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Introduction

Deep networks have become very useful for many computer vision applications. Deep 

neural networks (DNNs) are models composed of multiple layers that transform input 

data to outputs while learning increasingly higher-level features. Deep learning relies on 

learning several levels of hierarchical representations for data. Due to their hierarchical 

structure, the parameters of a DNN can generally be tuned to approximate target func-

tions more effectively than parameters in a shallow model [1]. Today, the typical number 

of network layers used in deep learning range from five to more than a thousand [2].

Activation functions are used in neural networks (NN) to transform the weighted sum 

of input and biases, of which is used to decide if a neuron can be fired or not [3]. Com-

monly used activation functions (nonlinearities) include sigmoid, Hyperbolic Tangent 

(tanh) and Rectified Linear Unit (ReLU) [4]. The use of ReLU was a breakthrough that 

enabled the fully supervised training of state-of-the-art DNNs [5]. Compared to tradi-

tional activation functions, like the logistic sigmoid units or tanh units, which are anti-

symmetric, ReLU is one-sided. This property encourages the hidden units to be sparse, 
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and thus more biologically plausible [6]. Because of its simplicity and effectiveness, 

ReLU became the default activation function used across the deep learning community 

[7]. A Convolutional Neural Network (CNN) using ReLU as its activation function clas-

sified 1.2 million images of the ImageNet dataset into 100 classes with an error rate of 

37.5% [5]. The deep network implemented by Severyn and Moschitti [8] using ReLU as 

the activation function demonstrated state-of-the-art performance at both the phrase-

level and message-level for Twitter sentiment analysis. At Semeval-2015 (International 

Workshop on Semantic Evaluation), Severyn and Moschitti’s models ranked first in the 

phrase-level subtask A and second in the message-level subtask B.

The ReLU function saturates when inputs are negative. These saturation regions cause 

gradient diffusion and block gradients from propagating to deeper layers [9]. Further-

more, ReLUs can die out during learning, consequently blocking error gradients and 

learning nothing [10]. For these reasons, different activation functions have been pro-

posed for DNN training. There is a lack of consensus on how to select a good activa-

tion function for a DNN, and a specific function may not be suitable for all applications. 

Since an activation function is generally applied to the outputs of all neurons, its com-

putational complexity will contribute heavily to the overall execution time [11]. Most 

research works on the activation functions are focused on the complexity of the nonlin-

earity that an activation function can provide [12], or how fast it can be executed [13], 

but often neglect the impact on different classification tasks.

The maxout nonlinearity [14] selects the maximum value within a group of differ-

ent outputs (feature maps) and is usually combined with dropout [15], which is widely 

used to regularize deep networks to prevent overfitting. In NNs, the maxout activa-

tion takes the maximum value of the pre-activations. Figure 1 shows two pre-activa-

tions per maxout unit, each of these pre-activations has a different set of weights from 

the inputs denoted as “V”. Each hidden unit takes the maximum value over the j units 

of a group: hi = maxj Zij where Z is the lineal pre-activation value, i is the number of 

maxout units and j the number of pre-activation values. Maxout chooses the maxi-

mum of n input features to produce each output feature in a network, the simplest 

Fig. 1 Two maxout units
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case of maxout is the Max-Feature-Map (MFM) [16], where n = 2. The MFM maxout 

computes the function max(wT
1
x + b1,w

T
2

+ b2) , and both the ReLU and leaky ReLU 

are a special case of this form. When specific weight values w1, b1, w2 and b2 of the 

MFM inputs are learned, MFM can emulate ReLU and other rectified linear variants. 

The maxout unit is helpful for tackling the problem of vanishing gradients because 

the gradient can flow through every maxout unit [17].

Figure 2 shows the maxout unit in a CNN architecture, where x is a 10 × 10 pixel 

image. The maxout unit takes the maximum value of the convolution operations y1 

and y2. The CNN learns the weights and bias in the filters F1 and F2. Dropout ran-

domly drops units or connections to prevent units from overfitting. It has been shown 

to improve classification accuracy in some computer vision tasks [18]. Park and Kwak 

[19] observed that dropout in CNNs regularizes the networks by adding noise to the 

output feature maps of each layer, yielding robustness to variations of images. In 2015, 

the Maxout network In Network (MIN) [17] method achieves in 2015 state-of-the-art 

or comparable performance on the Mixed National Institute of Standards and Tech-

nology (MNIST) [20], the Canadian Institute for Advanced Research (CIFAR-10), 

CIFAR-100 [21], and Street View House Numbers (SVHN) [22] datasets. Maxout lay-

ers were also applied in sentiment analysis [23], with a hybrid architecture consisting 

of a recurrent neural network stacked on top of a CNN. This approach outperforms a 

standard convolutional deep neural architecture as well as a recurrent network archi-

tecture and performs competitively compared to other methods on two datasets of 

annotated customer reviews.

CNNs were originally intended for computer vision tasks, being inspired by con-

nections in the visual cortex; however, they have been successfully applied to several 

DNN acoustic models [24–26] and natural language processing tasks [27, 28]. CNNs 

are designed to process input features which show local spatial correlations. They can 

also handle the local translational variance of their input, which makes the network 

more tolerant to slight position shifts [29].

Fig. 2 A CNN maxout unit
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The benefit of frequency domain convolution with acoustic models is that CNNs’ 

tolerance to input translations is useful for modeling acoustic data because acoustic 

models which use convolutions on the frequency domain are robust to speaker and 

speaking style variations. This is confirmed by studies that experimented with fre-

quency domain convolution. CNNs consistently outperform fully-connected DNNs 

on the same task [30–32]. When CNNs are used for sentiment analysis, the first layer 

of the network converts words in sentences to word vectors by table lookup. The 

word vectors are either trained as part of CNN training, or fixed to those learned by 

some other method (e.g., word2vec [33]) from an additional large corpus [34]. When 

working with sequences of words, convolutions allow the extraction of local features 

around each word.

Most of the comparisons between maxout and other activation functions only 

report a single performance metric, ignore network size, and only report accuracy 

on a single dataset, with no training time or memory use analysis. Furthermore, 

when compared with other activation functions, it is unclear whether marginal per-

formance gains with maxout are due to the activation function or an increase in the 

number of required trainable parameters. In this work, we evaluated multiple activa-

tion functions applied to multiple domains:

• Visual pattern recognition

• Facial verification

• Facial recognition

• Sentiment analysis

• Medical fraud detection

• Sound recognition

• Speech commands recognition.

To the best of our knowledge, this is the first study to evaluate multiple maxout 

variants and standard activations for multiple domains with significance testing. The 

main contributions herein can be summarized as follows:

• Evaluate four maxout functions and compare them to popular activation functions 

like tanh, ReLU, LReLU and SeLU.

• Compare training times for various activation functions.

• Evaluate whether marginal performance gains with maxout are due to the activa-

tion function or simply an increase in the number of trainable parameters versus 

ReLU networks.

• Determine whether maxout methods converge faster and if there is a significant 

accuracy performance difference between these methods and the standard activa-

tions.

The remainder of this paper is organized as follows. The “Related work” section 

presents related work on activation function evaluation on multiple classification 

domains. The “Materials and methods” section introduces the activation functions, 

datasets, and the experimental methodology employed in our experiments. Results 
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and analysis are provided in “Experimental results and discussion” section. Conclu-

sions with some directions for future work are provided in the “Conclusion” section.

Related work

Maxout is employed as part of deep learning architectures and has been tested against 

the MNIST, CIFAR-10 and CIFAR-100 benchmark datasets, but it has not been com-

pared against other activation functions using the same deep network architecture and 

hyperparameters. It is not clear if maxout enhances the overall accuracy on the tested 

datasets, or if any other activation function has the same effect. There are a few compari-

sons between maxout and traditional activation functions. Most of the comparisons do 

not report the details of their network to indicate whether an increased number of filters 

was accounted for in the experiment.

Most prior work focuses on proposing new activation functions, but few studies have 

compared different activation functions. Xu et  al. [35] investigated the performance 

of ReLU, leaky ReLU [36], parametric ReLU [37], and the proposed randomized leaky 

ReLU (RReLU) on three small datasets. In RReLU, the slopes of negative parts are rand-

omized in a given range in the training, and then fixed in the testing. The original ReLU 

was outperformed by three types of modified leaky ReLU. Mishkin et al. [38] evaluated 

the influence of activation functions (including ReLU, maxout, and tanh), pooling vari-

ants, network width, classifier design, image pre-processing, and learning parameters on 

the ImageNet dataset. The experiments confirmed the Swietojanski et al. [39] hypoth-

esis about maxout’s power in the final layers, as it showed the best performance among 

non-linear activation functions with speed close to ReLU. The bounded ReLU (brelu), 

bounded leaky ReLU (blrelu), and bounded bi-firing (bbifire) were presented in [11], 

and evaluated on classification of basic handwritten digits in MNIST database, complex 

handwritten digits from the mnist-rot-bg-img database, and facial recognition using 

the AR Purdue database. Experimental results for all three datasets demonstrate the 

superiority of all the proposed activation functions, with significant accuracy improve-

ments up to 17.31%, 9.19%, and 74.99% on MNIST, mnist-rot-bg-img, and AR Purdue 

databases respectively. In [7], automated search techniques were used to discover novel 

activation functions. The activation function that tends to work better than ReLU on 

deeper models across three datasets was h(x) = x · sigmoid(βx) named Swish, where β 

is either a constant or a trainable parameter. Only scalar activation functions were used 

in this study, this limitation would not allow the authors to find or evaluate the maxout 

activation.

Chang and Chen [17] presented the MIN network. It recorded 0.24%, 6.75% and 

28.86% error rates on the MNIST, CIFAR-10, and CIFAR-100, respectively. These error 

rates are the lowest compared to Network in Network (NIN) [40] and other NIN based 

networks such as Maxout Network [14] or the Maxout Network in Maxout Network 

(MIM) [41]. Oyedotun et al. [42] proposed a deep network with maxout units and elastic 

net regularization. On the MNIST dataset, it reached an error rate of 0.36% and 2.19% 

on the USPS dataset, surpassing the human performance error rate of 2.5% and all pre-

viously reported results. In [43], the Rectified Hyperbolic Secant (ReSech) activation 

function was proposed and evaluated on MNIST, CIFAR-10, CIFAR-100, and the Pang 

and Lee’s movie review datasets. The results suggest that ReSech units are expected to 
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produce similar or better results compared to ReLU units for various sentiment predic-

tion tasks. The maxout network accuracy was only compared with the CIFAR-10 and 

MNIST datasets. Goodfellow et  al. [44] investigated the catastrophic forgetting prob-

lem, testing four activation functions, including maxout, on MNIST and Amazon using 

two hidden layers followed by a softmax classification layer. The catastrophic forgetting 

problem is when a machine learning model is trained on one task, and when trained on 

a second task it forgets how to perform the first task. Their experiments showed that 

training with dropout is beneficial, at least on the relatively small datasets used in the 

paper. Also, the choice of activation function should always be cross-validated, if com-

putationally feasible. Maxout in combination with dropout showed the lowest test errors 

on all experiments.

The maxout activation is effective in speech recognition tasks [45], but it has not been 

widely tested on sentiment analysis. Jebbara and Cimiano [23] used the maxout activa-

tion in their CNN portion of a hybrid architecture consisting of a recurrent NN stacked 

on top of a CNN. A maxout layer was also implemented in the Siamese bidirectional 

Long Short-Term Memory (LSTM) network proposed by Baziotis et al. [46]. The maxout 

layer was selected as it amplifies the effects of dropout. The output of the maxout layer 

is connected to a softmax layer which outputs a probability distribution over all classes.

Phoneme recognition tests on the Texas Instruments Massachusetts Institute of 

Technology (TIMIT) database show that switching to maxout units from rectifier units 

decreases the error rate for each network configuration studied and yields relative error 

rate reductions of between 2 and 6% [24]. Zhang et al. [45] introduced two new types 

of generalized maxout units the p-norm and soft-maxout. In experiments on the Large 

Vocabulary Continuous Speech Recognition (LVCSR) tasks in various languages, the 

p-norm units perform consistently better than various versions of maxout, tanh and 

ReLU. In addition, Swietojanski et al. [39] investigated maxout networks for speech rec-

ognition. Through the experiments on voice search and short message dictation data-

sets, it was found that maxout networks converged around three times faster to train 

and offer lower or comparable word error rates on several tasks when compared to the 

networks with logistic nonlinearity. Zhang et  al. [47] presented a CNN-based end-to-

end speech recognition framework. The maxout unit recorded the lowest error rate 

compared to ReLU and parametric ReLU.

Using the Public Use File (PUF) data from CMS, Branting et al. [48] proposed graph 

analysis as a framework for healthcare fraud risk assessment. Their algorithm was evalu-

ated on the Part B (2012–2014), Part D (2013) and List of Excluded Individuals/Entities 

(LEIE) datasets. Using tenfold cross-validation on the full 12,000-member and 11-fea-

ture dataset, the mean f-measure was 0.919 and the mean Receiver Operating Charac-

teristic (ROC) area was 0.960. Sadiq et al. [49] use the 2014 CMS Part B, Part D, and 

DMEPOS datasets (using only the provider claims from Florida) in order to find anoma-

lies that possibly point to fraudulent or anomalous behavior. A novel framework based 

on Patient Rule Induction Method (PRIM) was presented, where abnormal behaviors 

of the physicians are detected. The experimental results show that their framework can 

effectively shrink the target dataset and deduce a potential suspect subset of physicians 

who submit several anomalous claims and probably qualify as fraudsters. The attribute 

sub-space and their correlations are used in PRIM to characterize the low conditional 



Page 7 of 35Castaneda et al. J Big Data            (2019) 6:72 

probability region. The attribute space was characterized by PRIM, which provides 

a deeper understanding of how certain attributes are the key predictors in identifying 

fraud. Herland et al. [50] focused on the detection of Medicare fraud using the CMS Part 

B, Part D, and DMEPOS datasets. A fourth dataset was created by combining the three 

primary datasets. Based on the area under the ROC curve performance metric, their 

results show that the combined dataset with the Logistic Regression (LR) learner yielded 

the best overall score at 0.816, closely followed by the Part B dataset with LR at 0.805.

Our study evaluates 11 activation functions using deep CNN and NN architectures. 

As opposed to the papers cited in this section, we evaluate if an increase in the number 

of filters in ReLU enhances the overall accuracy with significance testing. Furthermore, 

we compare the training and convergence time for all the evaluated activation functions.

Materials and methods

In this section, we introduce the activation functions, datasets, and the empirical meth-

odology employed in this study. In “Activation functions” section, we introduce each 

evaluated activation function. In “Datasets” section, we describe the datasets employed 

in our experiments. In the last “Empirical methodology” section, we present our empiri-

cal methodology.

Activation functions

Hyperbolic tangent

A hyperbolic tangent (tanh) function is a ratio between hyperbolic sine and cosine func-

tions of x (Fig. 3): 

Rectified units

Rectified linear unit (ReLU) [4] is defined as:

(1)h(x) = tanh =
sinh (x)

cosh (x)
=

ex − e−x

ex + e−x
=

1 − e−2x

1 + e−2x

Fig. 3 Hyperbolic tangent
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where x is the input and h(x) is the output. The ReLU activation is the identity for posi-

tive arguments and zero otherwise (Fig. 4).

Leaky ReLU (LReLU) [36] assigns a slope to its negative input. It is defined as:

where a ∈ (0, 1) is a predefined slope (Fig. 5).

The scaled exponential linear unit (SeLU) [51] is given by:

(2)h(x) = max(0, x)

(3)h(x) = min(0, ax) + max(0, x)

Fig. 4 Rectified linear unit

Fig. 5 Leaky rectified linear unit (α = 0.1)
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where x is used to indicate the input to the activation function. Klambauer et al. [51] jus-

tify why α and � must have the following values:

to ensure that the neuron activations converge automatically toward an average of 0 and 

a variance of 1 (Fig. 6).

Maxout units

The maxout unit takes as the input the output of multiple linear functions and returns 

the largest:

In theory, maxout can approximate any convex function [14], but a large number 

of extra parameters introduced by the k linear functions of each hidden maxout unit 

result in large RAM storage memory cost and considerable increase in training time, 

which affect the training efficiency of very deep CNNs. For our comparisons, we use 

four variants of the maxout activation: an activation with k = 2 input neurons for 

every output (maxout 2-1), an activation with k = 3 input neurons for every output 

(maxout 3-1), an activation with k = 6 input neurons for every output (maxout 6-1), 

and a variant of maxout with k = 3 where the two maximum neurons are selected 

(maxout 3-2). These maxout variants have proven to be effective in classification tasks 

such as image classification [44], facial recognition [16], and speech recognition [18]. 

The maxout unit in Fig. 7 mimics a quadratic activation function. The blue quadratic 

(4)h(x) = �

{

x if x > 0

αex − α if x ≤ 0

}

(5)
∝= 1.6732632423543772848170429916717

� = 1.0507009873554804934193349852946

(6)
h(xi) = max w

k · xi + b
k

k ∈ {1, . . . ,K }

Fig. 6 Scaled exponential linear unit
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function is not created by the maxout unit, it is only pictured to show what the max-

out activation function can approximate when using five linear nodes.

p‑norm

The p-norm is the nonlinearity:

where the vector x represents a small group of inputs [45]. If all the xi were known to be 

positive, the original maxout would be equivalent to the p-norm with p = ∞ (Fig. 8).

Logistic sigmoid

The logistic sigmoid is defined as:

where x is the input. With a range between 0 and 1, the sigmoid function can be used to 

predict posterior probabilities [52] (Fig. 9).

Datasets

MNIST

The Mixed National Institute of Standards and Technology (MNIST) dataset [20] 

consists of 8-bit grayscale handwritten digit images, 28 × 28 pixels in size, organized 

into 10 classes (0 to 9) with 60,000 training and 10,000 test samples.

(7)h = �x�p =

(

∑

i

|xi|
p

)1/p

(8)h(x) =
1

1 + e−x

Fig. 7 Maxout (k = 5)
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Fashion‑MNIST

The Fashion-MNIST [53] dataset consists of 60,000 examples where each sample is a 

28 × 28 grayscale image, associated with a label from 10 fashion item classes: T-shirt/

top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot.

CIFAR‑10 and 100

The Canadian Institute for Advanced Research (CIFAR)-10 dataset [21] consists of natu-

ral color images, 32 × 32 pixels in size, from 10 classes with 50,000 training and 10,000 

Fig. 8 p-norm (p = 2 i = 5)

Fig. 9 Logistic sigmoid
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test images. The CIFAR-100 dataset is the same size and format as the CIFAR-10; how-

ever, it contains 100 classes. Thus, the number of images in each class is only one tenth 

of that of CIFAR-10.

LFW

The Labeled Faces in the Wild (LFW) dataset contains more than 13,000 images of faces 

collected from the web by Huang et al. [54] Each face was labeled with the name of the 

person pictured, with 1680 of the people pictured having two or more distinct photos in 

the dataset. Images are 250 × 250 pixels in size. The only constraint on these faces is that 

they were detected by the Viola-Jones face detector [55]. The database was designed for 

studying the problem of unconstrained facial recognition.

MS‑Celeb‑1M

The MS-Celeb-1M dataset released by Microsoft [56] contains 10 million celebrity face 

images for the top 100K celebrities obtained from public search engines, which can be 

used to train and evaluate both face identification and verification algorithms. There are 

approximately 100 images for each celebrity, resulting in about 10 million web images. 

The image resolution is up to 300 × 300 pixels. The authors present a distribution of the 

million celebrities in different aspects including profession, nationality, age, and gender. 

The MS-Celeb-1 M is a larger dataset compared to the other test datasets and requires 

hyperparameter tuning. To avoid the unfair comparison issues associated with changing 

hyperparameters, we decided to use a manageable subset of 1000 identities which does 

not require fine-tuning to train. The identities were selected from a cleaned subset of 

MS-Celeb-1M used for the low-shot learning challenge. These identities were the top 

1000 in a list ordered by the number of images.

Amazon product

The original Amazon product review dataset was collected by McAuley et  al. [57]. It 

contains product reviews and scores from 24 product categories sold on Amazon.com, 

including 142.8 million reviews spanning from May 1996 to July 2014. Review scores lie 

on an integer scale from 1 to 5. The sentiment dataset constructed from the Amazon 

product review data in [58] was reused, where 2,000,000 reviews had a score greater than 

or equal to 4 stars and 2,000,000 reviews had a score less than or equal to 2 stars. The 

first group is labeled as positive sentiment while the second group is labeled as negative 

sentiment, creating a positive/negative sentiment dataset. A second subset here called 

“Amazon1M” was used with one million Amazon product reviews constructed in [59]. 

The labels were automatically generated from the star rating of each review by assigning 

a rating below 2.5 as negative and a rating above 2.5 as positive.

Sentiment140

Sentiment140 [60] contains 1.6 million positive and negative tweets, collected and anno-

tated by querying positive and negative emotions, with a tweet considered positive if it 

contains a positive emoticon like “:)” and negative if, it contains a negative emoticon like 

“:(”.



Page 13 of 35Castaneda et al. J Big Data            (2019) 6:72 

Yelp

We use the sentiment datasets collected in [59]. It contains 429,061 Yelp reviews from 

12 cities in the United States (Yelp500K). This is an imbalanced dataset with 371,292 

positive and 57,769 negative instances. Another 500K reviews were scraped to create 

a second dataset with a million reviews (Yelp1M).

Medicare Part B

The CMS [61] released the Part B dataset [62] and describes Medicare provider 

claims information for the entire US and its commonwealths, where each instance in 

the data shows the claims for a provider and procedure performed for a given year. 

Physicians are identified using their unique National Provider Number (NPI) [63], 

while procedures are labeled by their Healthcare Common Procedure Coding Sys-

tem (HCPCS) code [64]. Other claims information includes average payments and 

charges, the number of procedures performed and medical specialty (also known as 

provider type).

Medicare Part D

The Part D PUF [65] provides information on prescription drugs prescribed by indi-

vidual physicians and other health care providers and paid for under the Medical Part 

D Prescription Drug Program. Each physician is denoted by his or her NPI and each 

drug is labeled by its brand and generic name. Other information includes average 

payments and charges, variables describing the drug quantity prescribed and medical 

specialty.

DMEPOS

The Durable Medical Equipment, Prosthetics, Orthotics and Supplies (DMEPOS) 

PUF [66] presents information on DMEPOS products and services provided to Medi-

care beneficiaries ordered by physicians and other healthcare professionals. Physi-

cians are identified using their unique NPI within the data while products are labeled 

by their HCPCS code. Other claims information includes average payments and 

charges, the number of services/products rented or sold and medical specialty (also 

known as provider type).

Combined CMS dataset

A combined dataset was created in [50] after processing Part B, Part D, and the DME-

POS datasets, containing all the attributes from each, along with the fraud labels derived 

from the List of Excluded Individuals and Entities (LEIE). The combining process 

involves a join operation on NPI, provider type, and year. Due to there not being a gen-

der variable present in the Part D data, the authors did not include this variable in the 

join operation condition and used the gender labels from Part B while removing the gen-

der labels gathered from the DMEPOS dataset after joining. In combining these data-

sets, it is limited to those physicians who have participated in all three parts of Medicare.

For each dataset (Part B, Part D and DMEPOS), the information was combined for 

all available calendar years. For Part B and DMEPOS, all attributes not present in 
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each available year were removed. The Part D dataset had the same attributes in all 

available years. For Part B, the standard deviation variables were removed from 2012 

to 2013 and standardized payment variables were removed from 2014 to 2015 as they 

were not available in the other years. For DMEPOS, the standard deviation variable 

was removed from 2014 to 2015 as it was not available in 2013. For all three datasets, 

all instances that either were missing both NPI and HCPCS/drug name values or had 

an invalid NPI were removed. For Part B, all instances with HCPCS codes referring to 

prescriptions were filtered out. The prescription-related codes are not actual medical 

procedures, but instead are for specific services listed on the Medicare Part B Drug 

Average Sales Price file. For the Part B dataset, eight features were kept while the 

other 22 were removed. For the Part D dataset, seven features were kept and the other 

14 were removed. For the DMEPOS dataset nine features were kept and the other 19 

were removed. The excluded attributes provide no specific information on the claims, 

drugs administered, or referrals, but rather encompass provider-related information, 

such as location and name, as well as redundant variables like text descriptions which 

can be represented by using the variables containing the procedure or drug codes. 

For Part D, variables that provided count and payment information for patients 65 or 

older were not included, as this information is encompassed in the retained variables. 

The combined dataset contains all the retained features from all three datasets. The 

purpose of this new dataset is to provide a more encompassing view into a physician’s 

behavior over various branches of Medicare, over individual Medicare parts.

Google speech commands dataset

The Google speech commands (GSC) dataset v0.02 [67] consists of 105,829 one-second 

long audio files of 35 keywords, by 2618 speakers, with each file consisting of only one 

keyword encoded as linear 16-bit single-channel PCM values at a 16 kHz rate. A spec-

trogram using a fast Fourier transform (FFT) is computed for each wave file in the data-

set. Frequencies are summed into 129 bins, and each 1-second sample is divided into 

71-time bins. The image for each instance is 129 × 71. The number in each “pixel” repre-

sents the power spectral density in dB, and each image is scaled between 0 and 1, relative 

to the maximum and minimum dB in that image. Samples are not scaled to the maxi-

mum and minimum of the whole dataset because recordings were crowdsourced, so the 

volume for different recordings is not consistent.

IRMAS

The IRMAS dataset [68] is intended to be used for training and testing methods for the 

automatic recognition of predominant instruments in musical audio. The instruments 

considered are cello, clarinet, flute, acoustic guitar, electric guitar, organ, piano, saxo-

phone, trumpet, violin, and human singing voice. It includes music from various decades 

from the past century, hence the difference in audio quality. The training data consists 

of 6705 audio files with excerpts of 3  s from more than 2000 distinct recordings. The 

testing data consists of 2874 excerpts with lengths between 5 and 20 s. No tracks from 

the training data were included. Unlike the training data, the testing data contains one 

or more predominant target instruments. All audio files are in a 16-bit stereo WAV for-

mat sampled at 44.1 kHz. We truncate the recordings in the dataset to 1 s in length and 
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process them as spectrograms, like the preprocessing of the Google speech commands 

dataset.

IDMT‑SMT‑audio‑effects

The IDMT-SMT-audio-effects [69] is a dataset for electric guitar and bass audio effects 

detection. The dataset consists of 55,044 WAV files with a single recorded note of which 

20,592 are monophonic bass notes, 20,592 are monophonic guitar notes, and 13,860 are 

polyphonic guitar sounds. There are 11 different audio effects: feedback delay, slap back 

delay, reverb, chorus, flanging, phaser, tremolo, vibrato, distortion, overdrive, and no 

effect (unprocessed notes/sounds). For detailed descriptions of these audio effects please 

refer to [70].

Empirical methodology

We adopt the general convolutional network architecture demonstrated in recent years 

to advance the state-of-the-art in supervised classification [21]. We evaluate classifica-

tion performance on a variety of CNN architectures. In these architectures, a series of 

convolutional layers for feature extraction are followed by fully-connected layers for 

classification. Max-pooling is used between convolutional layers to reduce the dimen-

sionality of the network input, and dropout is used before fully-connected layers to pre-

vent overfitting.

A suitable network architecture is selected for each dataset according to the input 

size and number of instances in the data, as specified in Table 1. Architecture (A) was 

applied to Medicare Part B, D and combined datasets, architecture (B) to the MNIST, 

Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, and architecture (C) to the LFW 

dataset. The architecture (D) was utilized to the Sentiment140, Yelp, and Amazon 

datasets, architecture (E) to the Google Speech Commands, IRMAS, and IDMT-SMT-

Audio-Effects datasets, and architecture (F) to the MS-Celeb dataset. The depth of the 

configurations increases from left (A) to right (F), as more layers are added. In general, 

fewer convolutional layers are used for datasets with smaller number of samples, while 

deeper architectures are used for larger datasets. Unless otherwise specified, max-pool-

ing is performed with a filter size and stride of 2, and convolutional layer inputs are pad-

ded to produce same-size outputs.

Within each dataset, experiments are carried out using the selected CNN architecture, 

modified only to fit the memory specifications of the activation functions. For example, a 

CNN for the MNIST dataset with 10 output filters in the first convolutional layer would 

be modified to output 20 filters as input to a maxout 2-1 activation function. The only 

layer in each network which is not modified according to the activation function is the 

final classification layer, where a softmax activation is applied. For networks trained on 

the MS-Celeb dataset, we use the 9-layer light CNN framework presented in [16], which 

contains five convolution layers, four NIN layers [40], activation layers and four max-

pooling layers. We implement each NIN layer as a convolutional layer with a filter size of 

one.

The models were trained with a learning rate of 0.01 on all but the MS-Celeb dataset. 

For this dataset, the learning rate was 0.0001, which is the rate the CNN architecture 

for the MS-Celeb could converge. Rather than tune each network in our comparison 
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optimally with a validation set, we implement a set of uniform stopping criteria during 

training to maintain a consistent protocol so that network performance on a test set is 

suitable for comparison across activations [21]. Early stopping criteria is the same for 

every dataset, with the slope of the test loss calculated over a running window of the 

past three epochs on MNIST, FMNIST, CIFAR and LFW datasets, and past four epochs 

on the rest of the datasets. When the slope becomes positive, testing loss no longer 

decreases and network training is stopped. The optimizer is stochastic gradient descent 

Table 1 CNN and NN Configurations

Convolutional layers (Conv) indicate the number of filters (f=), the kernel size (k=) and the padding (p=). Convolution 

network in network layers (C-NIN) indicate the number of filters (f=), and the kernel size (k=). Max-pool layers (Pool) 

indicate the kernel size (k=) and the stride (s=). Dropout layers (DO) show the applied keep probability (kp=), and the fully-

connected layers (FC) display the number of neurons (n=)

a Neurons applied only to the CIFAR-100 dataset

b Neurons applied only to the IRMAS and IDMT-SMT-Audio-Effects datasets

Layer A
Medicare 
Part B
Medicare 
Part D
DMEPOS
Combined 
CMS

B
MNIST
FMNIST
CIFAR10
CIFAR100

C
LFW

D
Sent140
Amazon
Yelp

E
GSC
IRMAS
IDMT-SMT-
Audio-Effects

F
MS-Celeb

Input 123
123
123
123

28 × 28 × 1
28 × 28 × 1
32 × 32 × 3
32 × 32 × 3

128 × 128 × 1 8 × 140 × 1
8 × 500 × 1
8 × 500 × 1

129 × 71 × 1
129 × 71 × 1
100 × 100 × 1

128 × 128 × 1

Conv N/A f = 10 k = [5,5] 
p = none

f = 32 k = [7,7] f = 64 k = [3,3] f = 32 k = [5,5] f = 48 k = [5,5]

Pool N/A k = [2,2] 
s = [2,2]

k = [2,2] 
s = [2,2]

N/A k = [2,2] 
s = [2,2]

k = [2,2] s = [2,2]

C-NIN N/A N/A N/A N/A N/A f = 48 k = [1,1]

Conv N/A f = 20 k = [5, 5] 
p = none

f = 64 k = [5, 5] f = 64 k = [3,3] f = 64 k = [3,3] f = 96 k = [3,3]

Pool N/A N/A k = [2,2] 
s = [2,2]

N/A N/A k = [2,2] s = [2,2]

C-NIN N/A N/A N/A N/A N/A f = 96 k = [1,1]

Conv N/A N/A f = 64 k = [3,3] f = 64 k = [3,3] f = 64 k = [3,3] f = 64 k = [3,3]

Pool N/A N/A N/A k = [2,2] 
s = [2,2]

k = [2,2] 
s = [2,2]

k = [2,2] s = [2,2]

C-NIN N/A N/A N/A N/A N/A f = 192 k = [1,1]

Conv N/A N/A N/A f = 64 k = [3,3] f = 64 k = [3,3] f = 128 k = [3,3]

C-NIN N/A N/A N/A N/A N/A f = 128 k = [1,1]

Conv N/A N/A N/A f = 64 k = [3,3] f = 64 k = [3,3] f = 64 k = [3,3]

Conv N/A N/A N/A f = 64 k = [3,3] N/A N/A

Pool N/A N/A N/A k = [2,2] 
s = [2,2]

k = [2,2] 
s = [2,2]

k = [2,2] s = [2,2]

FC n = 512 N/A n = 256 n = 512 n = 512 n = 256

DO kp = 0.5 kp = 0.5 kp = 0.5 kp = 0.5 kp = 0.5 kp = 0.5

Pool N/A k = [2,2] 
s = [2,2]

k = [2,2] 
s = [2,2]

N/A N/A N/A

FC n = 64 n = 50
n = 250a

N/A n = 512 n = 512 n = 256

DO kp = 0.5 kp = 0.5 kp = 0.5 kp = 0.5 kp = 0.5 kp = 0.5

FC n = 2 n = 10
n = 100a

n = 2 n = 2 n = 35
n = 11b

n = 1000
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and the loss function is the categorical cross-entropy. Table 2 displays the momentum, 

and batch size per dataset.

The number of trainable parameters using ReLU and maxout activation functions are 

presented in Table 3. Doubling the ReLU units not only doubles the number of train-

able parameters, each layer will output twice as many feature maps. Unlike the maxout 

unit with k = 2 (maxout 2-1) has twice as many parameters, but each unit still outputs 

one feature map. Similarly, a maxout unit with k = 3 (maxout 3-1) has 3x the number of 

parameters, but still only outputs one feature map.

The classification tasks and datasets used to evaluate the activation functions are:

1. Image classification using the MNIST, F-MNIST, CIFAR-10, and CIFAR-100 data-

sets. These are the most widely used datasets in machine learning, MNIST and 

CIFAR-10 were the two most common datasets in NIPS 2017 [71].

2. Facial verification using the LFW dataset. The LFW is a popular benchmark dataset 

that contains diverse illumination conditions combined with variations in pose and 

expressions. Companies, independent teams and data-scientists use this dataset to 

verify the quality of their algorithms.

3. Facial recognition using the MS-Celeb dataset. The dataset was tested in [16] using a 

9-layer light CNN framework using maxout 2-1. The MS-Celeb-1M dataset contains 

massive noisy labels, a challenge a facial recognition system has to attenuate and if 

possible eliminate.

4. Sentiment analysis using two Amazon product data subsets (1 and 4 million reviews), 

Sentiment140 and two subsets from the Yelp text datasets (500,000 and 1,000,000 

reviews). We used the datasets constructed in [59]. This provides us with a data-

set consisting of short text (sentiment140) and four datasets with longer instances 

(Amazon and Yelp reviews).

Table 2 Momentum and batch size per dataset

Dataset Momentum Batch size

MNIST 0.5 64

Fashion-MNIST 0.5 64

CIFAR-10 0.5 64

CIFAR-100 0.5 64

LFW 0.5 64

MS-Celeb 0.9 128

Medicare Part B N/A 200

Medicare Part D N/A 200

DMEPOS N/A 200

Combined CMS N/A 200

Sentiment140 N/A 200

Google Speech Commands N/A 200

IRMAS N/A 200

IDMT-SMT-Audio-Effects N/A 200

Amazon4M N/A 200

Amazon1M N/A 200

Yelp500K N/A 200

Yelp1M N/A 200
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5. Fraud detection using the Medicare Part B, Part D, DMEPOS, and combined Medi-

care datasets. The datasets were preprocessed, and the combined CMS created in 

[50]. The datasets focus on the detection of Medicare fraud using the Medicare Pro-

vider Utilization and Payment Data: Physician and Other Supplier (Part B), Medicare 

Provider Utilization and Payment Data: Part D Prescriber (Part D), and Medicare 

Provider Utilization and Payment Data: Referring Durable Medical Equipment, Pros-

thetics, Orthotics and Supplies (DMEPOS).

6. Speech command classification using the Google speech commands dataset. The 

dataset contains single-word speaking commands that can be converted to 129 × 71 

pixel images. Other speech command datasets have recordings with a longer dura-

tion causing memory constraints when testing maxout activation functions.

7. Audio classification using the IRMAS and IDMT-SMT-Audio-Effects datasets. 

Similar to the Google speech commands dataset, the IRMAS and IDMT-SMT-

Audi-Effects datasets were truncated to 1 s of audio and converted to 129 × 71 and 

100 × 100 pixel images respectively.

Face verification, or authentication is a one-to-one (1:1) match that compares a test 

face image against a gallery face image whose identity is being claimed. The current 

standard for benchmarking performance on unconstrained face verification is the 

Labeled Faces in the Wild (LFW) dataset [54]. We compare activations on View 2 

Table 3 Number of trainable parameters per dataset

Dataset ReLU ReLU 2x ReLU 3x ReLU 6x MFM 2-1 MFM 3-1 MFM 6-1 MFM 3-2

Fashion-

MNIST

21,840 85,670 191,500 760,990 43,170 64,500 128,490 128,000

MNIST 21,840 85,670 191,500 760,990 43,170 64,500 128,490 128,000

CIFAR-10 31,340 122,670 274,000 1,087,990 62,170 93,000 185,490 183,500

Medicare 

Part B

96,450 258,434 485,954 1,561,730 192,770 289,090 578,050 387,522

Medicare 

Part D

97,474 260,482 489,026 1,567,874 194,818 292,162 584,194 390,594

DMEPOS 105,666 276,866 513,602 1,617,026 211,202 316,738 633,346 415,170

Combined 

CMS

120,002 305,538 556,610 1,703,042 239,874 359,746 719,362 458,178

CIFAR-100 156,130 572,160 1,248,190 4,836,280 287,160 418,190 811,280 833,190

IDMT-SMT-

Audio-

Effects

825,996 3,294,476 7,405,452 29,593,356 1,648,908 2,471,820 4,940,556 4,938,636

IRMAS 1,808,779 7,226,123 16,252,043 64,981,259 3,614,731 5,420,683 10,838,539 10,836,363

Senti-

ment140

2,743,234 10,966,914 24,671,042 98,666,114 5,485,442 8,227,650 16,454,274 16,449,346

MS-Celeb 2,997,432 11,469,704 25,417,816 100,117,192 5,737,864 8,478,296 16,699,592 16,948,056

LFW 4,286,434 17,137,602 38,553,506 154,189,634 8,572,354 12,858,274 25,716,034 25,705,890

Google 

Speech 

Com-

mands

6,767,267 27,028,771 60,784,547 243,017,507 13,516,579 20,265,891 40,513,827 40,525,219

Amazon1M 8,641,474 34,559,874 77,755,202 311,002,754 17,281,922 25,922,370 51,843,714 51,838,786

Yelp500K 8,641,474 34,559,874 77,755,202 311,002,754 17,281,922 25,922,370 51,843,714 51,838,786

Yelp1M 8,641,474 34,559,874 77,755,202 311,002,754 17,281,922 25,922,370 51,843,714 51,838,786

Amazon4M 17,030,082 68,114,306 153,252,674 612,992,642 34,059,138 51,088,194 102,175,362 102,170,434
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of the dataset, which consists of image pairs that are labeled either matching or not 

matching. We process each face image to be grayscale and cropped to 128 × 128 pix-

els. After preprocessing, we train using 90% of the View 2 pairs and evaluate each 

network on the final 10% of pairs. Face identification is a one-to-many matching (1:N) 

process that compares a test face image against all the gallery images in a face data-

base to determine the identity of the test face. Face identification was tested on the 

MS-Celeb dataset. To facilitate efficient training, we filter the MS-Celeb subset to 

include slightly over 100,000 face images corresponding to 1000 celebrity classes. We 

use an additional test set of approximately 10,000 images to validate each network. 

Each image is cropped to 128 × 128 pixels.

For our sentiment analysis, the text was embedded as proposed by Prusa et al. [72]. The 

authors propose a log(m) character embedding where each character in the alphabet is 

given an integer value, where m is the alphabet size. The equivalent binary representation of 

a character’s integer value is then found and turned into a vector of 0s and 1s. This results 

in a denser representation compared to 1-of-m character embedding [73]. This embedding 

was tested against the 1-of-m embedding using an alphabet size of 70 and 256. Results show 

significantly higher performance and a faster training time when using the log(m) represen-

tation of the data.

As the Medicare datasets are highly imbalanced, we employ random under-sampling 

(RUS) to mitigate the adverse effects of class imbalance. RUS is the process of randomly 

removing instances from the majority class of a dataset in order to balance the ratio (non-

fraudulent/fraudulent). We generate a class distribution (majority:minority) of 50:50. There 

are 2036 samples in Medicare Part D, 2818 in Medicare part B, 1275 in DMEPOS and 946 

in the CMS combined dataset.

ReLU is also evaluated with 2x, 3x and 6x the number of filters in each convolutional 

layer. The purpose of including these variants is to consider the impact of increased neu-

rons on the accuracy, training time and memory usage of NNs independent of the maxout 

activation. Because maxout incorporates both the max operation and the use of duplicate 

neurons with additional memory, it is necessary to consider how each component of the 

activation contributes to its performance.

Maxout is evaluated with the following combinations of input and output neuron quanti-

ties: 2-1, 3-1, 3-2 and 6-1. We compute maxout for our four activations using the equations 

below, which are suitable for parallelization with modern deep learning software and paral-

lel computer hardware. In general, we use maximum (max) and minimum (min) operations 

with two inputs to achieve maximum computational efficiency during training.

(9)maxout 2-1(x1, x2) = max(x1, x2)

(10)maxout 3-1(x1, x2, x3) = max(x1, max(x2, x3))

(11)
maxout 6-1(x1, x2, x3, x4, x5, x6) = max(x1, max(x2, max(x3, max(x4, max(x5, x6)))))

(12)
maxout 3-2(x1, x2, x3) = max(x1, max(x2, x3)),

min(max(x1, x2), min(max(x2, x3), max(x1, x3)))
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While it would be ideal to record the wall clock time needed to train each network, 

modern high-performance computing environments present hardware and software 

challenges which make it difficult to safely compare training time across runs or acti-

vations. Thus, we produce a metric which represents the time cost of training with a 

particular activation function. This metric is produced for each activation on an isolated 

desktop computing environment. We record the wall clock time required to train each 

network in our comparison for 100 batches and take the average time across 10 runs on 

a single desktop computer with 32 GB of RAM running Ubuntu 16.04 with an intel i7 

7th generation CPU and an NVIDIA 1080ti GPU. Those times are produced indepen-

dently for each activation on each dataset. We note that the 100 batch intervals in our 

timing measurements do not constitute complete training epochs. Computations are 

timed over 100 batches to average out any variability in individual batch times and facili-

tate accurate comparison between activations.

A total of 11 activation functions were evaluated, where each experiment compared:

• Classification accuracy

• Average 100 batches time

• Average 100 batches total training time (average 100 batches time multiplied by 

number of epochs to converge).

Due to memory constraints, ReLU3x and ReLU6x were not included in comparisons 

on the text, face classification, fraud detection and audio experiments. These ReLU vari-

ants produce layers with 3x and 6x more feature maps than the maxout units causing 

memory limitations particularly with large datasets. Maxout 6-1 was also excluded from 

the MS-Celeb task as it was difficult to train without tuning. The training did not con-

verge most of the time with the SeLU activation function on the Amazon and Yelp data-

sets; out of many runs it was only possible to get one successful training on Amazon1M 

and Yelp1M. Similarly, maxout 6-1 and maxout 3-2 on Amazon4M failed to converge on 

large text datasets. In future work, hyperparameter tuning for ReLU3x, ReLU6x, maxout 

6-1, and maxout 3-2 will be done to find the best performance for the models. Table 4 

displays the number of experiments per activation function and dataset.

In each dataset, we use a train/test split of approximately 90%/10%. The train and test 

size per dataset are presented in Table 5. Because we apply a consistent early stopping 

criterion, we report results of our comparison done directly on a test set, without an 

additional validation set. We implemented our models in Keras [74] with TensorFlow 

[75] as the backend.

Experimental results and discussion

Based on preliminary observations, it is evident the sigmoid activation does not perform 

well in CNNs, and the maxout p-norm models are very difficult to train. For these rea-

sons, both activation functions are not included in the results.

In order to test the statistical significance of performances of the type of activation 

(maxout vs. other activations) across all the datasets, one-way analysis of variance 

(ANOVA) [76] was performed. In this ANOVA test, the results from 544 evaluations 

were considered together, and all tests of statistical significance utilized a significance 
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level α of 5%. The factor is significant if the p value is less than 0.05. The ANOVA 

table is presented in Table  6. As shown the factor is not significant, indicating the 

activation type does not make a difference in the classification accuracy (p-value is 

not less than 0.05).

Table 4 Number of experiments per activation and dataset

LReLU (LR), Maxout 2-1 (M21), Maxout 3-1 (M31), Maxout 3-2 (M32), Maxout 6-1 (M61), ReLU (R), ReLU2x (R2X), ReLU3x (R3X), 

ReLU6x (R6X), SeLU (SL), Tanh (T)

Dataset LR M21 M31 M32 M61 R R2X R3X R6X SL T

CIFAR-10 5 5 5 5 5 5 5 5 5 5 5

CIFAR-100 2 2 2 2 2 2 2 2 2 2 2

F-MNIST 5 5 5 5 5 5 5 5 5 5 5

MNIST 5 5 5 5 5 5 5 5 5 5 5

LFW 2 2 2 2 2 2 2 2 2 2 2

MS-Celeb 2 2 2 2 0 2 2 0 0 2 2

Amazon1M 2 2 2 2 2 2 2 0 0 1 2

Amazon4M 2 2 2 1 1 2 2 0 0 0 2

Sent140 2 2 2 2 2 2 2 0 0 2 2

Yelp500K 2 2 2 2 2 2 2 0 0 0 2

Yelp1M 2 2 2 2 2 2 2 0 0 1 2

Med Part B 5 5 5 5 5 5 5 0 0 5 5

Med Part D 5 5 5 5 5 5 5 0 0 5 5

DMEPOS 5 5 5 5 5 5 5 0 0 5 5

Combined CMS 5 5 5 5 5 5 5 0 0 5 5

GSC 2 2 2 2 2 2 2 0 0 2 2

IRMAS 2 2 2 2 2 2 2 0 0 2 2

IDMT-SMT-Audio-Effects 2 2 2 2 2 2 2 0 0 2 2

Table 5 Train and test size per dataset

Dataset Train Test

Amazon4M 3,600,000 400,000

Sentiment140 1,440,000 160,000

Amazon 900,000 100,000

Yelp1M 899,611 99,957

Yelp500K 386,154 42,907

Google Speech Commands 94,824 11,005

MS-Celeb 91,683 5000

MNIST 60,000 10,000

Fashion-MNIST 60,000 10,000

CIFAR-10 50,000 10,000

CIFAR-100 50,000 10,000

IDMT-SMT-Audio-Effects 37,065 4119

IRMAS 18,103 2012

LFW 5400 600

Medicare Part B 2618 200

Medicare Part D 1836 200

DMEPOS 1070 200

Combined CMS 846 100
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A comparison between maxout and the rest of the activations is presented in 

Fig. 10, displaying graphs with each group mean represented by the symbol (◦) and 

the 95% confidence interval as a line through the symbol. Maxout activations are not 

statistically better than the rest of the activation functions.

The best activation average accuracy per dataset, its average time to train 100 batches 

and average epochs multiplied by average 100 batches time (average 100 batches train-

ing time) are presented in Table 7. The activation average accuracy and epochs columns 

in Table 7 represent the best performing activation function for each dataset. Data in 

these columns is averaged over the number of training runs specified in Table 4. On the 

image and face datasets, ReLU with 6x filters reported the highest accuracy on all data-

sets except the MS-Celeb dataset.

There is no statistical difference between the activation functions, but on average 

ReLU6x reported the highest accuracy of 85.19% on the image datasets (Fig.  11). The 

average accuracy presented on the figures, is also the average accuracy over the number 

of training runs specified in Table 4. Activation function means are significantly different 

if their intervals are disjoint, and are not significantly different if their intervals overlap. 

On the facial verification task, ReLU6x also achieved the highest accuracy, while on the 

facial recognition task, SeLU recorded the highest accuracy (Table 7).

Table 6 One-way ANOVA for type of activation and classification task

Factors Sum of squares Percentage 
of variation 
(%)

Degrees 
of freedom

Mean square F-computed p-value

Activation type 155.6 0.1 1 155.61 0.62 0.42

Error 133,392 99.90 542 246.11

Total 133,547.6 100 543

Fig. 10 Multiple comparisons, type of activations
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Table 7 Best activation and its results per dataset

Dataset Best activation Average 
accuracy 
(%)

Average 
epochs

Average 100 
batches time 
(s)

Average 100 
batches training 
time

CIFAR-10 ReLU6x 79.91 64 0.26 13.33

CIFAR-100 ReLU6x 50.44 60 0.33 18.76

Fashion MNIST ReLU6x 92.48 89 0.22 17.37

MNIST ReLU6x 99.46 35 0.22 7.89

LFW ReLU6x 79.67 51 26.75 1418.12

MS-Celeb SeLU 97.50 97 39.09 4202.31

All image and face datasets 
combined

ReLU6x 84.40 60 5.5 161.41

Amazon1M Maxout 3-2 88.17 35 73.27 2124.86

Amazon4M Maxout 6-1 93.73 26 57.32 1490.36

Sentiment140 ReLU2x 84.57 60 5.09 259.79

Yelp500K ReLU2x 93.17 60 18.19 873.33

Yelp1M ReLU 93.60 60 8.65 519.41

All text datasets combined ReLU2x 90.41 40 15.57 594.15

Medicare Part B SeLU 71.0 29 0.12 7.98

Medicare Part D Maxout 2-1
Maxout 6-1

71.5 180 0.12 22.84

DMEPOS SeLU 68.5 51 0.12 5.54

Combined CMS dataset SeLU 74.0 160 0.12 21.05

All Medicare datasets com-
bined

SeLU 69.7 107 0.12 13.01

Google Speech Commands Maxout 3-2 91.93 45 50.17 2257.65

IRMAS ReLU2x 67.59 180 10.14 1825.20

IDMT-SMT-Audio-Effects SeLU 95.51 87 5.94 531.64

All sound datasets combined Maxout 2-1 83.19 79 11.59 983.18

Fig. 11 Multiple comparisons, activations on image datasets
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ReLU with 2x filters reported the highest accuracy on Sentiment140 and Yelp500K 

datasets (Table 7). On Yelp1M, ReLU achieved the highest accuracy and maxout 3-2 and 

6-1 reported the best accuracies on the Amazon1M and Amazon4M datasets respec-

tively. On average, ReLU2x reported the highest accuracy of 90.41% (Fig. 12).

SeLU reported the highest accuracy on Medicare Part B, DMEPOS and the combined 

CMS datasets (Table 7). On Medicare Part D, maxout 2-1 and maxout 6-1 achieved the 

highest accuracy. On average, SeLU reported the highest accuracy of 69.7% (Fig.  13). 

This suggests that SeLU is effective for the medical fraud detection task using a NN. On 

the Medicare Part D dataset, maxout 2-1 and maxout 6-1 obtained the highest accuracy, 

followed by SeLU, ReLU2x and maxout 3-2 with a 0.5% difference in value. This confirms 

that SeLU is also effective in this dataset.

Maxout 3-2 reported the highest accuracy on Google speech commands, and on 

IRMAS ReLU2x achieved the highest accuracy. SeLU recorded the highest accuracy on 

the IDMT-SMT-Audio-Effects dataset (Table 7). On average, maxout 2-1 reported the 

highest accuracy of 83.19% (Fig. 14). This indicates maxout 2-1 is effective for the sound 

recognition task using spectrograms in combination with CNNs.

ReLU with 6x filters delivered the highest accuracy on all image datasets and the LFW 

dataset. Although ReLU6x and ReLU3x were not tested on the text datasets, other ReLU 

variants continued to record the highest accuracies. ReLU with 2x filters and ReLU 

obtained the highest accuracies on the text datasets except for the Amazon datasets 

(Table 7). A similar result occurred on the sound datasets. Although on average, maxout 

2-1 recorded the highest accuracy, ReLU2x reported a 0.36% difference in value. Adding 

multiple layers of filters was enough for ReLU to achieve the highest classification accu-

racy on the image and text datasets. This suggests that adding more layers on ReLU2x 

could increase the accuracy on the MS-Celeb, Amazon, IDMT-SMT-Audio-Effects and 

Google speech commands datasets, but hyperparameter tuning might be required.

Fig. 12 Multiple comparisons, activations on text datasets
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In this study, we also performed the multiple comparison tests using Tukey’s Hon-

estly Significant Difference (HSD) test to further investigate these results. The HSD 

is a statistical test comparing the mean value of the performance measure for the 

Fig. 13 Multiple comparisons, activations on medical datasets

Fig. 14 Multiple comparisons, activations on sound datasets
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different activation functions. All tests of statistical significance utilize an α = 0.05 . 

Two activation functions with the same block letter are not significantly different 

with 95% statistical confidence (e.g. group a is significantly different than group b). 

In Table 8, the letters in the third column indicate the HSD grouping of the activa-

tion accuracy. That is, if two activations have the same letter in the HSD column, their 

accuracies are not significantly different.

On the image datasets, the HSD test shows ReLU6x is significantly better than 

the rest of the activations, and ReLU3x is better than the maxout activations. Based 

on these results, we see that the activations using the most memory are at the top, 

and maxout methods together with ReLUx are better than ReLU, LReLU, SeLU, and 

tanh. ReLU6x reported the highest average 100 batches training time (last column 

in Table 8) of 13.56 s, 1.56x higher than ReLU3x. This is expected as there are three 

times more layers to process. Maxout activation functions have a lower training time 

than ReLU3x and ReLU6x but have a higher training time than the traditional activa-

tion functions.

On the LFW dataset, the highest accuracy was reported by ReLU6x with 79.67%. It 

also had the highest average 100 batches time with 26.75 s. The lowest time of 2.07 s 

was reported by ReLU. The SeLU recorded the highest accuracy on the MS-Celeb 

dataset with 97.5%, but on average, for both face datasets maxout 3-2 achieved the 

highest average accuracy of 87.25% (Fig. 15).

On the MS-Celeb dataset, maxout 3-2 had the highest average 100 batches time of 

156.94  s, and ReLU had the lowest of 7.92  s (the 100 batches time and 100 batches 

training time on each dataset are not displayed in a table). ReLU3x, ReLU6x and 

maxout 6-1 were not evaluated on the MS-Celeb dataset. The HSD test on the face 

datasets (Table  9) shows maxout 3-2 with the highest average accuracy, which is 

statistically better than LReLU, SeLU, ReLU6x, ReLU3x, and maxout 6-1. Although 

the LFW and MS-Celeb datasets contain face images, verification and identification 

tasks are different. Consequently, activation functions reported opposite results on 

both datasets. The extreme was SeLU which logged the highest accuracies on the MS-

Celeb dataset, but the lowest on the LFW dataset.

Table 8 Activation HSD test on image datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

ReLU 6X 85.19 a 0.25 13.56

ReLU 3X 82.27 b 0.15 8.68

Maxout 6-1 80.68 c 0.19 9.84

Maxout 3-1 80.11 cd 0.12 6.24

Maxout 3-2 79.77 cd 0.19 8.25

ReLU 2X 79.41 cd 0.09 5.12

Maxout 2-1 78.99 d 0.11 5.24

Tanh 74.97 e 0.08 4.34

SeLU 74.76 e 0.08 2.82

ReLU 74.52 e 0.08 4.72

LReLU 74.47 e 0.08 4.52
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In the face group, a higher training time did not translate into a higher accuracy. A 

total of five activation functions had a higher average training time than ReLU2x. All 

maxout functions except for maxout 6-1 reported the highest average 100 batch train-

ing time.

The combined results of the image and face datasets are presented in Table  10. 

Although ReLU6x was not tested on the MS-Celeb dataset, it is again statistically bet-

ter than the rest of the activations, and its average training time is lower than any 

maxout activation, except for maxout 6-1. Maxout activations are statistically better 

than the traditional activation functions. On average, SeLU reported a low average 

Fig. 15 Multiple comparisons, activations on face datasets

Table 9 Activation HSD test on face datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

Maxout 3-2 87.25 a 83.27 2425.27

ReLU 2X 85.89 ab 11.16 827.20

Maxout 3-1 85.81 ab 39.14 2659.74

Tanh 84.66 ab 5.02 700.30

Maxout 2-1 84.49 ab 31.81 3139.62

ReLU 84.41 ab 4.99 459.75

LReLU 83.82 b 9.31 342.52

SeLU 83.01 b 20.58 2126.11

ReLU 6X 77.67 c 26.75 1418.12

ReLU 3X 76.58 c 8.60 485.90

Maxout 6-1 74.50 c 11.45 521.32
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accuracy but obtained the highest on the face identification task (Table 7). This sug-

gests SeLU is efficient for this task.

The HSD test on text datasets (Table 11) shows six activations are statistically indis-

tinguishable from one another (they all have the block letter ‘a’ in the HSD column). 

ReLU2x scored the highest or second highest accuracy on all text datasets except 

Yelp1M, while maxout 3-2 recorded within the top three accuracies except on the Senti-

ment140 and Yelp1M datasets. All maxout and ReLU activations are not significantly 

different from each other but they are statistically different from tanh and SeLU. Maxout 

activations took longer to train than ReLU and ReLU2x by our average epochs multiplied 

by the average 100 batches time metric, which considers both the computational cost 

and time to converge of a model. The lowest average 100 batches time was ReLU with 

7.41 s, which surprisingly delivered the third highest average classification accuracy.

On the medical datasets, all the maxout and ReLU variants had a similar perfor-

mance, and SeLU performed better than maxout 6-1, ReLU and LReLU (Table 12). The 

NN architecture for the medical datasets only had two layers, and more layers did not 

improve or change the activation’s performance. Consequently, the performance is very 

similar in a shallow architecture, and this is reflected in the HSD test.

Table 10 Activation HSD test on image and face datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

ReLU 6X 84.40 a 5.55 161.41

ReLU 3X 81.68 b 1.84 58.91

Maxout 3-2 81.20 b 27.88 468.64

Maxout 3-1 81.19 b 13.13 511.67

ReLU 2X 80.65 bc 3.78 161.70

Maxout 2-1 80.04 c 10.67 602.27

Maxout 6-1 80.02 c 2.44 63.68

Tanh 76.82 d 1.73 136.90

ReLU 76.41 d 1.72 91.39

SeLU 76.33 d 6.92 407.26

LReLU 76.25 d 3.16 68.90

Table 11 Activation HSD test on text datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

ReLU 2x 90.41 a 15.57 594.15

Maxout 3-2 90.35 a 62.67 1485.35

ReLU 90.26 ab 7.41 349.52

Maxout 3-1 90.19 ab 29.67 972.79

Maxout 2-1 89.97 ab 17.50 440.28

Maxout 6-1 89.89 ab 48.83 1866.42

LReLU 89.71 b 13.86 754.60

Tanh 87.57 c 7.45 242.19

SeLU 83.81 d 12.20 229.62
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A higher training time did not translate into a higher accuracy. Maxout and ReLU 

activations had a higher training time than SeLU. The lowest average 100 batches 

training time was SeLU with 13.01  s. Although ReLU reported a low average 100 

batches time, it took many epochs to converge, contrary to SeLU that converged 

faster than any other activation function on the NN architecture for the medical data-

sets. SeLU reported the fastest training time. On average, SeLU tends to converge 

1.7× faster than tanh, and 2.3× faster than maxout 3-2, where maxout 3-2 reported 

the slowest training time across all activations.

On the sound datasets, the HSD test (Table  13) shows that LReLU, all maxout, and 

ReLU activations are not significantly different from each other. Maxout 2-1 performed 

better than tanh and SeLU. Maxout 6-1 reported the highest average 100 batches train-

ing time with 3219.95. It also, recorded the fifth highest average accuracy, while max-

out 2-1 was 3.27× faster than maxout 6-1 and recorded the highest average accuracy. 

Maxout 3-2 converged faster than maxout 6-1. Although maxout 3-2 reported the high-

est average 100 batches time, the average 100 batches training time was lower than that 

of maxout 6-1, and maxout 3-2 recorded the second highest average accuracy. SeLU 

reported the second fastest average 100 batches training time, but also the second lowest 

average accuracy. On average, maxout 2-1 tends to converge 1.32× faster than ReLU2x.

Table 12 Activation HSD test on medical datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

SeLU 69.70 a 0.12 13.01

Tanh 69.02 ab 0.11 22.62

Maxout 3-1 68.97 ab 0.14 24.77

Maxout 2-1 68.55 ab 0.12 21.50

ReLU 2x 68.55 ab 0.11 24.66

Maxout 3-2 68.52 ab 0.19 30.79

Maxout 6-1 68.37 b 0.13 25.05

ReLU 68.22 b 0.11 23.53

LReLU 67.82 b 0.12 27.15

Table 13 Activation HSD test on sound datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

Maxout 2-1 83.19 a 11.59 983.18

Maxout 3-2 82.88 ab 39.99 2839.32

ReLU2x 82.83 ab 10.68 1299.48

Maxout 3-1 82.32 ab 19.08 1619.91

Maxout 6-1 81.18 abc 30.32 3219.95

LReLU 80.90 abc 8.99 1180.16

ReLU 80.72 abc 5.05 602.98

SeLU 80.29 bc 7.87 539.84

Tanh 78.88 c 5.07 487.91
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The HSD test on all datasets (Table 14) shows ReLU6x is significantly better than the 

rest of the activations, and ReLU3x is better than maxout and traditional activations. 

Although ReLU6x and ReLU3x were only evaluated on the image and LFW datasets, 

the HSD test suggests these two ReLU variants could provide higher accuracies than 

maxout or ReLU2x activation functions. Maxout activations and ReLU2x reported a 

similar performance, but maxout 3-1 was the only variant that did not reach the top 

performance in any of the experiments conducted in this study. On average, SeLU 

reported the lowest average accuracy, but recorded the highest accuracy with the 

MS-Celeb, IDMT-SMT-Audio-Effects, and three Medicaid datasets. This indicates an 

activation’s performance may vary across data domains.

In terms of training time, maxout 3-2 reported the highest. Maxout 2-1 reported the 

lowest of all maxout variants, but its time was still higher than any of the ReLU variants. 

The average training time of ReLU6x and ReLU3x is very low as they were only tested on 

the image and LFW datasets. ReLU2x on average performed better than the rest of the 

activations on the text and audio datasets. Its average training time is above those of the 

traditional activation functions (Fig. 16).

We can categorize the activation functions into three groups: maxout activations as 

the first group, ReLU, Tanh, LReLU and SeLU (low memory usage activation functions) 

as the second group and ReLU2x, ReLU3x and ReLU6x (higher memory usage activation 

functions) as the third group. The HSD test on all datasets (Table 15) shows ReLU2x, 

3X and 6X are statistically better than the rest of the activation functions. Evaluating 

the results across all the studied datasets, we observe that the higher the memory usage 

the higher the accuracy. When evaluating the training time, we observe that traditional 

and higher memory usage activation functions are statistically faster than the maxout 

activation functions. On average, the maxout activation functions reported the slowest 

average training time; this is expected as the number of operations is greater compared 

to the rest of the activation functions.

The current literature comparing maxout and other activation functions lacks to 

consider if an increase in the number of convolutional filters in ReLU networks, sur-

passes the performance of any maxout variant. Experiments that would use more than 

Table 14 Activation HSD test on all datasets

Activation Average accuracy 
(%)

Accuracy HSD Average 100 batches 
time (s)

Average 100 
batches training 
time

ReLU 6X 84.40 a 5.55 161.41

ReLU 3X 81.68 b 1.84 58.91

Maxout 3-2 78.74 c 33.41 813.15

Maxout 3-1 78.60 c 15.83 538.38

ReLU 2X 78.34 cd 7.83 309.25

Maxout 2-1 78.08 cd 9.90 410.16

Maxout 6-1 77.71 d 19.21 723.22

ReLU 76.42 e 3.70 166.72

Tanh 76.19 e 3.52 152.22

LReLU 76.14 e 6.43 291.52

SeLU 74.78 f 6.13 254.32
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the maximum allowed memory per GPU were outside the scope of this work. Although 

ReLU6x was not tested on all datasets, our experiments provided evidence that is signifi-

cantly better in terms of accuracy than any maxout variant. Furthermore, ReLU6x’s aver-

age training time is lower than that of any maxout variant, even though ReLU6x contains 

the highest number of trainable parameters on all the tested datasets (Table 3).

Conclusion

The results from the image datasets indicate that sextupling the number of convolu-

tional filters on ReLU performed better than the rest of the activation functions, but 

made training more difficult due to large number of parameters. On the sentiment 

classification task, ReLU2x and maxout 3-2 are likely to produce the highest classifi-

cation accuracy results compared to the rest of the activations analyzed in this study. 

On the audio datasets, our experiments suggest that given the sound recognition task 

on a CNN architecture and the conversion of sounds into spectrograms, based on 

performance values, maxout 2-1 is likely to produce the best classification accuracy 

results. It is important to note that the difference between ReLU and ReLU2x is a 

tunable hyperparameter. The maxout activations performed better than ReLU activa-

tion functions only on the Amazon, Medicare Part D, and Google speech commands 

Fig. 16 Multiple comparisons, activations on all datasets

Table 15 HSD test on  maxout, low memory usage activation functions and  ReLU2x, 3x 

and 6x

Activation Average 
accuracy (%)

Accuracy 
HSD

Average 100 batches 
training time

Average 100 
batches training 
time HSD

ReLU 2X, 3X and 6X 80.22 a 229.61 a

Maxout 2-1, 3-1, 3-2 and 6-1 78.29 b 621.18 b

ReLU, Tanh, LReLU and SeLU 75.91 c 215.17 a
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datasets. On the medical fraud detection task, our findings indicate that given the 

medical fraud detection task on a NN architecture, SeLU is likely to produce the 

highest classification accuracy results compared to the rest of the activation functions 

analyzed in this study. SeLU also demonstrated its efficacy on the facial identification 

task, as it recorded the highest average accuracy.

Across all datasets, maxout variants provided a better average accuracy than ReLU, 

LReLU, SeLU and tanh, but on average the training time is slower. Results indicate 

that ReLU, with more filters, was the top performer, with the tradeoff of high memory 

usage. On average, ReLU2x converges 2.62× faster than maxout 3-2 but it is 1.85× 

slower than ReLU. There is no relationship between the activation functions that have 

a higher training time and the classification accuracy performance, but clearly adding 

more convolutional filters enhanced ReLU. Due to high performance and fast training 

relative to other top performing activations, ReLU6x is the recommended activation 

function for image datasets, and ReLU2x for text datasets. On the sound datasets, 

maxout 2-1 is the recommended activation function. Our results suggest the higher 

the memory usage the higher the accuracy. On average, ReLU6x will use 17.78 times 

more trainable CNN parameters than maxout 2-1, thus indicating a higher memory 

usage (Table 3) for ReLU6x.

Future work will involve conducting additional empirical studies with ReLU3x and 

ReLU6x on big data and hyperparameter tuning recommendations that were out-

side the scope of this work. Also, future work could include additional deep network 

architectures and domains.
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