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Mobile robot localization has attracted substantial consideration from the scientists during the last two decades. Mobile robot
localization is the basics of successful navigation in a mobile network. Localization plays a key role to attain a high accuracy in
mobile robot localization and robustness in vehicular localization. For this purpose, a mobile robot localization technique is
evaluated to accomplish a high accuracy. This paper provides the performance evaluation of three localization techniques
named Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF). In this work, three localization
techniques are proposed. The performance of these three localization techniques is evaluated and analyzed while considering
various aspects of localization. These aspects include localization coverage, time consumption, and velocity. The
abovementioned localization techniques present a good accuracy and sound performance compared to other techniques.

1. Introduction

Accurate localization is a very important aspect of several
wireless sensor networks (WSNs) and Internet of Things
(IoT) applications. These applications included underwater
navigation, indoor positioning, bridges monitoring, indus-
trial monitoring, health monitoring, and security systems
[1–4]. For the improvement of localization accuracy, a vari-
ety of localization techniques have been investigated in the
previous work. However, in this paper, the authors focused
on three basic localization techniques named Extended Kal-
man Filter (EKF-) based localization, Unscented Kalman Fil-
ter (UKF-) based localization, and Particle Filter (PF-) based
localization.

In the early period, Kalman Filter (KF) is used in an iter-
ative manner that considers the prior information of the
noise features to compensate for and to filter out the noise.
But still, the issues arise during localization when attempting
to model the noise that is only an approximation and does
not specify the noise real distribution [5–7]. KF is only appli-

cable for the linear stochastic procedures; however, for the
nonlinear procedures, the EKF can be applied. The supposi-
tion of these two methods (KF and EKF) is that noise and
process measurements are self-governing and with a normal
probability distribution [8].

The authors analyzed the pertinency of the KF to the
mobile robot self-positioning in [9–11]. These algorithms
are only appropriate for linear systems. On the other hand,
for robot self-positioning, EKF provides an alternative to
the Bayesian filter. Therefore, in [12], the author proposed
an EKF approach for the localization of four-wheel encoders
and laser range-finder nodes. EKF is basically used for the
nonlinear functions, which apply the Taylor series expansion
to linearize the measurement models. Thus, the first-order
nonlinear functions of the Taylor series is used. In the pre-
dictable statistics of the subsequent distributions, this linear-
ization often encourages higher error. This is particularly
obvious when the systems are vastly nonlinear, and it can
lead to the deviation in the filter. Besides, the UKF does not
estimate the nonlinear method, and the actual nonlinear
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model is applied to the observation models. UKF basically
estimate the distribution of random variables [13] by apply-
ing the scaled unscented alteration method. For the autono-
mous robot localization or Autonomous Underwater
Vehicles (AUV) localization, the EKF and UKF performance
is equated in [14]. The author concludes that the UKF perfor-
mance is better concerning numerous characteristics such as
average localization accuracy relative to the EKF. Besides
this, UKF does not involve applying the Jacobian matrix;
therefore, the UKF precision is higher.

The PFs have taken further consideration by the investi-
gators because of their advantages against the EKF and the
UKF [15]. PF can solve the issue of a measurement system
that is affected by the non-Gaussian noise and accomplish
the localization globally in the case in which there is no prior
knowledge about the target [16]. The PFs are easier in imple-
mentation as compared to the EKF, but also exist some disad-
vantages such as letdown due to sample penury and
substantial computational load. The letdown due to the sam-
ple penury occur more commonly and resultantly causes the
failure of the PF algorithm. To address this issue, various PFs
have been investigated such as Markov Chain Monte Carlo
(MCMC) move step and Regularized PF (RPF) [17]. The
proposed approaches cannot prevent it completely but can
mitigate the sample penury. If the conventional PF flops
because of the sample penury, it is unable to return to the
normal conditions. Furthermore, a Hybrid Particle/Finite
Impulse Response (FIR) Filter (HPFF) is investigated to solve
this issue [18–21]. FIR filters are more stable as compared to
other filters and robust, but FIR filters characteristically drop
inaccuracy to the PF in the case of nonlinear systems [22–25].
Therefore, PF is applied as an elementary filter, which is sus-
ceptible to failure and deviation. The FIR filter is applied to
recuperate the PF by restarting and reorganizing.

1.1. Contributions of This Work. This work aims to propose
an effective vehicular localization technique for the mobile
robot. For this purpose, the authors introduced three locali-
zation techniques. The proposed techniques’ performance is
better in simulation concerning the abovementioned locali-
zation techniques in the literature. The contributions of this
paper are divided into the following three phases.

(1) EKF-based localization

(2) UKF-based localization

(3) PF-based localization

The performance of the abovementioned techniques is
evaluated and analyzed in different scenarios. While consid-
ering numerous aspects of localization, the accuracy of these
techniques is higher. A variety of vehicular localization tech-
niques are investigated in the literature to analyze the presen-
tation of the proposed techniques. These techniques are
evaluated while considering numerous aspects of localization
such as accuracy, time consumption, vehicle velocity, cover-
age area, and localization coverage. Furthermore, the presen-
tation of the proposed localization techniques is compared
with each other’s and also with other localization techniques.

1.2. Organization. The rest of the paper is sorted as follows.
The related work is detailed in Section 2, and Section 3 pre-
sents the proposed techniques used for localization. The sub-
sections of Section 3 present the proposed EKF, UKF, and PF
localization techniques. Section 4 presents the discussion on
the simulation results and comparison while Section 5 con-
cludes the work.

2. Related Work

In order to expand the performance of mobile robot localiza-
tion, several approaches have been introduced [26–28] to
address vehicular localization [29] issues and errors of the
NLoS environment. The method in [30] uses two receivers,
and the Frequency Difference of Arrival (FDoA) signals to
approximate the moving emitter velocity. There is a nonlin-
ear measurement error which is occurred by the RF system
noise in the geolocation environment with the Time Differ-
ence of Arrival (TDoA) [31, 32] and FDoA. For this problem,
the authors proposed the iterated dual-EKF approach to rec-
ompense for the nonlinear estimation error. Using the iter-
ated dual-EKF approach, the parameter estimation (PE)
filter updates model uncertainties caused by exterior noises
and has a higher convergence rate of the system parameters
by the iteration method.

EKF is a traditional technique for positioning estimation
[33, 34]. EKF extends models of nonlinear functions in the
Taylor series close to the estimation state and shortens them
to consider the linearization of the model in the first order. In
the Line-of-Sight (LoS) environment, EKF based on the lin-
ear models achieves higher accuracy. But, if the channel is
in the NLoS environment, the EKF shows a high error in
localization because of measurement data deviation [35].
For mobile node localization, a variety of NLoS approaches
have been presented [36–40]. The method of unscented
transformation is used for the standard KF to produce the
UKF, which attains a better estimation than the other
methods. Another method is presented for the positioning
of targets named Adaptive Iterated Unscented KF (AIUKF)
which combines the adaptive factor and iterative approach
to improve the localization performance. A PF localization
approach based on the Monte Carlo technique is used for
the positioning which exploits random sample group infor-
mation for the approximation of the state Probability Density
Function (PDF). Therefore, the performance of the PF-based
localization in non-Gaussian is much better while demand-
ing a high number of sample points. The authors collected
all metrics of the range and obtained the final estimation of
the state on the basis of position estimation of the fusion sub-
group. But on the other hand, in the NLoS, the authors find
discarding and detecting the range calculation from the bea-
con nodes. However, most of the above methods perform
accurately only in a particular noise distribution field, which
is not authentic.

Perhaps, EKF is a well-known procedure for estimating a
noisy measurement of the nonlinear system state. EKF is
based on the nonlinear maps of the system around the esti-
mated route. It is also based on the idea that the noises of
measurement, input noise, and initial state are Gaussian. It
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is acknowledged that the EKF is likely to deviate, mostly
because of bad primary estimates and higher noises, but
our experience does not know of any testable convergence
conditions. The estimation divergence is extra probable when
measurements are lost due to communication faults [41, 42],
which is a communal disorder in mobile robotics.

In recent years, UKF was developed to tackle some prob-
lems such as the need for Gaussian noises and the properties
of poor approximation [43]. The basic idea of UKF is to find
a transformation that allows a random vector having a length
of n to approximate the covariance and mean when it is
changed by the nonlinear map. It can be achieved by calculat-
ing a set of 2n + 1 points, known as σ-points, based on the
innovative vector mean and variance, transforming those
points through the nonlinear map and then resembling the
transformed vector mean and variance from the transformed
σ-points. The authors investigated that the EKF estimate is
precise to the first order, while in the case of Gaussian noises,
the UKF is precise to the third order. Similarly, for the EKF,
the covariance of the estimate is precise to the first order and
second order for the UKF.

A procedure of tracking through PFs is presented in [44]
to produce a probability distribution over the targeted area.
The procedure applies the recursive Bayesian filters which
are based on the sequential MC technique of sampling to esti-
mate the location of the target posterior distribution by
applying another distribution that can be prior arbitrary.
PF begins with a regularly primed set of particles. Then,
according to a movement model, all particle positions are
modified. The authors considered the measure in the ðx, yÞ
space that follows an arbitrary walk model for the representa-
tion of the human movement. The xðt + τÞ = xðtÞ + φðτÞ
shows a random path of the user, where φ denotes the
random parameter which characterizes the probability of fol-
lowing a known direction in the tracking procedure next
phase. In the measures achieved from the tags deployed in
RFID, the model also takes into consideration the error
model.

A statistical method named Kullback-Leibler Distance
(KLD) sampling is presented to increase the efficiency of
the PFs by adapting the sample sets size on-the-fly [45].
The approach is used to link the error of approximation
which is introduced by the PF sample-based illustration.
The method selects a smaller number of samples if the den-
sity is observant to a small part of the state space, and rising
samples if the uncertainty of the state is high. The mobile
robot localization problem is used to test and demonstrate
the approach to the adaptive PF. The localization of robots
is the problem of estimating the position of a robot relative
to the map of its operation area. This issue has been identified
as one of the most important mobile robotics challenges
which come in diverse essences. The simplest problem with
localization is position tracking, where the primary location
of the robot is determined, and location pursues to exact
small, gradual errors in the robot’s odometry. The global
localization is another stimulating problem for mobile
robots, where a robot does not have prior knowledge
about his position, but it has to be decided from scratch,
instead.

Following the above discussion, it is reflected that to pres-
ent efficient and accurate localization techniques, the issue of
vehicular localization with limited features is previously
important. Most of the previous localization techniques
focused only on the vehicle localization accuracy while ignor-
ing several aspects such the vehicle velocity, time consump-
tion, and coverage. Besides this, we must take into account
the positioning of the mobile robot in a precise manner.
The author, therefore, considers three localization techniques
named EKF, UKF, and PF in this paper. The proposed tech-
niques are evaluated on the basis of their performances. The
authors consider several aspects for localization such the
vehicle velocity, time consumption, accuracy, and localiza-
tion coverage.

3. Proposed Techniques of Localization

This section discusses the proposed localization techniques
based on EKF, UKF, and PF. In the next pages, the proposed
localization techniques are examined. Table 1 shows the
notations used in this work.

3.1. Extended Kalman Filter-Based Localization. EKF is typi-
cally implemented by substitution of the KF for nonlinear
systems and noise models. The models of observation and
state transformation are nonlinear functions, but these can
be differentiable functions. The observation and state transi-
tion models [46] are delineated as

xk = f xk−1, ukð Þ +wk, ð1Þ

zk = h xkð Þ + vk: ð2Þ

In the above equations, wk and vk denote the process and
observation noises and zero-mean Gaussian with the covari-
ance Qk and Rk, where xk and xk−1 are the current and previ-
ous robot state, while uk represents the input vector.

The state covariance is calculated as

Pk =
Pxv

Pxv l

Plxv
Pll

" #

=
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7

7

7
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5

, ð3Þ

where Pk is the covariance of the estimated n × nmatrix. Pre-
diction and update states are the two stages of the EKF algo-
rithm. To calculate the prediction state

x̂k∣k−1 = F × x̂k−1∣k−1 + Bk × uk, ð4Þ

where F denotes the state transition and Bk denotes the input
matrix. Covariance from equation (3) will become

Pk∣k−1 = F × Pk−1∣k−1 × FT +Q, ð5Þ

where Pk∣k−1 and Pk−1∣k−1 are the current and previous states.

Q represents a covariance matrix for the noise process. The
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origination vector and covariance matrix for the EKF update
state is

~Yk = Zk − h X̂k

� �

,

Sk =Hk × Pk∣k−1 ×HT
k + Rk,

ð6Þ

where hðX̂kÞ is the predictable estimations, Sk denotes the

covariance matrix of ~Yk, andHk is the predictable estimations
Jacobian matrix. To calculate the subsequent state vector:

x̂k∣k = X̂k∣k−1 + Kk × ~Yk:

Kk = Pk∣k−1 ×HT
k × S−1k ,

Pk∣k = In − Kk ×Hkð Þ × Pk∣k−1,

ð7Þ

where Kk is the Kalman optimal gain and Pk∣k denotes the

covariance matrix subsequent state. To apply the prediction,
motion, and observation models, the state vector is computed
as

Xk = x y yaw v½ �T : ð8Þ

Therefore, the state transition matrices F and B are calcu-
lated as

F =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

B =

dt:cos x 3ð Þð Þ 0

dt:sin x 3ð Þð Þ 0

0 dt

1 0
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,

ð9Þ

In the same way, the measurement noise R is calculated as

R =
cos θð Þ sin θð Þ

−sin θð Þ cos θð Þ

" #

: ð10Þ

The Jacobian of themeasuring system’s motionmodel and
covariance can be computed as

JF =

1 0 0 0

0 1 0 0

−dt:sin x 3ð Þð Þ dt:u 1ð Þ:dt:cos x 3ð Þð Þ 1 0

dt:cos x 3ð Þð Þ dt:sin x 3ð Þð Þ 0 1
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,

P0 =

σ2x 0 0 0

0 σ2y 0 0

0 0 σ2vx 0

0 0 0 σ2vy
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,

ð11Þ

where σ2
x denotes the standard deviations of the estimated x, y

locations and P0 is the state information vector. The value of

Table 1: Index of notation.

Notation Description

T Time interval

φ Random parameter

Xk Current state

Xk−1 Previous state

Zk Observation model

f Prediction state function

h Prediction measurement function

Pk/k−1 Current state covariance

Pk−1/k−1 Previous state covariance

Q Covariance matrix of the process noise

R Covariance matrix of the measurement noise

h X
_

k

� �

Predictable estimation

Sk Covariance matrix of ~yk

Hk Predictable estimation Jacobian matrix

Kk Kalman optimal gain

Pk/k Covariance matrix subsequent state

F&B State transition matrices

δ2x Standard deviation

x, y Denote locations

P∘ State information vector

H Output measurement matrix

vk−1 Process noise

nk Measurement noise

w Weights

x° Sigma point

xi Sigma point where i = 1, 2,⋯, 2n

xest Estimation state

xtru True state

n Dimension of x

sk Set of particles

p 2k/xik
� �

Importance factor

f k xkð Þ Positive state function

T s Robot sampling time

p xk/z1 : kð Þ Successive approximation

δ :ð Þ Dirac function

N Denote the samples
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the standard deviation, in this case, depends on certain vari-
ables such as the accuracy of GPS and the distance as shown
in Figure 1. Thus, the measuring system Jacobian can be writ-
ten as

H =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
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6
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7
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7

5

, ð12Þ

where H is the output measurement matrix and the Jacobian
matrices of the state equation. The localization results of the
EKF algorithm is shown in Figure 1.

3.2. Unscented Kalman Filter-Based Localization. UKF is a
nonderivative filtering approach that immediately propa-
gates the mean measurement covariance and the state esti-
mates. Therefore, it precisely represents the allied
distributions by any nonlinear transformations that include
the measurement and state dynamics. In the process model,
because of the nonlinearity in the state functions of the veloc-
ity, unscented approximation to the finest filtering explana-
tion can be derived by implementing two steps of
measurement and time update. In the implementation of
the two phases, an unscented transform is approved for the
sigma points formation. Furthermore, for the derivation of
UKF, the Jacobian matrix calculation is not required as
required for the EKF technique. The technique can proceed
in the following way. Provided a nonlinear system with a dis-
crete time-system model [47, 48]:

xk = f xk−1, vk, uk−1ð Þ,

yk = h xk, nk, ukð Þ,
ð13Þ

where vk−1 and nk show the process noise and measurement
noise. Further, to compute the sigma points, time, and mea-
surement update, the xk estimates can be calculated. A set of
test points and its related weights w at time k − 1 is utilized
for sigma points measurement such as x0, k − 1 = xk−1, where
x0 denotes the sigma point at state:

xest = 0 0 0 0½ �T , ð14Þ

where xest is the estimated state. The state will be true if xtru
= xest. The corresponding weights for the sigma points can
be calculated as

xi,k−1 = xk−1′ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + λð Þ × Pk−1

p

h i

i
,

xi,k−1 = xk−1′ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n + λð Þ × Pk−1

p

h i

i−n
,

ð15Þ

where xi denotes the sigma points and i = 1, 2,⋯, 2n. Nor-
mally, the weights w are characterized as

wm =
λ

n + λ

� �

,

wc =
λ

n + λ

	 


+ 1 − α2 + β
� �

� �

:

ð16Þ

Similarly, at t = 0, the weights wm and wc can be written
as

wm
0 =

λ

n + λ

� �

,

wc
0 =

λ

n + λð Þ + 1 − α2 + βð Þ
,

wm
i =wc

i =
1

2 n + λð Þ
,

ð17Þ

where the dimension of x represented by n and λ = α2ðn + k
Þ − n is the parameter of scaling. Moreover, α is applied to

find the sigma points spreading around the state variable x‵

mean, and k is the second scaling parameter. To compute
the prediction of sigma points with observation and motion
model, the covariance and mean will become

xi,k∣k−1 = f xi,k−1ð Þ,

�x‵ = 〠
2n

i=0

wm
i xi,k∣k−1,

pk′ = 〠
2n

i=0

wc
i xi,k∣k−1 − �x‵
h i

xi,k∣k−1 − �x‵
h iT

+Qk,

_xi,k∣k−1 = x0:2n,k∣k−1 x0,k∣k−1 + v
ffiffiffiffiffiffi

Qk

p

x0,k∣k−1 − v
ffiffiffiffiffiffi

Qk

p

h i

i
:

ð18Þ

With supplementary points gained from the process
noise covariance matrix square root, the sigma points were
increased.

_yi,k∣k−1 = h _xi,k∣k−1
� �

,

�y‵ = 〠
2na

i=0

_wm
i
_Y i,k∣k−1,

pyy,k = 〠
2na

i=0

_wc
i
_Y i,k∣k−1 − �y‵k

h i

_Y i,k∣k−1 − �y‵k

h iT
+ Rk,

pxy,k = 〠
2na

i=0

_wc
i _xi,k∣k−1 − �x‵k

h i

_yi,k∣k−1 − �y‵k

h iT
,

ð19Þ
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Figure 1: Localization comparison of EKF. In this phase, for all four iterations, the velocity is v = 1m/s and time is t = 60 sec. In the legends,
the red dashed line represents the EKF localization, where the green is the dead reckoning (DR), the pink solid line is the ground truth (GT),
the blue color asterisks denote the GPS signals, and the blue line denotes the error ellipse (EE) during localization.
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where Rk denote the covariance matrix. The Kalman gain can
be computed to update the state and the covariance.

kk = pxy,k × p‵
1

yy,k,

�xk = �x‵ + kk yk − �y‵
� �

,

pk = p‵k − kk × pxy,k × kTk ,

ð20Þ

By considering the primary estimation state, i.e., x‵0 = E½

x0� and p0 = E½ðx0 − x‵0Þ × ðx0 − x‵0Þ
T
�

R =
cos θð Þ sin θð Þ

−sin θð Þ cos θð Þ

" #

,

xk+1 = Fxk + Bvk,

ð21Þ

where R denotes the covariance matrix for measuring noise
and F and B can be calculated as

F =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

2
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6

6

6

6

4

3

7

7

7

7

7

5

,

B =

dt:cos x 3ð Þð Þ 0

dt:sin x 3ð Þð Þ 0

0 dt

1 0
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5

,

H =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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3
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7
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7

7

5

:

ð22Þ

In the above equations, F and B denote the state matrices
of transition, while H represents the observation model out-
put measurement matrix. The localization results of the UKF
technique is presented in Figure 2.

3.3. Particle Filter-Based Localization. The authors analyzed
the performance of the PF-based localization technique in
this part. As similar to the tracking method, a PF is imple-
mented to construct a probability distribution over the field
of the targeted area of operation. This technique uses a recur-
sive Bayesian filter based on the sampling of MC to calculate
the target location subsequent distribution by applying
another distribution which can be random a priori [40].
The PF approach is less intensive computationally in com-
parison to the EKF and UKF techniques. Besides this, in con-
trast to the KF, PF can avoid any supposition related to the
intrinsic prominent attribute of the process and uncertainty
related to the node information. The PF required an opti-

mum interval of average but does not include the statistics
on noise. Moreover, when the robot is traveling during the
process of localization, the sensor particles in the surround-
ing of the robot can communicate with the robot and transfer
information to the robot [45]. The mobile robot can receive a
range of data from RFID that its position is known. The loca-

tion of a robot in a regular PF can be defined by vector xk
= xk yk½ �t . At the first step, the state estimation vector is

xest = 0 0 0½ �t with an estimate �xk of xk. As mentioned
in equations (1) and (2), the prediction and measurement
models are calculated. Let’s suppose, to describe a group of
particles at instant k time:

sk = xik,w
i
k

� �

∣ i = 1, 2, 3,⋯, ns
� �

,

wi
k =

p xik ∣ z
k, uk

� �

p xik ∣ uk, xk−1
� �

p xk−1 ∣ z
k−1, ut−1

� � ,

wi
k =

ηp zk ∣ xik
� �

p xik ∣ uk, xk−1
� �

p xk−1 ∣ z
k−1, uk−1

� �

p xik ∣ uk, xk−1
� �

p xk−1 ∣ z
k−1, uk−1

� � ,

wi
k = ηp zk ∣ x

i
k

� �

,

ð23Þ

where sk is the set of particles, the numerator is the target dis-
tribution, and the denominator is the distribution proposal.
Moreover, η is the constant and pðzk ∣ x

i
kÞ denotes the impor-

tance factor. For the state function, f kðxkÞ is supposed to be a
positive function where the PF algorithm produces the sam-

ples from f kðxkÞpðxk ∣ z
k, ukÞ where at the initial stage, the

samples are at position f0ðx0Þ.
To calculate the innovative samples, a random particle

xik−1 is computed from Xk−1 and being distributed for n in

relation to f k−1ðxk−1Þpðxk−1 ∣ z
k−1, uk−1Þ. At state xik ~ pðxk ∣

uk, x
i
k−1Þ, the importance weights w can be written with the

f kðxkÞ function.

wi
k =

f k xik
� �

p xik ∣ z
k, uk

� �

f k−1 xik−1
� �

p xik ∣ uk, xk−1
� �

p xk−1 ∣ z
k−1, ut−1

� � ,

wi
k =

f k xik
� �

ηp zk ∣ xik
� �

p xik ∣ uk, xk−1
� �

p xk−1 ∣ z
k−1, uk−1

� �

f k−1 xik−1
� �

p xik ∣ uk, xk−1
� �

p xk−1 ∣ z
k−1, uk−1

� � :

ð24Þ

To replace the constant of proportionality, the above
equation can be written as

wi
k ∝ p zk ∣ xik

� �

×
f k xik
� �

f k−1 xik−1
� � : ð25Þ

The particle motion can be anticipated at the time k by
applying the particles that contain the robot position or loca-
tion, such as xik = f ðxik−1Þ +wk.

xik = xik−1 +
vk × T s × cos θk

vk × T s × sin θk

" #

+wk: ð26Þ
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The state �xk∣k−1 estimate objectives can also be delineated

by �xk∣k−1 = f ð�xk−1∣k−1Þ.

pk∣k−1 = 〠
ns

i=1

wi
k × xik − �xk∣k−1

� �

× xik − �xk∣k−1
� �T

+Q: ð27Þ

In the above equation, T s is the robot sampling time,
Q represents the covariance matrix, whereas the weight is

represented by w. The successive approximation pðxk ∣
z1:kÞ and the state �xk∣k estimation can be calculated by:

p xk ∣ z1:kð Þ ≈ 〠
N s

i=1

wi
k × δ xk − xik

� �

, ð28Þ

�xk∣k = E xk ∣ z1:k½ �, ð29Þ
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Figure 2: Localization comparison of UKF. In this phase, for all four iterations, the velocity is v = 1m/s and time is t = 60 sec.
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�xk∣k =

ð

xk × p xk ∣ z1:kð Þdxk ≈ 〠
N s

i=1

wi
k × xik, ð30Þ

pk∣k = 〠
N s

i=1

wi
k × xik − �xk∣k

� �

× xik − �xk∣k
� �T

, ð31Þ

where δð:Þ is the function of Dirac delta. In the above
equation, the subsequent approximation is set as a subse-
quent function which is approximated by N samples set
[49].

F =

1 0 0

0 1 0

0 0 1

2

6

6

4

3

7

7

5

, ð32Þ

B =

dt:cos x 3ð Þð Þ 0

dt:sin x 3ð Þð Þ 0

0 dt

2

6

6

4

3

7

7

5

: ð33Þ

As mentioned above in equations (32) and (33), F and
B denote the motion and measurement model state transi-
tion matrices.

4. Simulation Discussion and Comparison

In the above sections, the authors investigated the localiza-
tion performance of the proposed EKF, UKF, and PF tech-
niques. Each technique of localization performs well in its
context; however, their efficiency differs from one another
in some factors. A separate simulation is conducted for each
localization technique, but some parameters are consistent
through different iterations in these approaches. These
parameters include such as those of the first case; the velocity
is chosen as v = 1m/s and the time is T = 10 sec as presented
in Figures 1, 2, and 3, respectively. Table 2 shows the param-
eters used in the simulations. Furthermore, the initial time is
chosen to be t = 0 and t = 60 sec which represent the end
time, while the global time is chosen to be dt = 0:1 sec. For
navigation, Dead Reckoning (DR) is the method of measur-
ing one’s current location by using a previously defined loca-
tion, using speed and course estimates over time. On the
other hand, Ground Truth (GT) is required for real-time

localization. The first case state vector is xEst = 0 0 0½ �t

where the true state can be xTru = xEst. At the initial stage,

the observation vector is calculated in such way z =

0 0 0 0½ �t ; also, the matrix of covariance Q for motion
and covariance matrix for observation R are calculated.
While calculating Q and R, the sigma points are calculated.
For the PF technique, the function f kðxkÞ is used to calculate
the importance of weightswi. The subsequent approximation
pðxk ∣ z1:kÞ and the state estimation �xk∣k are calculated in

equations (28) to (31). The Jacobian matrices F of the state
equation calculated in equation (32) and Jacobian of motion
model JF is calculated in equation (33). The coverage area in
all three methods is almost similar, while the localization
accuracy is varying. Besides this, the time consumption for

all three techniques is dissimilar as can be seen in Table 3
where the velocity and time are reserved constant during four
iterations.

In the next step, the velocity v is varied to v = 2, v =
3, v = 4, v = 5, v = 6,⋯, v = 10 m/s. By the variable speed,
the coverage range is enlarged as shown in Figures 4 and
5. The velocity variation is considered for the EKF and
UKF techniques similarly, but the effect is different in each
technique. The coverage of localization in the UKF-based
technique is higher (see Figure 5) than the EKF algorithm
(see Figure 4). In this phase, the localization coverage is
higher, but unfortunately, the localization accuracy is also
affected. When the robot is traveling with a higher speed
during the process of localization, the mobile robot has a
lower communication with the sensors in the surrounding,
but if the robot is traveling with a lower speed, the process
of communication is more reliable and convenient as com-
pared to the case of high speed. Therefore, the author con-
cludes that the proposed techniques are more accurate and
reliable for lower velocities.

Furthermore, the proposed localization techniques’ per-
formance is evaluated in different scenarios. The perfor-
mance is assessed by varying the time of T in all three
techniques of localization. However, the velocity is kept con-
stant in all three approaches as can be seen in Table 4. By
changing the time T , the localization performance is also
varying as can be seen in Figures 6, 7, and 8. In the case of
EKF-based localization, by changing the time T , the localiza-
tion coverage is decreasing as shown in Figure 6. Secondly, in
the case of UKF-based localization, by varying the time T , the
localization coverage is decreasing as presented in Figure 7.
Similarly, by changing the time of T in the PF-based localiza-
tion, the coverage area is decreasing gradually. It shows that
the time T is inverse proportional to the coverage area of
localization in all three techniques of localization. However,
the time consumption is different in all three techniques as
can be seen in Table 4. Among all three localization
approaches, PF is the lowest time consumer as compared to
other approaches. To compare the time consumption of
our proposed PF technique with other techniques, the
authors in [50] presented a PF technique Wi-Fi target local-
ization. The technique is used to solve the localization prob-
lem of radio source by applying the RSSI measurements. The
technique exploits the behavior of wireless signals in free
space which obtains the estimates of positions from the signal
strength. The authors considered the time-varying strategy to
evaluate the performance of localization. The time is enlarged
to T = 1 sec, T = 20 sec, T = 50 sec, and T = 100 sec, but
unfortunately, by increasing the time more and more, the
performance is gradually decreasing. However, in our pro-
posed localization techniques, by varying the time T , the per-
formance is still much better as compared to the other
techniques.

As mentioned before, every method performs well in
its domain, but concerning some aspects, their perfor-
mance is varying. To compare the proposed methods,
the authors evaluated their performance while considering
several factors such as localization coverage, time con-
sumption, and localization accuracy. In the PF algorithm,

9Wireless Communications and Mobile Computing



the time consumption is lower than in the EKF and UKF
algorithms as shown in Table 3. Moreover, UKF is less
time consuming as compared to the EKF technique. How-
ever, the localization accuracy of EKF and UKF is higher
than the PF localization technique. In comparison with
other techniques, the performance of the proposed tech-
nique is better than the previous as investigated in the lit-
erature. A number of localization approaches are
presented by the researchers [14, 43, 51, 52]. Each
approach focused on the localization performance, but a
limited number of aspects are considered such as most
of them focused only on the accuracy of localization.
However, our proposed methods consider several aspects
at once such as the localization coverage, localization accu-
racy, and consumption of time. Therefore, to the best of

the author’s knowledge, the proposed techniques are per-
forming well in comparison with other techniques in this
field.

5. Conclusion

To conclude, in this paper, the authors addressed three local-
ization strategies based on EKF, UKF, and PF techniques.
The authors evaluated the efficiency of the proposed tech-
niques of localization by considering many factors such as
the scope of localization, the accuracy of localization, and
time of consumption. Basically, two steps are used to investi-
gate the proposed localization techniques. Firstly, the authors
kept the velocity of the robot constantly i.e., v = 1 m/s, and
the process is repeated for four iterations as shown in
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Figure 3: Localization comparison of PF technique. In this phase, for all four iterations, the velocity is v = 1m/s and time is t = 60 sec.
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Figures 1, 2, and 3. In the second case, the velocity of the
robot is varied to v = 2 m/s, v = 3 m/s, and so on. As a result,
the localization scope often differs by changing the velocity of
the robot, as shown in Figure 4 (EKF) and Figure 5 (UKF).
Furthermore, the authors evaluated the time consumption
of the proposed localization techniques. Among all these
techniques, the PF’s time consumption is lower compared
to the localization techniques of EKF and UKF as shown in
Table 2. However, the localization accuracy of EKF and
UKF is better than the PF-based localization. Finally, the pro-
posed methods are compared with each other’s and also with
other standard approaches. Therefore, the proposed localiza-
tion methods performed better as compared to the other
techniques as mentioned in the above section of comparison.

Table 2: Parameters used in simulations.

Parameters Values

Time (T) 10 sec

Initial time (t) 0 sec

Final time (t) 60 sec

Global time (t) 0.1 sec

Initial velocity (v) 1.0m/s

Updated velocities (v) 1, 2, 3,...,10m/s

Degree to radian 180°

Yaw rate 5 deg/sec

Sigma points (i) i = 1, 2, 3,⋯, n

α 0.001

β 2

κ 0

Prediction covariance matrix (Q) 0.1

Observation covariance matrix (Q) 1

Neff 1.0

Total range 360°

Weights (wi) i = 1, 2, 3,⋯, 2n

Table 3: Comparison of the time consumption by EKF, UKF, and
PF localization techniques.

Velocities Iterations TimeEKF TimeUKF TimePF

V1 = 1m/s

1 6.7431 sec 5.9950 sec 5.5588 sec

2 6.7009 sec 5.9716 sec 5.5312 sec

3 6.6051 sec 5.9627 sec 5.5436 sec

4 6.4641 sec 5.9503 sec 5.5521 sec

V2 = 2m/s 1 6.3744 sec 5.9005 sec -

V3 = 3m/s 1 6.3919 sec 5.9609 sec -

V4 = 4m/s 1 6.3835 sec 5.9306 sec -

V5 = 5m/s 1 6.1829 sec 5.9171 sec -

V6 = 6m/s 1 6.2834 sec 5.7584 sec -

… … … … …

V10 = 10m/s 1 6.2380 sec 5.8450 sec -
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Figure 4: EKF localization with velocity v = 5m/s.
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Figure 5: UKF localization with velocity v = 5m/s.

Table 4: Performance comparison of EKF, UKF, and PF
localization algorithms by varying the time T .

Time (T) Velocity (V) TimeEKF TimeUKF TimePF

T = 10 sec V = 1m/s 6.3845 sec 5.9253 sec 5.5112 sec

T = 30 sec V = 1m/s 6.5245 sec 5.7664 sec 5.3805 sec

T = 60 sec V = 1m/s 6.6377 sec 5.7263 sec 5.7213 sec

T = 90 sec V = 1m/s 6.9117 sec 5.7601 sec 5.1393 sec

T = 120 sec V = 1m/s 6.2887 sec 5.8666 sec 5.2038 sec
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Figure 6: Localization performance of EKF with (a) T = 30 sec and (b) T = 90 sec.
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Figure 7: Localization performance of UKF with (a) T = 30 sec and (b) T = 90 sec.
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In the future, the authors will perform more experiments
to study the effects and performance of these localization
methods. In addition, our future study will also have a look
on the performance of these localization techniques in com-
bination with the simultaneous robotic localization and
mapping.
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