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Abstract: Deep venous thrombosis (DVT) is a disease that must be diagnosed quickly, as it can trigger
the death of patients. Nowadays, one can find different ways to determine it, including clinical
scoring, D-dimer, ultrasonography, etc. Recently, scientists have focused efforts on using machine
learning (ML) and neural networks for disease diagnosis, progressively increasing the accuracy
and efficacy. Patients with suspected DVT have no apparent symptoms. Using pattern recognition
techniques, aiding good timely diagnosis, as well as well-trained ML models help to make good
decisions and validation. The aim of this paper is to propose several ML models for a more efficient
and reliable DVT diagnosis through its implementation on an edge device for the development of
instruments that are smart, portable, reliable, and cost-effective. The dataset was obtained from a
state-of-the-art article. It is divided into 85% for training and cross-validation and 15% for testing. The
input data in this study are the Wells criteria, the patient’s age, and the patient’s gender. The output
data correspond to the patient’s diagnosis. This study includes the evaluation of several classifiers
such as Decision Trees (DT), Extra Trees (ET), K-Nearest Neighbor (KNN), Multi-Layer Perceptron
Neural Network (MLP-NN), Random Forest (RF), and Support Vector Machine (SVM). Finally, the
implementation of these ML models on a high-performance embedded system is proposed to develop
an intelligent system for early DVT diagnosis. It is reliable, portable, open source, and low cost. The
performance of different ML algorithms was evaluated, where KNN achieved the highest accuracy of
90.4% and specificity of 80.66% implemented on personal computer (PC) and Raspberry Pi 4 (RPi4).
The accuracy of all trained models on PC and Raspberry Pi 4 is greater than 85%, while the area
under the curve (AUC) values are between 0.81 and 0.86. In conclusion, as compared to traditional
methods, the best ML classifiers are effective at predicting DVT in an early and efficient manner.

Keywords: DVT; early diagnosis; artificial intelligence; machine-learning; smart system; embedded
system; edge computing; edge device

1. Introduction

Deep venous thrombosis (DVT) is a disorder in which blood clots form within the
veins, obstructing the flow of blood through the circulatory system, and it affects people
of all ages [1]. The cause of the disease is unknown; however, it is thought to be caused
by a combination of variables, including genetic factors. Genetic factors are also thought
to have a role in the diagnosis of the disorder. In the field of engineering, there are two
major challenges: patients suspected of DVT have no visible symptoms, and failing to

Math. Comput. Appl. 2022, 27, 24. https://doi.org/10.3390/mca27020024 https://www.mdpi.com/journal/mca

https://doi.org/10.3390/mca27020024
https://doi.org/10.3390/mca27020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0001-5583-1248
https://orcid.org/0000-0001-5052-6850
https://orcid.org/0000-0003-4635-2813
https://orcid.org/0000-0001-7187-4686
https://orcid.org/0000-0002-0971-3176
https://orcid.org/0000-0002-7994-9774
https://doi.org/10.3390/mca27020024
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca27020024?type=check_update&version=1


Math. Comput. Appl. 2022, 27, 24 2 of 18

diagnose it could be fatal; without symptoms, the first test (D-dimer blood) is useless; and
the use of ultrasound has high certainty but comes at a high cost and necessitates the use
of many instruments [2,3]. DVT is a disease that must be recognized as soon as possible
because the implications might be fatal for the patient. Several scientists have created
various techniques and methods to diagnose the problem over the years, beginning in the
1970s with the development of ultrasonography [4], which marked a breakthrough in the
timely diagnosis of clots in the lower limbs of the human body. Philip Wells, a renowned
scientist, has stated on numerous occasions that technology, which has been revolutionized
exponentially in recent years, will support the future in the early diagnosis of diseases.
This, combined with new trends in the work of computer equipment, will enable great
advances in science and human health.

Venous thromboembolism (VTE), the third most common vascular illness worldwide,
is a complex condition impacted by various genetic and non-genetic risk factors [5]. The
pathogenesis of VTE includes Virchow’s triad, which provides for hypercoagulability,
reduced blood flow or stasis, and damage to blood vessels due to disease or injury [6]; they
are blood clots that can occur if the patient’s blood flow changes or slows down somewhere
in their body [7], putting the patient’s life and health at risk. The annual incidence is 1 to
3 people per 1000 people. The prevalence of this condition varies with age. It can cause
DVT or pulmonary embolism (PE) in some cases [1,8–10]; thrombosis can also develop in
other veins such as the liver, cerebral sinus, retina, and mesenteric veins. Approximately
one-third of VTE patients develop a PE, while two-thirds exclusively have DVT [11].

The Primary Care Unit (PCU) is the backbone of any health care system. The record
of previous epidemics demonstrates the critical significance of PCU and necessitates PCU
specialists’ engagement in procedural decision making [12]. The PCU serves as the entry
point to the Health System (HS), which is described as the primary level of health care.
The “Health Unit Clinics” (Health Units that constitute Primary Health Care) are defined
by their commitment to health promotion and protection, disease prevention, diagnosis,
treatment, rehabilitation, harm reduction, and health maintenance on an individual and
collective level, to provide comprehensive care that has a positive impact on the health
status of communities [13]. They provide primary care services across the board, including
the evaluation and diagnosis of acute illnesses and ongoing treatment for patients with
chronic conditions [14].

Nowadays, numerous ways to determine the condition are available, such as statis-
tical analysis and clinician scoring [15], D-dimer blood tests [16], infrared imaging [17],
ultrasonography, and even the application of deep machine learning and Neural Networks
(NN) [11,18]. Many countries, including the United States, Italy, the United Kingdom,
Germany, and Canada, have pioneered artificial intelligence (AI) work in the diagnosis and
prediction of DVT, with the percentage of accuracy and effectiveness steadily increasing
over time as algorithms become more and more optimal and more data can be obtained
from real cases. However, progress has been made in the development of NN in terms of
debugging codes and developing new algorithms, but they have not been implemented
outside of a computer. It should be noted that other types of prediction and analysis have
very good effectiveness and accuracy, but the analysis is very expensive due to the difficulty
of repeatability and reliability, since most diagnoses require two or more types of analysis.

On the other hand, it is well known that ultrasound is the standard test for the
diagnosis of DVT and that it is one of the most accurate, and recently, they are also using
ML techniques for the diagnosis of DVT [19]. However, the accuracy of the examinations
improves with experience and the training that a sonographer gains in their working life, so
the percentage is not always the same and is not very high at first [20,21]. Although there is
research [22] that strives to combine Deep Learning (DL) and magnetic resonance imaging,
with promising outcomes. Recently, it has been shown that the use of artificial neural
network analysis can improve risk stratification of patients presenting with suspected DVT,
the authors showed that an NN is able to diagnose DVT without the use of ultrasound,
with a low false negative rate [23]. A new ML model was developed for the efficient, less
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intrusive, and reliable diagnosis of DVT. This is based on pattern recognition techniques
that help with rapid diagnosis as well as well-trained machine learning models that help
with decision making and validating whether or not someone is suffering from this ailment.

In recent years, the field of data science has been pioneered in the development of
hardware and software for the application of Artificial Neural Networks (ANNs) in clinical
analysis, which can be useful for the diagnosis of DVT and other diseases in general, for
example, the use of ML models such as Decision Trees, Support Vector Machine (SVM),
and Neural Networks [24–26]. Nowadays, there are alternative methods of DVT diagnosis,
some of which use AI. For example, in [6], ML models for venous thromboembolism (VTE)
risk assessment in China are compared to the Padua model, with the Random Forest (RF)
model having a higher specificity and sensitivity than the Padua model. The authors in [27]
reported an automatic diagnosis model by using effective ML to predict the important risk
factors of VTE collecting patient data of the medical ward at King Chulalongkorn Memorial
Hospital from Thailand. Other efforts are being dedicated for the prediction of VTE with
ML techniques in young and middle-aged inpatients; for example, [28] develop VTE risk
classifiers using models based on multi-kernel learning and random optimization [29].
However, a drawback is that these systems are expensive, big, heavy, and have moderate
energy consumption.

On the other hand, edge computing can minimize the reaction time, increase the
data processing capacity, ensure data security (since it is closer to end-users, it provides
greater privacy) [30], be easy to design, and be cheap [31]. It has excellent application
value and features such as high reliability, superior energy savings [32], low latency, and
high real-time processing, increasing the overall data quality and utilization performance
under the premise of efficient processing [33]. Accordingly, one can take advantage of
edge devices such as Raspberry Pi 4 (RPi4), which are very useful for solving real-world
problems across various fields of application [34–39]. In this paper, the well-known RPi4
is used as the edge-computing device to develop the ML models and to evaluate their
performance in diagnosing DVT. The cost–benefit of a clinical pre-examination based on
ML is noted in the research [7], reducing the expenses of medical units and labor acquired
using the standard method. The authors of [40] describe the development of a device for
the treatment of DVT that uses Bluetooth communication with a mobile app and sensors
within the system to collect data for statistical analysis.

The ML algorithms have advanced in the early diagnosis of DVT and other applica-
tions [41–43], moving from binary Decision Trees developed by the team of [44] to more
sophisticated algorithms that integrate image analysis by AI [18] and are also very com-
plex in that they go into up to 68 variables to give a final verdict of this disease [45]. In
some investigations with very big datasets, the predictors have an area under the receiver
operating characteristic (AU-ROC) of 0.83 to 0.85 [46].

For the reasons stated above, the goal of this research is to propose several ML models
that are trained by using a dataset of patients with the condition. It is collected from
the state of the art [10] to have good judgment and clinical analysis to determine the
diagnosis of DVT in a patient with the symptomatology of the condition, with the purpose
of having a timely response and thus saving many lifes. In this research, the well-known
Raspberry Pi 4 (RPi4) is employed as the edge-computing device to develop ML models
and assess their performance in diagnosing DVT. This is to facilitate the development of
smart, portable, reliable, and cost-effective instrumentation. All of this is possible thanks
to pattern recognition algorithms that provide accurate diagnoses and well-trained ML
algorithms that determine whether or not a patient has the condition. The assumption
is that ML algorithms will outperform today’s standard approaches as a means of early
diagnosis for diagnostic aid in the health sector and primary care.

The paper is organized as follows. Section 2 presents the materials and methods
used to develop the ML models. In Section 3, the scoring and performance metrics of
every ML model are shown; furthermore, the usage scenario is described, and the perfor-
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mance comparison of PC and RPi4. Finally, in Section 4, the conclusions and future work
are summarized.

2. Materials and Methods
2.1. Machine Learning Algorithm Training

In this paper, we propose six ML algorithms to evaluate the occurrence of DVT in a
patient: Decision Trees (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM),
Random Forest (RF), Multi-Layer Perceptron Neural Network (MLP-NN), and Extra Trees
(ET). All of these ML models may be found in the Scikit Learn library [47,48]. The Scikit
Learn library is built on top of NumPy, and it can be used for any kind of project. It has a
lot of tools that can be used for both the pre- and post-processing of data. The flow chart
for performing the ML algorithm training and testing is shown in Figure 1. First, it imports
the appropriate libraries or toolboxes, such as Scikit Learn, Pandas, and Seaborn. Next, the
features dataset is loaded, and the input data (features) and output data must be separated.
Then, the dataset is randomly divided, with 85% used for training and cross-validation, and
the remaining 15% used for testing. Next, the data are scaled between 0 and 1 to produce
optimum results. Then, the ML algorithms is trained. Next, the ML model is scored, i.e.,
the confusion matrix and performance metrics are used to evaluate the ML models.

In this paper, a PC and RPi4 are used to train the ML models for DVT diagnosis, with
the goal of testing their performance on both hardware and confirming that the RPi4’s
scoring parameters and performance metrics are equally as trustworthy as those on a PC.
Table 1 compares the RPi4’s primary technical specifications to those of a PC. While the
hardware of the PC (laptop) obviously outperforms that of the RPi4, it is vital to prove
experimentally that the results produced with the RPi4 are competitive to those obtained
with a PC. Additionally, it is observed that the RPi4 is significantly less expensive than
a PC, which would significantly lower manufacturing costs in a process of large-scale
production of intelligent devices, for example, in the manufacture of hundreds or millions
of smart instruments.

Table 1. RPi4 versus PC technical specifications comparison.

Hardware Raspberry Pi 4 PC (Laptop)

Central Processing
Unit (CPU)

Broadcom BCM2711
Quad Core 1.5 GHz

AMD Ryzen 7
4800H 2.9 GHz

Graphics Processing
Unit (GPU)

Video Core VI
500 MHz

Nvidia GeForce
GTX 1660ti

Random Access
Memory (RAM) 4 GB DDR4 8 GB DDR4

Networking WiFi, Ethernet, Bluetooth WiFi, Ethernet, Bluetooth

Storage 32 GB SD-Card 512 GB SSD

Operating system Raspbian Windows 10

Operating Voltage 5 V 19.5 V

Energy consumption 3–7 Wh 200 Wh

Weight 46 g 2.37 Kg

Cost (USD) $55.00 $1599.00

The dataset for this study was compiled from the following sources [10]. Since these
data had been used previously, and only 59 real cases from a public hospital had been
obtained, a data augmentation algorithm was devised. They are used to construct a dataset
of 10,000 synthetic examples, which will be used for later training, validation, and testing as
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well as validation of the proposed ML models. The following process was used, as shown
in Figure 1, and it will be detailed in depth in each stage below.

Figure 1. Proposed methodology for early diagnosis of DVT.

Data augmentation is a technique that is frequently used in machine learning to
enhance the size of the dataset utilized in the learning process [10] . It entails producing
new instances from the original data set while maintaining the data’s pattern. It is mostly
used in medical contexts to augment the image collection for image-based diagnosis; see,
for example [49–52]. In this paper, Algorithm (1) reported in [10] was used. It performs
the data augmentation to generate each case that will comprise the set of synthetic data
for training and validation of the proposed ML models. Therefore, the first task to be
performed is to calculate the percentage of positive and negative cases that are present
for each type of risk probability of the occurrence of DVT in addition to the percentage
for which each of the factors of the Wells Score was observed in the real cases to which
we had access. To calculate the percentage of suspected cases of DVT in each type of risk
proposed by Wells, historical data was taken, where it is mentioned that of all the cases
observed, 19% were diagnosed as DVT, while the remaining 81% had a different diagnosis.
Furthermore, it is mentioned that in the cases detected as Low Risk, only 5% of the cases
were diagnosed as positive for DVT, while 17% were diagnosed in Medium Risk, and 53%
were diagnosed as High Risk.

The Wells Criteria, as shown in Table 2, are used to train the ML algorithms for the
prediction of DVT, in which the trained models are expected to perform well in order to
reach a high accuracy in the prediction of this condition.
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Table 2. Wells criteria for predicting deep vein thrombosis (DVT), taken from [10,53–55].

Clinical Feature Score

Lower extremity paralysis, paresis, or recent cast immobilization 1

Deep vein thrombosis has previously been observed 1

Active cancer (patients who are undergoing cancer therapy or who have been diagnosed
with cancer within the last 6 months) 1

Pitting edema limited to the affected leg 1

Recently hospitalized for three or more days, or recently had major surgery
Anesthesia is required for a total of 12 weeks 1

Tenderness in a specific area of the deep venous system’s distribution 1

Skinny veins on each sides (non-varicose) 1

The whole leg is swollen 1

Calf enlarged by at least 3 cm in comparison to the asymptomatic
(ten centimeters below the tibial tuberosity) 1

Deep vein thrombosis is the most probable diagnosis; however, other possibilities exist. −2

When a patient has symptoms in both legs, the leg with the most severe symptoms is utilized.

2.2. Pre-Processing Data

Two criteria are taken into account that are not covered by the Wells rubric. The first
is age, which is measured in numbers ranging from 1 to 9, each of which corresponds to
one of the age groups listed in Table 3 [10]. The second factor is gender, which is assigned
a value of 0 to males and 1 to females. They are being offered as a way to help patients
with suspected DVT better stratify their risk, just as it is managed in [23], so that the data
collected may be pre-processed and ML can detect the illness without difficulty. Since the
input data are binary, that is, they are regarded as 1 (for positive comorbidity) or 0 (for
negative comorbidity), working with them in a computer system is simple, as most media
handle binary values, with the age range being the main distinction, as weighted in Table 3.

Table 3. Age factor pre-processing, taken from [10].

Age (Years Old) Life Stage Numerical Value

85–120 Advanced old age 9

70–84 Intermediate old age 8

60–69 Initial old age 7

50–59 Mature adults 6

40–49 Average adults 5

21–39 Young adults 4

13–20 Youth 3

6–12 Middle childhood 2

0–5 Childhood 1

The dataset is in Comma Separated Values (CSV) format in American Standard Code
for Information Interchange (ASCII), so that it can be processed more easily in the Python
environment, as well as in management so that it can be saved and extracted quickly. The
data from the Excel file is fed into the software on the computer, using the Jupyter Notebook
platform with Python, with each header referring to the DVT comorbidity in each of the
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columns. After that, using the Seaborn pairplot command, plots are generated between all
of the data so that each of the values may be discriminated. It is required to normalize the
values of 1–9 to values between 0 and 1 for good NN training.

Equation (1) is used to normalize the data in the age column so that this factor is not
the most determinant or the one with the most weight within the ML model used. In this
way, all the values of each clinical characteristic will be kept between 0 and 1 except for the
age, which will be a floating value, and the others being integers.

NormAge =
Age − MinAge

MaxAge − MinAge
(1)

A data description is created to note specific properties of each column of information
as well as the primary statistics of the values in the constructed dataset. We noted that the
data is in a huge imbalance as a result of this, as it contains 7562 negative genuine cases
and 2438 positive real cases.

The train test split function divides the dataset into 85% for training and 15% for
validation, where the 11 input factors are considered clinical characteristics of the Wells
criteria (cancer, immobilization, surgery, pain, leg swelling, ankle swelling, edema, superficial
veins, and previously diagnosed DVT) and the factors of age and gender, respectively, and the
output will result in the DVT diagnosis.

The K-fold cross-validation (with K = 5) is used to evaluate the performance of the
ML models and perform a comparative analysis to select the model that best fits the DVT
classification problem [56].

An early-stopping function has been constructed so that if there is no change of 0.01 in
accuracy after 5 epochs, the model’s training is truncated and ended, so that the training
does not take too long and the percentage of accuracy of the ML model employed during
training does not vary much.

2.3. Hyperparameters of the ML Models

The use of an NN with table properties was first suggested during the creation of
neural networks. It has an input layer with 11 predictors (cancer, immobility, surgery,
pain, leg swelling, ankle swelling, edema, superficial veins, and previously diagnosed
DVT). There is no magic formula for selecting the optimum number of hidden layers and
neurons. However, some thumb rules are available for calculating the number of hidden
layers and neurons. A rough approximation can be obtained by the geometric pyramid rule
proposed by [57,58]. In this case, four hidden layers (32–64–32–16) were found for the best
performance metrics, and an output layer with the DVT diagnosis is proposed, as shown in
Table 4. Since the computer is binary, it is suggested that the number of neurons per layer
be multiples of 2N for optimal processing time, where N is an integer, and the number
of neurons in the first hidden layer should be greater than the number of inputs, being
multiples of 2N , ascending in each hidden layer until a maximum of 2N is reached and
then descending with multiples of 2N until the last hidden layer has a number of neurons
slightly greater than the number of input neurons.

Table 4. Proposed sequential model (NN) for DVT diagnosis.

Input Layer with 11 Predictors Hidden Layer Output Layer

Gender, age, cancer, surgery, immobilization,
tenderness, leg swollen, calf swollen, edema,
superficial veins, previous DVT

32–64–32–16 DVT diagnosis

An input layer of 11 neurons, four hidden layers of 32, 64, 32, and 16 neurons, and
an output layer representing the diagnostic result make up this ANN model. The input
layer’s activation function is a relu function, while the hidden layers’ activation function
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is tanh, the learning rates of the classifier are defined as constant equal to 0.001, the max
iteration number is 400, and with Adam as the optimizer.

The same ANN model is also trained on a Raspberry Pi 4 due to hardware limitations,
and the hyperparameters of the classifiers are the same as the PC, only the results are
slightly different and are discussed on Section 3. Furthermore, it is suggested that ML
models be used in DVT diagnosis to compare each of the models, including SVM, KNN,
DT, ET, and RF classifiers. The hyperparameters dealt with by the SVM classifier are as
follows: a random state of 42, a C parameter of 1.0, a “linear” classifier kernel, a degree of 3,
a gamma “scale”, and a random state of 3. The hyperparameters for the KNN classifier are
as follows: the number of neighbors is set to 50, the weights are set to “distance”, and the
algorithm is set to “ball tree”.

The Decision Tree classifier criteria used is “entropy”, the splitter is “random”, the
minimum sample divisors is 2, the minimum leaf samples are given by 1, the maximum features
are given by “auto”, the max features are 80, and there is a random state of 42.

The Extra Trees classifier is employed with a random state of 42 and many estimators
of 200. The criterion utilized is “gini”, the minimum sample divisors is 2, the minimum leaf
samples is 1, the maximum of features is “auto”, and the max features are given by 80.

Finally, the RF classifier has several estimators in 480, with “gini” as the criterion, 2 as
the minimum sample divisors, 1 as the minimum number of leaf samples, “auto” as the maximum
number of features, true Bootstrap, and 42 as the random state. All these hyperparameters are
shown in the Table 5 for every simulation in this paper.

Table 5. Hyperparameters of ML models.

Hyperparameter SVM KNN Decision
Tree

Extra
Trees

Random
Forest

C 1.0 N/A N/A N/A N/A

Kernel “linear” N/A N/A N/A N/A

Degree 3 N/A N/A N/A N/A

Gamma “scale” N/A N/A N/A N/A

Random State 42 42 42 42 42

N Neighbors N/A 50 N/A N/A N/A

Weights N/A “Distance” N/A N/A N/A

Algorithm SVM “Ball tree” DT ET RF

Criterion N/A N/A “Entropy” “gini” “gini”

Splitter N/A N/A “Random” N/A N/A

Min Samples Split N/A N/A 2 2 2

Min Samples Leaf N/A N/A 1 1 1

Max Features N/A N/A “auto” “auto” “auto”

Max Depth N/A N/A 80 80 N/A

N Estimators N/A N/A N/A 200 480

Bootstrap N/A N/A N/A N/A True

To improve the performance of each classifier, the hyperparameters must be optimized.
This can be accomplished using the GridSearchCV tool, which implements the standard
estimator API. By “fitting” it to a dataset, all possible combinations of parameter values are
evaluated, and only the best combination is kept. The chosen parameters maximize the
score of the missing data unless an explicit score is given, in which case it is utilized instead
of the default parameters for scoring [47,48]. The following classifiers have modified hyper-
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parameters: the Random Forest and Extra Trees classifiers (Number of Estimators, Criterion,
Max Features), the KNN classifier (Number of Neighbors, Weights, and Algorithm), the
Decision Tree classifier (Criterion, Splitter, Max Features, and Max Depth), and the SVM
classifier (C, Kernel, Degree (when using rbf, poly, and sigmoid)). They were distinct in
each of them regarding the different possibilities dealt with. The optimization procedure
is based on the “GridSearch” (GS) algorithm, which methodically calculates all possible
combinations of hyperparameters. The main disadvantage is that it needs a significant
amount of time and calculation [59].

The hardware used for the development of these experiments has the following
specifications: AMD Ryzen 7 2.9 GHz CPU, 8 GB 3200 MHz DDR4 RAM, NVIDIA GeForce
GTX 1660 Ti 6000 MB GPU, a Windows 10 operating system, and Python software with
Anaconda 3. Similarly, a Raspberry Pi 4 SBC with the following specs: CPU 1.5 GHz
Broadcom BXM2711, RAM 4GB 3200 MHz DDR4, Raspbian OS, and Python software
with Thonny IDE was used to study the behavior of the ML in various contexts and
system architectures. The following libraries utilized in this paper: Seaborn, which aids
in statistical data visualization within Python; Pandas, which is a library to perform data
analysis; NumPy, the platform’s data manipulation library; and Matplotlib, which is
Python’s animated and interactive static visualization library. Scikit-Learn was used to
create the ML models as well as custom neural networks.

3. Results

A two-class classification confusion matrix is developed to track the progress of the ML
model trained, allowing the metrics to be validated and the process to be more dependable
within the rubric by separating it into negative and positive DVT classifications, respectively.

Each of them is kept with the true diagnosis and the diagnosis predicted by the ML
algorithm; the first is True Negative (TN), in which both the true diagnosis and the ML
prediction are negative, and the second is False Negative (FN), in which the ML diagnosis
is negative but the true diagnosis is positive for DVT. Another level of the confusion matrix
is the False Positive (FP) criterion, which occurs when the algorithm diagnoses DVT as
positive when the actual diagnosis is negative, and finally, the True Positive (TP) criterion,
which occurs when the actual diagnosis is positive for the condition and the ML model
prediction is positive, resulting in a True Positive (TP), as shown in Table 6.

Table 6. Confusion matrix of two-class classification, taken from [10,60].

Predicted Diagnostic

True Diagnostic Negative DVT Positive DVT

Negative DVT True Negative False Positive

Positive DVT False Negative True Positive

For each ML model trained, the values of Accuracy, F1 Score, Precision, Recall, Speci-
ficity, and the area under the curve (AUC) are acquired and printed using sklearn metrics,
the acquisition of Accuracy, Precision, Recall, and the ROC curve was accomplished in
the case of the Multi-Layer Perceptron NN (MLP-NN), and the Accuracy (2), F1 score (3),
Specificity (4), and Recall (5) values are calculated using the following equations taken
from [24,61].

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Positive
(2)

F1 − Score = 2 · Precision · Recall
Precision + Recall

(3)

Specificity/Precision =
True Negative

False Positive + True Negative
(4)
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Sensitivity/Recall =
True Positive

False Negative + True Positive
(5)

These actions are carried out for both PC and Raspberry Pi 4 metrics acquisition.
Table 7 shows each of the scoring parameters gathered by each ML model (SVM, KNN,
Decision Tree, Extra Trees, Random Forest), the ANN Multi-Layer Perceptron (MLP) model
was also registered in the same way; each one includes the metrics (Accuracy, F1 Score,
Precision/Specificity, and Recall/Sensitivity) as well as the values that each of the boxes
of the two-class confusion matrix (True Positive, True Negative, False Positive and False
Negative) gave, allowing you to see how these findings are obtained.

Table 7. Scoring parameters of the ML algorithms evaluated in this study using 15% of the separated
data for testing.

Machine Learning Algorithm on PC

Scoring
Parameters SVM Decision

Trees
Extra
Trees RF MLP-NN KNN

True Positive 265 262 268 274 274 292

True Negative 1017 1061 1060 1064 1067 1064

False Positive 117 73 74 70 67 70

False Negative 101 104 98 92 92 74

Accuracy 0.8546 0.8820 0.8853 0.8920 0.8940 0.9040

F1 Score 0.7085 0.7475 0.7570 0.7718 0.7751 0.8021

Specificity/Precision 0.6937 0.7820 0.7836 0.7965 0.8035 0.8066

Sensitivity/Recall 0.7240 0.7158 0.7322 0.7486 0.7486 0.7978

Machine Learning Algorithm on RPi 4

Scoring
Parameters SVM Decision

Trees
Extra
Trees RF MLP-NN KNN

True Positive 265 262 268 274 274 292

True Negative 1017 1061 1060 1064 1067 1064

False Positive 117 73 74 70 67 70

False Negative 101 104 98 92 92 74

Accuracy 0.8546 0.8820 0.8853 0.8920 0.8940 0.9040

F1 Score 0.7085 0.7475 0.7570 0.7718 0.7751 0.8021

Specificity/Precision 0.6937 0.7820 0.7836 0.7965 0.8035 0.8066

Sensitivity/Recall 0.7240 0.7158 0.7322 0.7486 0.7486 0.7978

In terms of prediction model validation, there are two basic approaches utilized as
selection criteria for a prediction model: (i) The hold-out model and (ii) the K-fold cross
validation model. Both have the feature of utilizing a subset of the dataset for training
and keeping a portion for validation. The K-fold cross-validation is a method that is
utilized as a selection criterion for a prediction/classification model [56]. Essentially, it
entails using a subset of the dataset to construct the model and leaving another portion
of the dataset to validate it. The K-fold cross-validation procedure runs K times and
averages the classification results for each interaction. As shown in Figure 2, it entails
partitioning the dataset into k segments and selecting a different section to test the model
K times. In contrast, the remaining K-1 elements are used to train the ML model [10,56].
The average values computed in the loop are the performance metrics supplied by K-fold
cross-validation. This method is computationally expensive, but it does not waste a lot of
data (unlike setting an arbitrary validation set), which is a big plus in applications such as
inverse inference when the number of samples is small [47,48].
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Figure 2. Scheme of the K-fold cross-validation for the proposed ML models, inspired from [47,48].

Table 8 shows the average results of K-fold cross-validation corresponding to each
ML model. In this study, we use K = 5 folds, and this assisted in validating all the scoring
parameters of each ML model. The Accuracy, F1 score, Precision, Recall, and ROC-AUC
were the metrics that could be achieved through this cross-validation; the ML model that
had the best overall performance was the KNN, with the best scoring parameters, followed
by RF in second place. Later, we found the Extra Trees model, in fourth place is MLP-NN,
in fifth place are the Decision Trees, and last but not least is the SVM classifier.

Table 8. Average results of K-fold cross-validation with K = 5 of the ML models trained on PC.

ML Model
K-Fold Cross-Validation with K = 5

Accuracy F1 Score Specificity/Precision Sensitivity/Recall ROC-AUC

SVM 0.8468 0.6906 0.6804 0.7012 0.8589

Decision Trees 0.8677 0.7154 0.7528 0.6819 0.7562

Extra Trees 0.8710 0.7248 0.7552 0.6969 0.8831

RF 0.8744 0.7347 0.7576 0.7133 0.8830

MLP-NN 0.8632 0.7107 0.7347 0.6887 0.7924

KNN 0.8823 0.7586 0.7586 0.7586 0.8906

Regarding the final evaluation (testing), Tables 7 and 9 show the the outcomes of
performance metrics when the ML models were tested with 15% of the dataset that was
randomly split from the original dataset; i.e., this 15% of the data was kept separate from
the dataset used for training; therefore, they had influence neither during training nor in
cross-validation. As indicated in Table 7, the best ML model for this issue using PC is
KNN, which has the greatest metrics. MLP-NN is second, Random Forest (RF) is third,
Extra Trees is fourth, Decision Trees is fifth, and lastly, we have the SVM model that is sixth.
Within these rubrics, the accuracy values of the ML models are very good, ranging from
85.4% (SVM) to 90.4% (KNN), as well as the specificity of the model, which is somewhat
deplorable in the case of the SVM, being the lowest with 69.37 %, but the others far exceed it,
with the KNN classifier reaching 80.66%. It also possessed a superior comparative response
to the angiologist physician metrics of 73.82% in accuracy and a specificity of 71.43% [10],
proving to be a better technique to detect DVT.

Despite its restricted technology, the Raspberry Pi 4 achieves good results, attaining
the same metrics as the PC with no differences, demonstrating the strength of the Syste-
mOnChip (SoC), which is ideal for moving this type of diagnosis to smart devices. Despite
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the embedded system’s limited computational capability, excellent metrics for a portable
intelligent system are attained, outperforming the Wells technique in a typical approach.

Receiver Operating Characteristic (ROC) curves can be generated using the afore-
mentioned data, which indicate how well the model can distinguish between two objects.
They are key metrics for assessing an ML model’s performance. Furthermore, they are
employed in binary classification issues, i.e., problems with two distinct output classes.
The connection between the model’s True Positive Rate (TPR) and False Positive Rate (FPR)
is depicted by the ROC curve.

Both the ROC curve on PC and the ROC curve on Raspberry Pi 4 have a similar
response; the KNN model has a larger area under the curve, making it more visually
appealing, which is complemented by the scoring metrics mentioned in Table 7, which is
followed by the Random Forest (RF) classifier, as shown in Figure 3.

Similarly, it is possible to obtain PR curves (Precision–Recall curves), which are a
useful measure for observing prediction success when classes are highly disequilibrated
or unbalanced. In information retrieval, precision is a measure of the relevance of the
results, whereas recall is a measure of the number of truly relevant results that are returned.
The PR curve depicts the trade-off between Precision and Recall at various levels. A high
area under the curve indicates both High Recall and High Precision, with High Precision
corresponding to a low False Positive Rate and high Recall corresponding to a low False
Negative Rate. High scores in both cases show that the classifier is delivering accurate
(High Precision) results as well as the bulk of positive outcomes (High Recall).

Figure 4 shows that the PR curves of the Raspberry Pi 4 and PC are similar; the KNN
classifier has a better PR curve over all classifiers in both cases, having a larger area under
the curve covered within the graph, making it one of the best classifiers, followed by the
Extra Trees classifier.

(a) (b)

Figure 3. ROC curves. (a) ROC curve on PC, and (b) ROC curve on Raspberry Pi 4.

(a) (b)

Figure 4. PR curves. (a) PR curve on PC, and (b) PR curve on Raspberry Pi 4.

The next step is to obtain the performance metrics to evaluate the ML models; we rely
on the metrics of the Scikit learn library. The performance metrics are the Area Under the
Curve (AUC) using the trapezoidal method, the Cohen’s Kappa coefficient, Hamming Loss,
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and Matthew’s correlation coefficient, all of which are achieved on a PC and a Raspberry Pi
4 correspondingly, which are listed in Table 9.

According to Table 9, the KNN classifier is the best binary ML classifier for PC in
terms of performance metrics, followed by Random Forest (RF) in second, the Extra Trees
classifier in third, MLP-NN model in fourth, Decision Trees classifier in fifth, and last but
not least, the SVM classifier. The system’s measurements show an AUC ranging from
81.04% with the SVM model to 86.80% with the KNN classifier. The Hamming Loss is
another metric that goes from SVM at 14.53% to the best with a lower percentage, the KNN
model at 9.60%.

Table 9. Performance metrics of the six ML algorithms evaluated in this study using 15% of the
separated data for testing.

Performance Metrics on PC

Machine Learning
Algorithm ROC-AUC PR-AUC

Cohen’s
Kappa

Coefficient

Hamming
Loss

Matthew’s
Correlation
Coeficient

SVM 0.8104 0.6960 0.6118 0.1453 0.6120

Decision Trees 0.8257 0.6432 0.6707 0.1180 0.6718

Extra Trees 0.8334 0.8461 0.6821 0.1146 0.6828

Random Forest (RF) 0.8434 0.8283 0.7011 0.1080 0.7017

MLP-NN 0.8447 0.7102 0.7058 0.1060 0.7066

KNN 0.8680 0.8619 0.7388 0.0960 0.7388

Performance Metrics on RPi 4

Machine Learning
Algorithm ROC-AUC PR-AUC

Cohen’s
Kappa

Coefficient

Hamming
Loss

Matthew’s
Correlation
Coeficient

SVM 0.8104 0.6954 0.6118 0.1453 0.6120

Decision Trees 0.8257 0.6432 0.6707 0.1180 0.6718

Extra Trees 0.8334 0.8461 0.6821 0.1146 0.6828

Random Forest (RF) 0.8434 0.8283 0.7011 0.1080 0.7017

MLP-NN 0.8447 0.7102 0.7058 0.1060 0.7066

KNN 0.8680 0.8619 0.7388 0.0960 0.7388

For its part, the Raspberry Pi 4 achieved good results, which are identical in theory
to those acquired by the PC, when all of the parameters involved in each of the classi-
fiers, during training, and determining the performance metrics and score were taken
into account.

The average time of each of the proposed classifiers to be used within this problem
was obtained both on PC and Raspberry Pi 4. Figure 5 shows the average time of ten
training runs of each model with their respective characteristics, both on the computer and
on the SoC, to analyze the cost–benefit of each of the proposed classifiers to be used within
this problem. Due to factors of processing power operations, it turns out to be faster than
the Raspberry Pi 4, with the Decision Trees model being the fastest, followed closely by
the KNN, and further behind the Extra Trees, all with a training time of less than a second,
then the SVM, before reaching 2 s, the RF classifier, and finally, the MLP-NN being the
slowest of all with a time greater than 30 s. The training on the Raspberry Pi 4 takes two to
five times longer due to the embedded system’s processing limitations, with times of 0.02 s
in Decision Trees, 0.1 s in KNN models, 2.81 s in Extra Trees, 3.12 s in SVM, 6.89 s in RF
models, and finally 175.85 s in RF models.



Math. Comput. Appl. 2022, 27, 24 14 of 18

Figure 5. ML algorithms training time.

Usage Scenario

These ML models could be implemented on an embedded system such as the Rasp-
berry Pi 4 (RPi4) to develop a DVT diagnostic smart system. This could be integrated with a
color sensor (RGB), heart rate (BPM), and temperature (ºC), as well as a user interface (GUI)
that may include some questions according to the Wells criteria. Furthermore, the physician
can acquire the raw Wells criteria for each patient to be diagnosed with this proposed sys-
tem. The smart system will have a trained ML model into which the selected patient’s data
will be entered, and it will provide a diagnosis prediction for the patient’s condition. The
prospective apparatus proposed by this research can be shown in Figure 6. As discussed
before and shown in Table 1, the RPi4 is less expensive than a PC, which would result in
significant cost savings associated with the large-scale production of intelligent devices,
such as the manufacture of hundreds or millions of smart instruments.

(a) (b)

Figure 6. Suggested usage scenario. (a) Block diagram of proposed system and (b) proposed
system outline.
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4. Conclusions

Multiple ML classifiers were assessed for the prediction of DVT in the lower limbs
according to Wells criteria. They were subjected to different score and performance metrics
to assist with identifying the dependability of each one. The results of each of the created
models were subjected to cross-validation. The experimental results show that the KNN
model is the best in terms of performance and score metrics (higher accuracy (90.40%),
higher specificity (80.66%), ROC-AUC (86.80%), and PR-AUC (86.16%)), but it is second in
terms of execution time (0.01904 s) followed by the MLP-NN model, which is the slowest
in terms of execution time (30.08 s), but gives us the second best accuracy (89.40%). The
KNN classifier, on the other hand, among the models trained on the Raspberry Pi 4, has the
same score and performance metrics as on the PC; the main difference is in the execution
time, as it takes 0. 0951 s to train the model, making it the second in this category; however,
in real terms, it is possible to wait a little longer for a portable result, and in second place is
the MLP-NN classifier, with an execution time of 175.8485 s, making it the slowest. The
accuracy of all trained models on PC and Raspberry Pi 4 is greater than 85%, while the AUC
values are between 81 and 86%. In conclusion, as compared to traditional methods, the best
ML classifiers were effective at predicting DVT diagnosis in a timely and efficient manner.
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