest point detectors. Note, however, that
dense sampling also produces a very large number of features (usually 15-20 times more
than feature detectors). This is more difficult to handle than the relatively sparse number
of interest points. We also note a rather similar performance of interest point detectors for
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each dataset. Across datasets, Harris 3D performs better on KTH dataset, while the Cuboid
detector gives better results for UCF and Hollywood2 datasets.

Among the tested descriptors, the combination of gradient based and optical flow based
descriptors seems to be a good choice. The combination of dense sampling with the HOG/HOF
descriptor provides best results for the most challenging Hollywood2 dataset. On the UCF
dataset, the HOG3D descriptor performs best in combination with dense sampling. This
motivates further investigations of optical flow based descriptors.

Acknowledgements. This work was partially funded by the European research project
CLASS, the MSR/INRIA joint project, and the QUAERO project.
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