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Evaluation of Medical Simulations

William L. Bewley, PhD*; Harold F. O’Neil, PhD†

ABSTRACT Simulations hold great promise for medical education, but not all simulations are effective, and reviews of
simulation-based medical education research indicate that most evaluations of the effectiveness of medical simulations
have not been of sufficient technical quality to produce trustworthy results. This article discusses issues associated with the
technical quality of evaluations and methods for achieving it in evaluations of the effectiveness of medical simulations. It
begins with a discussion of the criteria for technical quality, and then discusses measures available for evaluating medical
simulation, approaches to scoring simulation performance, and methodological approaches. It concludes with a summary
and discussion of future directions in methods and technology for evaluating medical simulations.

INTRODUCTION

Since the first written clinical simulations were used for assess-

ment nearly 50 years ago, simulations have become common

in medical education.1 Defined broadly as a “person, device, or

set of conditions which attempts to present evaluation prob-

lems authentically,”2 medical simulations emulate patients,

anatomical areas, or clinical tasks. They include standardized

patients,3–8 part-task trainers (e.g., pelvic replicas),9–14 vir-

tual reality systems,15 computer simulations16,17 and games,18

mannequins,19–22 and even multiple-choice questions present-

ing information on a case to be evaluated.23 Simulations can be

used for instruction or assessment, and are currently used by

many medical schools for end-of-course comprehensive exam-

inations,24 by the Medical Council of Canada as part of the

licensure process25 and as part of the United States Medical

Licensing Examination, among many others.26,27

Simulation-based training has become popular because it

is usually less costly, and it provides experiences without risk

to patients.28 In addition to the benefits of cost and risk

avoidance, there are also benefits to learning.29 Training can

be directed at specific knowledge and skills, especially pro-

cedures and higher level cognitive processes, and some sim-

ulations can unobtrusively collect detailed data providing

assessment information that can be used to automatically

score performance and diagnose learning problems.30 Simu-

lations can also be used to provide experiences not possible in

the real environment, such as repeated practice on parts of a

task that cannot be isolated in the real world (e.g., intubation,

venipuncture, tying surgical knots, or incision and drainage

of abscesses). This is not to say that simulation-based train-

ing can replace training with real patients supervised by

a knowledgeable instructor—nobody would want a surgeon

trained only on simulations—but a useful level of knowledge

and skill can be developed cost-effectively and safely with

simulation-based training in preparation for training in the

real environment. Medical simulations have great promise,

but not all simulations are effective, and, unfortunately,

reviews of simulation-based medical education research indi-

cate that most evaluations of the effectiveness of medical

simulations have not been of sufficient technical quality to

produce trustworthy results.31–34 This article discusses issues

associated with technical quality and methods for achieving

it in evaluations of the effectiveness of medical simulations.

Note that the focus is on effectiveness, not cost. The article in

this supplement by Fletcher and Wind35 describes approaches

to economic analyses that, with data on effectiveness using

methods discussed in this article, can be used to determine

cost-effectiveness or cost-benefit.

The article begins with a discussion of the criteria for

technical quality, the measures available for evaluating med-

ical simulations, approaches to scoring simulation perfor-

mance, methodological approaches, and then describes an

evaluation model. It concludes with a summary and discus-

sion of future directions in methods and technology for eval-

uating medical simulations.

TECHNICAL QUALITY OF EVALUATIONS

Evaluations must satisfy two major criteria for technical

quality: reliability and validity. This section discusses each.

There are also two lesser but, nevertheless, important criteria

that warrant mentioning in brief: fairness and usability. Fair-

ness is an aspect of validity, and its absence is discussed later

as a “threat to validity.” Fairness means that inferences based

on the results of the evaluation are appropriate for most

people, of most backgrounds. In the measurement litera-

ture,36 fairness is defined in terms of four properties:

– The test is free of bias.

– There is equal opportunity to show proficiency.

– In tests of knowledge and skill, there is equal oppor-

tunity to learn.

– Score distributions are as equal as possible across dif-

ferent groups.
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Of the four properties, bias has received the most atten-

tion in the measurement literature. Bias is defined as any

construct-irrelevant source of variance that systematically

affects the performance of different groups of examinees,

e.g., groups defined by gender, ethnic or cultural background,

socioeconomic status, or age.37 Usability refers to practical

considerations in conducting the evaluation, such as the

cost of implementation as well as time requirements, ease of

administration, and the comprehensibility of results to the

intended audience. Usability is important, but not as impor-

tant as reliability and validity.

Reliability

Reliability concerns the consistency of measurement, e.g.,

internal consistency or test/retest. It requires that results are

consistent from one measurement to another, e.g., at different

times, with different raters, or even with different (but con-

sidered equivalent) tasks. It requires that the evaluation meth-

odology give the same result each time it is used. This is

achieved through the use of well-defined and standardized

procedures and measurement instruments.

Perfect consistency is not possible because people are not

perfectly consistent. Simulation users may have learned or

forgotten things, or may be under more or less stress on

different days. Raters may not agree on interpretations of all

judgment criteria, and a rater’s criteria may change over time.

Tasks may be more or less difficult for different users,

depending on prior experience. All these factors introduce

measurement error into evaluation results. Methods for deter-

mining reliability are based on determining the measurement

error. The greater the consistency of results, the smaller the

measurement error, and thus the greater the reliability.36

These methods are based on traditional psychometrics or

classical test theory,38 which is based on assumptions about

how a test is constructed: linear, static, and homogeneous,

providing many samples of behavior, and focused on

between-individual differences39—think standardized tests,

such as the Scholastic Aptitude Test.40

Most simulations, however, have fewer of these character-

istics. Simulations are nonlinear, i.e., with more than one

pathway to success or failure. They are frequently short,

dynamic, adaptive, and heterogeneous, and provide relatively

few samples of behavior. Finally, these assessment simula-

tions are often focused on within-individual differences,

including changes in performance during use of the simula-

tion, as well as interindividual differences. In addition, clas-

sical test theory is not well suited for handling the complex

correlations often found in data produced by simulations, for

providing the real-time scoring and feedback often required

for simulation-based assessments, or for providing measures

of changes in proficiency over time.

In this supplement, Li Cai41 describes alternatives to clas-

sical test theory appropriate for the psychometrics of medical

simulation. These alternatives are based on a new genera-

tion of latent variable models applying Bayesian inferential

methods to make inferences about latent variables from

observed variables.

Simulations provide one long or a few short samples of

behavior, rather than answers to many short questions (i.e.,

multiple choice), making the usual approaches to reliability

inappropriate. As a result, approaches to reliability for simu-

lations (and all performance assessments) have focused on

the reliability of judges or raters scoring the performance

rather than the “score” reliability of individuals.42

As noted earlier, the use of judges or raters introduces a

source of error, along with characteristics of simulation users,

the tasks, factors associated with testing occasion, e.g., time

of day, and interactions of these sources. Generalizability

theory is designed to allow identification of the sources of

error and estimation of the contribution of each to a behav-

ioral measurement.43–45 Sources of error are called facets of

the measurement. To evaluate the reliability of a measure-

ment, a generalizability study is conducted to estimate the

contribution of each facet and the interaction of facets. A

decision study is then conducted to determine elements of a

measurement procedure that minimizes error. For example,

we can use generalizability theory to determine how many

judges we need to make reliable assessments of performance.

If judges differ in their interpretation of criteria or the evalu-

ation is complex, more judges are needed to obtain an accu-

rate measurement. But if judges agree on criteria or the

evaluation is simple, fewer judges will be required.

In addition, because computer simulations are complex

and take longer to complete, it may be the case that a small

number of simulation trials can be administered in the time

available for collection of data. This limits the generalizabil-

ity of the results because, unlike selected response tests that

provide equivalent forms, the problem of designing equiva-

lent simulation scenarios (tasks) has not been solved. If time

is available for only one assessment task, there is uncertainty

as to whether performance on a different task thought to

require the same knowledge and skills would provide the

same results. Performance in one scenario will not necessar-

ily be a good predictor of performance in another.

Validity

Validity is the degree to which evidence supports the inter-

pretations and uses of results. Of the two major criteria for

technical quality, reliability and validity, validity is the most

important. The consistency measured by reliability makes it

possible to have validity, but it is possible to have consistent

results that are not valid.36

Validity is not a property of the evaluation; it is a property

of the inferences made based on the results.36 Validation

should be thought of as an argument presenting evidence to

make a case, and not, as with reliability, the calculation of a

statistic. A validity argument must be developed that mar-

shals a wide range of evidence to make the case.36,37 This

argument is very different from early conceptions of valid-

ity46 in which specific validity types are considered, e.g., face
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validity (Does the test performance look like what is sup-

posed to be measured?), content validity (Is the performance

measured related to content goals or domains?), predictive

validity (Do people with higher scores do better on a future

criterion measure?), and criterion validity (Does performance

on the new measure relate in predictable ways to an existing

measure of known quality?). Although all these questions

may be considered in making a validity argument, one no

longer looks at a list of validity types and chooses 1 or 2 as

most appropriate or, more likely, easiest to implement.

According to Standards for Educational and Psychological

Testing,36 there are five major sources of evidence that might

be used to support a validity argument: evidence based on

content, response processes, internal structure, relations to other

variables, and consequences of testing. These are described

below, along with two additional sources of evidence: threats

to validity and sensitivity to instruction and experience.

–Evidence based on content. This is the weakest form of

evidence for a validity argument. It is concerned with the

representativeness of the content on which the simulation

is based, not with examinee performance or the interpreta-

tion of the meaning of the performance.

–Evidence based on response processes. This has to do with

the validity of interpreting examinee performance as evi-

dence for the cognitive processes the examinees use when

responding, e.g., some aspect of simulation performance is

taken as evidence for situation assessment or problem solv-

ing skills. Evidence about response processes might be

obtained by questioning the examinee about strategies

used, or by using think-aloud protocols.36

–Evidence based on internal structure. Simulations are

often designed to provide instruction and/or assessment on

several knowledge or skill dimensions, such as situation

awareness, planning, decision making, and communica-

tion. Evidence that these dimensions could be reliably dis-

tinguished based on examinee performance, by using the

results of a confirmatory factor analysis,47 would support

the validity argument.

–Evidence based on relations to other variables. Correla-

tions of examinee performance with other measures

thought to be related also provide support for the validity

argument.36 Such evidence includes predictive accuracy,

in which scores are correlated with a criterion measure that

simulation performance is intended to predict, e.g., diag-

nosis performance with a standardized patient3–8 and sub-

sequent diagnosis with a real patient. Other examples are

correlations with other measures designed to measure the

same knowledge or skill, e.g., diagnosis performance with

a standardized patient correlated with performance on a

multiple-choice test presenting cases for diagnosis. Lack

of correlation with measures designed to measure different

knowledge or skill is another source of evidence. An

example would be the relation of diagnosis performance

with a standardized patient to intubation performance with

a mannequin.

–Evidence based on consequences of testing. Use of a

simulation has consequences for the examinee, especially

when it is used for assessment. If results are due

to knowledge or skills the simulation was designed to

assess, this obviously supports the validity argument. If,

however, results are due, at least in part, to knowledge or

skills unrelated to what is to be assessed, such as a lack

of computer skills interfering with performance on a com-

puter simulation, validity should be questioned. This is an

example of a “threat” to validity—an alternative explana-

tion for good and poor performance. It is also an example

of a lack of validity due to consequences of testing if it can

be linked to an examinee characteristic that has nothing to

do with the goal of the assessment, including membership

in a particular socioeconomic group.

–Threats to validity. A validity argument is weakened by

“threats” to validity, alternative explanations for good and

poor performance unrelated to the knowledge or skill that

is to be assessed. There are many potential threats: poor

reliability; misalignment of the simulation experience and

the knowledge/skill objectives; misalignment of the mea-

sures and objectives of the simulation; inadequate instruc-

tions, user interface defects, or lack of computer skills for

computer simulations; unfair use of administration, such as

inadequate instructions or time; inappropriate scoring

models, e.g., scoring that does not accommodate all

acceptable strategies; poor examinee sampling; and poor

scenario selection (content sampling). To support the

validity argument, all threats to validity should be identi-

fied and eliminated.

–Sensitivity to instruction and experience. A valid simula-

tion should be sensitive to instruction and experience,

eliciting higher scores for people who have received

instruction or who have more experience or acknowl-

edged expertise in the targeted knowledge or skill.

KIRKPATRICK MODEL

The Kirkpatrick model48,49 is an evaluation framework

that supports the idea of marshaling evidence to make a

validity argument. It is also an approach for evaluation that

has been successful in many different training and educa-

tional settings, and has become an industry standard in the

training world. It has been adapted and modified over time,

but the basic structure has not changed. As shown in

Figure 1, the model describes four levels of evaluation. The

levels are intended to represent a sequence of evaluation

questions, each level providing information that affects the

next level.

An evaluation is conducted at each level, beginning at

Level 1 and moving up. Each level provides evidence for a

validity argument and information supporting interpretation of

results at the next level. For example, if there is no evidence

for student learning at Level 2, reactions at Level 1 may tell

us why—students may not be motivated to learn from the
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simulation. Similarly, a failure at Level 3 (no behavior change

back on the job) may be explained by an absence of learning at

Level 2. Difficulty increases as you move up, but the value of

information also increases at each level. Kirkpatrick recom-

mends evaluating at all levels, but in practice, because the

difficulty and cost increase at each level and because Level 3

and especially Level 4 may be difficult in the work environ-

ment, it may be tempting to stop at Level 2, or even Level 1,

but Kirkpatrick emphasizes the impact of misalignment of

measures to goals on validity. For example, if the objective is

transfer of knowledge, skills, or attitudes to performance on

the job, you need to go to Level 3 for a valid evaluation. And

if the objective is organizational/patient benefit, a Level 4

evaluation is required.

SIMULATION PERFORMANCE MEASURES

(PROCESS VS. OUTCOME)

A measure is a number indicating the presence and amount of

something, such as the number of errors, time, or ratings of

some aspect of simulation performance on a five-point scale.

McNulty et al50 provide an excellent overview of computer-

based testing in the medical curriculum. We will focus on

computer simulations. One of the great advantages of a sim-

ulation is the ability to measure knowledge and skills in

performing procedures and higher level cognitive processes.

This measurement is based on the examinee’s actions as the

task is performed, in addition to measures focused on the

outcome of the process such as a rating of overall success, for

example, measurement of the value of a physiological indica-

tor like blood glucose level, albumin level, or blood pressure.

As noted earlier, a key requirement for achieving validity is

the use of appropriate measures aligned with the intended

objectives of the simulation, usually related to knowledge and

skill required to perform the simulated task. This seems obvi-

ous, but there are many examples of misalignment of measures

with objectives. An extreme example is the evaluation that

measures learning using reaction forms or opinion surveys

asking students how much they learned.51,52 This provides

information on how much students think they learned, not

how much they actually learned.

Figure 2 shows examples of measures for each Kirkpatrick

level.

Measures must tap the entire range of knowledge and

skills at the same level of complexity addressed by the

simulation, and they must be validated for the purposes and

situations to which they are applied. Swick et al53 provide an

excellent treatment of assessing the Accreditation Council

FIGURE 1. The Kirkpatrick evaluation model.

FIGURE 2. Typical measures for Kirkpatrick evaluation model levels.
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for Graduate Medical Education competencies in psychiatric

programs. Brünken et al54 provide indicators for measuring

cognitive load, and Hays55 provides various rating scales for

evaluating computer-based instruction. To evaluate simula-

tions targeting procedural or higher level knowledge and

skills, measures derived from simulation performance are

desirable. There are two sources of measures: (1) human

raters score performance using checklists based on scoring

rubrics, and (2) automated scoring based on measures embed-

ded in the simulation itself. For example, in tasks performed

by manipulating objects on a computer screen, a mannequin,

or an anatomic model, it may be possible to record the

actions of the examinee in performing the task, including

mouse clicks on a computer screen or actions on a physical

device, with the associated location, time, and task context

as appropriate.56

CHECKLISTS

The easiest and most widely used approach to scoring (and

the only feasible approach when automated scoring is not

possible) is to use checklists consisting of explicit outcome

and/or process criteria. Scoring rubrics are used to assign

scores to each item, and the scores can be weighted to account

for the importance of the item. Checklists are used with

standardized patient-based tests (e.g., Swanson,57 van der

Vleuten and Swanson58) with written and computer-based

clinical simulations or computer-based case simulations, also

called patient management problems,1 and with manne-

quins.59–61 The standardized patients may do the rating in

standardized patient-based tests. People with clinical expertise

serve as raters for the other simulation types and for some

standardized patient-based tests. Ratings can be done live or

by reviewing videotapes.

In addition to being the only feasible approach when auto-

mated scoring using embedded measures is not possible,

checklists have the benefit of being objective for recording

clearly observable examinee actions such as questions and

physical examination maneuvers. Rater training is required,

and with training, raters can be very accurate.62 Inter-rater

reliability, the degree of agreement among raters, should

always be measured.

Potential problems with checklists include the difficulty

in developing rubrics that appropriately reward different

strategies that are similar in quality and similar strategies

that differ in quality.1 Also, it can be difficult to develop

weights to accommodate more and less important actions,

and if weights are large or negative, scoring can be com-

plex, which can lead to inconsistencies that compromise

reliability, and the examinee could get a high or low score

based on a single action. Holistic scoring, focusing on the

outcome or process as a whole rather than breaking it into

separate parts (i.e., analytic scoring) has also been used.

It has been criticized as subjective, but, with good rater

training, has been shown to work.62,63

AUTOMATED SCORING

There have been multiple frameworks for evaluation and use

of automated scoring (see Williamson et al64 and Shermis

and Burstein65). We organize the literature into three major

approaches: expert-based methods, data-driven methods, and

domain-modeling methods.

Expert-Based Methods

There are two expert-based methods: using expert perfor-

mance and modeling expert judgment. In the first approach,

actual expert performance is considered the gold standard

against which student performance is compared,66,67 not what

experts say should be competent performance or how experts

rate student performance. This approach has been used to

develop tasks for content understanding using essays67 and

knowledge maps.68

A related approach is to model experts’ rating of exam-

inees’ performance on various task variables. Expert judg-

ment is considered the gold standard against which student

performance is compared, not actual expert performance.

This scoring approach has been used successfully to model

expert and rater judgments in a variety of applications includ-

ing essays69 and patient management skills.30

One of the major issues with expert-based scoring is the

selection of the expert.70,71 Problems include experts’ biases,

the influences of the experts’ content and world knowledge,

linguistic competency, expectations of student competency,

and instructional beliefs.72

Data-Driven Techniques

In data-driven techniques, performance data are subjected to

statistical or machine-learning analyses (e.g., artificial neural

networks with hidden Markov models). Using artificial neu-

ral network and hidden Markov model technologies, Ron

Stevens et al73 have developed a method for identifying

learner problem-solving strategies and modeling learning tra-

jectories, or sequences of performance states. Applying the

method to chemistry, they were able to identify trajectories

revealing learning problems that include not thoroughly

exploring the problem space early, reaching a performance

state that makes it unlikely to reach a more desirable end

state, and reaching a state from which the learner could tran-

sition to a better or worse state with equal likelihood. With

this information, it may be possible to perform a fine-grained

diagnosis of what learners do not know and to use learning

trajectories to guide the sequence of instruction and the type

and form of remediation, and to do it impromptu.

Validation of data-driven methods is complicated because

there is no a priori expectation of what scores mean and no

inherent meaning of the classification scheme. Interpreta-

tion is post hoc, which creates the potential for the introduc-

tion of bias in assignments to groups after the groups have

been defined.74 A second problem is that machine learning

techniques can be highly sample-dependent and the scoring
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process is driven by statistical rather than theoretical

issues.71 Because of these issues, validity evidence is particu-

larly important when using data-driven techniques to score

student responses.

Domain Modeling

This approach attempts to model the cognitive demands of the

domain itself. The model specifies how knowledge and skills

influence each other and the task variables on which observa-

tions are being made. The approach relies on a priori linking of

student performance variables to hypothesized knowledge and

skill states. Student knowledge and skills are then interpreted

in light of the observed student performance. This approach

has been used successfully in a variety of domains and

modeling types, from canonical items (e.g., Hively et al75);

to Tatsuoka’s rule-space methodology;76 to the use of Bayes

nets to model student understanding in domains such as Web

searching,77 rifle marksmanship,78 hydraulic troubleshooting,79

dental hygiene skills,80 network troubleshooting,81 and cir-

cuit analyses.82

The most important issue in domain modeling is identify-

ing the essential concepts and their interrelationships. This

can be mitigated through cognitive task analyses and direct

observation of performance, but it is critical to gather validity

evidence to validate the structure of and inferences drawn by

the Bayes net. For examples of empirical validation tech-

niques, see Chung et al78 and Williamson et al.83

METHOD SELECTION

For evaluations conducted at each Kirkpatrick level, the

methods used are important because they affect the quality

of the evaluation. Method selection and design are not easy

tasks because medical simulation evaluation is very difficult,

for all the reasons any educational research is difficult, and

there are additional obstacles that come with the use of tech-

nology. The effectiveness of a simulation is due to a combi-

nation of factors, not one, and these factors may interact

in complex ways. The instructional experience depends on

many variables, including instructor background, teaching

philosophy, training, and experience; the support of school

management; and characteristics of the students.84 And when

technology is part of the experience, there are additional vari-

ables, including availability of hardware, software, and tech-

nical support; curriculum integration strategies; students’

prior experience with and expertise in using technology; and

instructor expertise in technology and skill in implementing

the simulation.84

This section presents an overview of three major method-

ological approaches, the random-assignment experiment,

quasi-experiments, and alternatives based on qualitative

methods, and then we discuss combined methods. We end

with a discussion of heuristics for matching methods to situ-

ations (or research questions). For an excellent and detailed

treatment of these issues see Shadish et al.85

Random-Assignment Experiments

A random-assignment experiment requires random assign-

ment of the unit of treatment application, e.g., students,

instructor, or the school, to experimental and control groups.

The unit of treatment application is the unit of analysis, and it

defines the sample size. Random assignment is required to

achieve equivalent groups in terms of variables not explicitly

controlled by the evaluator. Variables explicitly controlled

by the evaluator are the treatment—the introduction of the

simulation—and all measures and procedures that may affect

the results.

For examples of the use of random-assignment experi-

ments see Adler et al,86 Boulet and Swanson,23 and Robinson

et al.87 The argument for the use of random-assignment

experiments is that they provide better evidence for causal

inferences than any other method. This is true, assuming that

the conditions required for experiments are met. The diffi-

culty of meeting these conditions has led to strong objections

to experiments in education research, including simulation

evaluations. The key problem is the requirement for random

assignment to experimental groups. Medical schools do not

typically assign students to classrooms and instructors ran-

domly, and students and instructors are not randomly assigned

to schools. It is also difficult to meet the requirement for

a control group not receiving the treatment. Students (and

instructors) do not readily accept withholding the use of tech-

nology for the sake of an experiment. It may also be the case

that simulation use in other classes is so widespread that it is

difficult or impossible to have a control group with no experi-

ence that might be relevant. And many argue that the goal of

simulation is to provide experiences not possible without the

simulation, which means that it is impossible to have a control

group receiving the same experience but without the simulation.

A related problem is the need for an adequate sample size.

The point of conducting an experiment, either a random-

assignment experiment or a quasi-experiment as described

below, is to detect a difference between groups in the study

sample when a difference actually exists in the populations

from which the samples are drawn. The probability of

detecting such a difference is called the power of a statistical

test. Obviously, the power should be high, so that if there is

no difference between groups in the experiment, it is reason-

able to conclude that there is no difference in reality. The

power of a study depends on several factors, including the

statistical test, significance criterion, measurement error, and

the size of the experimental effect, but the general approach

to increasing power is to increase the sample size. Despite

this, as reported by Moher et al,88 researchers often use sam-

ple sizes too small to achieve power adequate to detect real

effects, and most do not even report a sample size calcula-

tion. For information on calculating sample size, see

Cohen89,90 and Lenth.91 Lenth92 provides an online tool for

power and sample size calculations.

Another criticism of the experimental approach is that

although it provides better evidence for causal inferences, it
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does not provide information on why the simulation had

its effects. The argument is that the experiment is a black

box that provides evidence of connections between causes

and effects, but does not provide information on the pro-

cesses inside the box that explain why the simulation caused

the effects, many of which are based on the context of

the simulation.

Finally, there are the practical problems of cost and time.

Experiments are expensive and time-consuming. They may

require all the funds available for evaluation and take so long

to complete that decisions are made before results are avail-

able. Whether this is unique to random-assignment experi-

ments is arguable, but it is a common criticism nonetheless.

Quasi-Experiments

Quasi-experiments have many of the features of experiments

except random assignment to experimental and control

groups and appropriate control of selected variables, such as

the timing of exposure to the simulation.85 One example is

the time-series experiment, in which periodic measurements

are taken over time and an experimental change is inserted at

some point in the time series of measurements. Changes after

insertion may indicate an effect caused by the experimental

change, but may also be caused by other events occurring

during the time series because there is no control over events

other than the introduction of the experimental change.

Another example is the nonequivalent control group

design, one of the more common designs in educational

research. There is an experimental group and a control group.

Both are given a pretest and a posttest, but only the experi-

mental group receives the experimental treatment between

the two tests. This is similar to an experimental design, but

students are not randomly assigned to each group. Causation

can be inferred if there is an experimental versus control

group difference in the posttest score. Because the two

groups are naturally assembled, e.g., students in two dif-

ferent classes, not randomly assigned, they cannot be con-

sidered equivalent; and it is possible that some difference

affecting the groups other than the experimental treatment

could be the cause. Although this may seem unlikely, it is

possible. The point is that the evidence from quasi-experiments

is not as strong as the evidence from random-assignment

experiments, but it is also true that quasi-experiments are

usually more feasible and practical in an education set-

ting. For an example of a quasi-experiment, see the article

by Giuliano et al.93

Qualitative Methods

Qualitative methods do not attempt to compare experimen-

tal and control groups at all, or to control variables. They

investigate the simulation through observation, review of

artifacts, and interviews, studying cases in their natural

setting to consider variables as they appear in all the com-

plexity of the context.94 These methods are very popular in

education research, including evaluation of simulations, due

in part to the difficulties in doing experimental research

in educational settings, and in part to the desire to obtain

information on why the simulation had its effects—the

processes and mechanisms that lead from specifics of the

simulation to effects—and the contextual conditions under

which the simulation is more or less effective. The focus

is on the context of the simulation, such as local engage-

ment, collaboration, and feedback, and investigating why

those results occurred. Understanding the cause of the

result involves developing a theory of change, a descrip-

tion of the processes through which the effects are pro-

duced. Qualitative methods are weak on causal inference,

but the contextualization makes them very useful to decision

makers by providing models (theories of change) describing

how and why the simulation works or does not work in the

existing system and information needed to decide whether,

how, and when to use the simulation.

Qualitative methods are especially useful for studying a

broad range of naturally occurring practices found in many

different parts of the school, not from a particular simulation,

which would usually be evaluated with an experiment. Such

studies are often descriptive, interested in the frequency of

various instructional technology uses and practices, not their

effects. Some correlate descriptive data with student outcomes

to attempt to identify relationships, if not causes. Concluding

anything about causation from correlations is, of course, prob-

lematic. For an example of a technology evaluation using

qualitative methods, see the article by Overly et al.95

Combined Methods

As is usually the case when there is a debate over the merits

of radically different points of view, the practical truth lies

somewhere in between. There is no one right way to do

technology evaluation. The approach depends on the purpose

of the evaluation, the nature of the simulation, and the con-

text in which it is situated. Some will require quantitative

methods, some will require qualitative methods, and usually

the evaluation will benefit from a combination providing both

quantitative and qualitative data on student learning and atti-

tude outcomes, context, the military environment, and the

implementation of the simulation.

Selecting Methods

This section describes a heuristic process for deciding when

to use what research methods and combinations of methods.

The decision depends on the purpose of the evaluation, the

nature of the simulation, the context in which it is situated,

and practical constraints including site cooperation and avail-

able time, funding, equipment, and support resources. The

choice need not be limited to a single design. Depending on

the purpose, simulation, context, and practical constraints,

the evaluation may and usually should consist of a combina-

tion of methods.
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Figure 3 summarizes a heuristic process for matching

evaluation methods to situations and requirements.

The process is organized into the following set of guide-

lines, presented as questions followed by recommendations.

1. Is the evaluation concerned with the impact of a specific

simulation or with identifying promising practices?

–If it is identifying promising practices, the evaluation

should start with a quantitative study to identify suc-

cessful sites based on some measure, and then qualita-

tive methods should be used to understand the

differences between successful and unsuccessful sites

and the practices related to success.

–If the investigation is concerned with a specific

simulation, there is a question on the purpose of the

evaluation—question 2.

2. Is the purpose of the evaluation to improve the simula-

tion or determine its effectiveness?

–If the purpose is to improve the simulation, the evalu-

ation is a “formative” evaluation. Formative evaluations

are used to improve early stage projects by collecting

information that can be used to guide the development

and implementation of the intervention. This requires

the use of qualitative methods to provide information

on how the simulation works. The evaluator will be

FIGURE 3. A heuristic process for selecting evaluation methods.
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interested in how features of the environment interact

with features of the simulation, and how features of the

simulation will influence behavior.

–If the purpose is to determine the effectiveness of the

simulation, the evaluation is a “summative” evaluation.

In this case there is a question on the need for causal

information—question 3.

3. Is causal information needed?

–If causal information is not needed, qualitative methods

are appropriate.

–If causal information is needed, quantitative methods

are indicated. Random-assignment experiments are best

for determining causation and should be considered first,

but before selecting an experiment, there is a question

on the feasibility of random assignment—question 4.

4. Is it possible for students, classes, or schools to be

randomly assigned to conditions?

–If the answer is yes, a random-assignment experiment

may be possible, depending on the answer to question 5.

–If the answer is no, a quasi-experiment may be possi-

ble, depending on the answer to question 5.

5. Is an experiment feasible? Before selecting a random-

assignment experiment or quasi-experiment, the feasi-

bility of conducting either must be determined. For

either experiment type to be feasible, it must satisfy the

following requirements:

—Use of the simulation must be different from standard

practice in order to achieve a meaningful comparison.

—Use of the simulation must be maintainable, that

is, it must continue unchanged for the course of the

experiment.

—Participation must not deny students access to an

entitlement, e.g., access to an instructional experience.

—Human subjects protection requirements must be met.

—Participants and the site must be willing to cooperate.

—An adequate sample size must be available.

—Time, funding, equipment, and support resources must

be available.

–If feasibility requirements cannot be met, qualita-

tive methods should be used.

–If feasibility requirements can be met for either

experiment type, there is a question on the need for

information on context—question 6.

6. Is there a requirement for information on conditions of

applicability or the process producing the outcomes?

–If the answer is yes, and this should usually be the case,

an experiment (random-assignment or quasi-experiment,

whichever is indicated in question 4) combined with

qualitative methods for the contextual information

is appropriate.

–If the answer is no, the experiment is sufficient.

If random assignment is not possible, but feasibility

requirements can be met, and there is a requirement for infor-

mation on conditions of applicability or the process producing

the outcomes, a quasi-experiment combined with qualitative

methods would be appropriate. If there is no requirement for

conditions of applicability or process, which should not be the

usual case, a quasi-experiment is appropriate. And as with

the random-assignment experiment branch of the method

selection process, if the quasi-experiment or quasi-experiment/

qualitative method combination are not appropriate, qualitative

methods are the choice.

SUMMARY AND DISCUSSION

This article has presented an overview of issues and

approaches relevant to evaluating medical simulations. It dis-

cusses criteria for the technical quality of evaluations, and

methods for achieving it. It introduces the Kirkpatrick model,

a proven evaluation model supporting the idea of marshaling

evidence to make a validity argument. It discusses measures,

approaches to scoring, and research methods used to provide

evidence, with guidelines for selecting appropriate methods.

Takeaway Message

Medical simulations have great promise for training complex

high-value tasks at less cost and without risk to patients.

However, great promise and impressive technical capability

are not sufficient to conclude effectiveness. To realize the

promise, practitioners must assess the systems and the learn-

ing they help produce, and the evaluations must have techni-

cal quality. The article’s central takeaway message is the

importance of technical quality—reliability and, especially,

validity—as the fundamental requirement for any evaluation.

The message is linked to two supporting ideas:

1. Validity is not a general quality of an evaluation. An

evaluation’s validity depends on the context of its use

and the inferences to be drawn based on the results. A

validity argument must be made using a wide range of

evidence for the appropriateness of the inferences for

the particular context.36

2. Begin with a definition of the objectives. The first step

in evaluation design is to define the objectives of the

simulation—the knowledge and skill required for suc-

cess. This leads to defining measures, operationalizing

the scoring, and then validating the approach with

empirical evidence.

3. Align measures, scoring, and research methods with the

objectives. Validity requires alignment with the objec-

tives. Evaluate at all levels of the Kirkpatrick model if

possible, but always at the level matching the objectives.

Future Directions

Although not widely used in current medical simulations, we

expect greater use of automated scoring based on measures

embedded in the simulation itself. Because of the growing
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sophistication of computationally supported data collection,

and the importance of formative information about the

trainee’s process during learning, in the future outcome mea-

sures will merge with process measures to create learner pro-

files rather than scores or classifications. We anticipate that

these will have domain-independent components that may

predict learners’ likely success in a range of other tasks. We

see the study of expertise continuing to add to our knowledge

of performance measurement and its validity, and we also

predict an increased use of artificial intelligence and advanced

decision analysis techniques to support assessment and evalu-

ation. These include ontologies, Bayes nets, artificial neural

networks, hidden Markov models, lag sequential analysis, and

constraint networks.

Test development guidelines have been developed from

lessons learned in the assessment of clinical competence lit-

erature.96 The same is needed for medical simulation design

and evaluation based on lessons learned in the evaluation of

medical simulations. The Federal Medical Simulation Train-

ing Consortium, a partnership of the Department of Defense

and other federal institutions involved in medical training and

education, is taking a major step in this direction, working

with the University of California, Los Angeles Center for

Research on Evaluation, Standards, and Student Testing to

develop a framework to guide evaluation and refinement of

existing curricula (including but not limited to simulations)

and development of new curricula, and a set of training effec-

tiveness metrics to allow comparison of curricula.

ACKNOWLEDGMENTS

The work reported herein was supported by a grant from the Office of Naval

Research, Award Number N00014-10-1-0978.

REFERENCES

1. Swanson DB, Norcini JJ, Grosso J: Assessment of clinical competence:

written and computer-based simulations. Assess Eval Higher Educ

1987; 12: 220–46.

2. McGaghie WC, Issenberg SB: Simulations in professional competence

assessment: basic considerations. In: Innovative Simulations for

Assessing Professional Competence, pp 7–22. Edited by Tekian A,

McGuire CH, McGaghie WC. Chicago, Department of Medical Educa-

tion, University of Illinois at Chicago, 1999.

3. Barrows HS, Abrahamson S: The programmed patient: a technique for

appraising student performance in clinical neurology. J Med Educ 1964;

39: 802–5.

4. Collins JP, Harden RM: The Use of Real Patients, Simulated Patients

and Simulators in Clinical Examinations (AMEE Medical Education

Guide, No. 13). Dundee, UK, Association for Medical Education in

Europe, 2004.

5. Wilson L, Rockstraw L (editors.): Human Simulation for Nursing and

Health Professions. New York, Springer, 2012.

6. Gerner B, Sanci L, Cahill H, et al: Using simulated patients to develop

doctors’ skills in facilitating behaviour change: addressing childhood

obesity. Med Educ 2010; 44: 706–15.

7. Betcher DK: Elephant in the room project: improving caring efficacy

through effective and compassionate communication with palliative care

patients. Medsurg Nurs 2010; 19: 101–5.

8. Safdieh JE, Lin AL, Aizer J, et al: Standardized patient outcomes trial

(SPOT) in neurology. Med Educ Online 2011; 16(1): 1–6.

9. Marecik SJ, Prasad LM, Park JJ, et al: A lifelike patient simulator for

teaching robotic colorectal surgery: how to acquire skills for robotic

rectal dissection. Surg Endosc 2008; 22: 1876–81.

10. Crochet P, Aggarwal R, Dubb SS, et al: Deliberate practice on a virtual

reality laparoscopic simulator enhances the quality of surgical technical

skills. Ann Surg 2011; 253(6): 1216–22.

11. Lee JT, Son JH, Chandra V, Lilo E, Dalman RL: Long-term impact of a

preclinical endovascular skills course on medical student career choices.

J Vasc Surg 2011; 54: 1193–200.

12. Privett B, Greenlee E, Rogers G, Oetting TA: Construct validity of a

surgical simulator as a valid model for capsulorhexis training. J Cataract

Refract Surg 2010; 36: 1835–8.

13. Coles TR, John NW: The Effectiveness of Commercial Haptic Devices

for Use in Virtual Needle Insertion Training Simulations. In: 2010 Third

International Conference on Advances in Computer-Human Interac-

tions, pp 148–53. Piscataway, NJ, The Institute of Electronic and Elec-

trical Engineers, 2010. Available at http://www.computer.org/csdl/

proceedings/achi/2010/3957/00/3957a148-abs.html; accessed May 7, 2013.

14. Barsuk JH, McGaghie WC, Cohen ER, O’Leary KJ, Wayne DB:

Simulation-based mastery learning reduces complications during cen-

tral venous catheter insertion in a medical intensive care unit. Crit

Care Med 2009; 37: 2697–701.

15. Ahlberg G, Enochsson L, Gallagher AG, et al: Proficiency-based

virtual reality training significantly reduces the error rate for residents

during their first 10 laparoscopic cholecystectomies. Am J Surg 2007;

193: 797–804.

16. Cook DA, Triola MM: Virtual patients: a critical literature review and

proposed next steps. Med Educ 2009; 43(4): 303–11.

17. Cendan JC, Lok B: The use of virtual patients in medical school cur-

ricula. Adv Physiol Educ 2012; 36(1): 48–53.

18. Cannon-Bowers JA, Bowers C, Procci K: Using video games as edu-

cational tools in healthcare. In: Computer Games and Instruction,

pp 47–72. Edited by Tobias S, Fletcher JD. Charlotte, NC, Infor-

mation Age Publishing, 2011.

19. Crofts JF, Bartlett C, Ellis D, Hunt LP, Fox R, Draycott TJ: Training

for shoulder dystocia: a trial of simulation using low-fidelity and high-

fidelity mannequins. Obstet Gynecol 2006; 108: 1477–85.

20. Alinier G, Hunt WB, Gordon R: Determining the value of simulation

in nurse education: study design and initial results. Nurse Educ Pract

2004; 4(3): 200–7.

21. Radhakrishnan K, Roche JP, Cunningham H: Measuring clinical prac-

tice parameters with human patient simulation: a pilot study. Int J Nurs

Educ Scholarsh 2007; 4: Article 8.

22. Cendan JC, Johnson TR: Enhancing learning through optimal sequenc-

ing of web-based and manikin simulators to teach shock physiology

in the medical curriculum. Adv Physiol Educ 2011; 35(4): 402–7.

23. Boulet JR, Swanson DB: Psychometric challenges of using simulations

for high-stakes assessment. In: Simulators in Critical Care Education

and Beyond, pp 119–30. Edited by Dunn WF. Des Plaines, IL, Society

of Critical Care Medicine, 2004.

24. Scalese RJ, Obeso VT, Issenberg SB: Simulation technology for skills

training and competency assessment in medical education. J Gen Intern

Med 2008; 23(Suppl 1): 46–9.

25. Dauphinee WD, Reznick R: A framework for designing, implementing,

and sustaining a national simulation network: building incentive-based

network structures and iterative processes for long-term success: the

case of the Medical Council of Canada’s Qualifying Examination,

Part II. Simul Healthc 2011; 6(2): 94–100.

26. Dillon GF, Boulet JR, Hawkins RE, Swanson DB: Simulations in the

United States Medical Licensing Examination (USMLE). Qual Saf

Health Care 2004; 13(Suppl 1): i41–5.

27. Dillon GF, Clauser BE: Computer-delivered patient simulations in the

United States Medical Licensing Examination (USMLE). Simul Healthc

2009; 4: 30–4.

MILITARY MEDICINE, Vol. 178, October Supplement 2013 73

Evaluation of Medical Simulations

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
ilm

e
d
/a

rtic
le

/1
7
8
/s

u
p
p
l_

1
0
/6

4
/4

3
4
4
7
9
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



28. Bradley P: The history of simulation in medical education and possible

future directions. Med Educ 2006; 40: 254–62.

29. Larsen CR, Soerensen JL, Grantcharov TP, et al: Effect of virtual reality

training on laparoscopic surgery: randomised controlled trial. BMJ

2009; 338: b1802.

30. Margolis MJ, Clauser BE: A regression-based procedure for auto-

mated scoring of a complex medical performance assessment. In:

Automated Scoring of Complex Tasks in Computer-Based Test-

ing, pp 123–67. Edited by Williamson DM, Behar II, Mislevy RJ.

Mahwah, NJ, Erlbaum, 2006.

31. Issenberg SB, McGaghie WC, Petrusa ER, Gordon DL, Scalese RJ: Fea-

tures and uses of high-fidelity medical simulations that lead to effective

learning: a BEME systematic review. Med Teach 2005; 27(1): 10–28.

32. Bordage G, Caelleigh AS, Steinecke A, et al: Review criteria for

research manuscripts. Acad Med 2001; 76: 897–978.

33. Lurie SJ: Raising the passing grade for studies of medical education.

JAMA 2003; 290: 1210–2.

34. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ: A critical review

of simulation-based medical education research: 2003-2009. Med Educ

2010; 44: 50–63.

35. Fletcher JD, Wind AP: Cost considerations in using simulations for

medical training. Mil Med 2013; 178(10)(Suppl): 37–46.

36. American Educational Research Association, American Psychological

Association, and National Council for Measurement in Education:

Standards for Educational and Psychological Testing. Washington,

DC, American Educational Research Association, 1999.

37. Miller MD, Linn R, Gronlund N: Measurement and Assessment in

Teaching, Ed 11. Upper Saddle River, NJ, Prentice Hall, 2012.

38. Gulliksen HO: Theory of Mental Tests. New York, John Wiley, 1950.

39. Nunnally JC, Bernstein IH: Psychometric Theory, Ed 3. New York,

McGraw-Hill, 1994.

40. Liu J, Harris DJ, Schmidt A: Statistical procedures used in college admis-

sions testing. In: Handbook of Statistics, Volume 26: Psychometrics,

pp 1057–94. Edited by Rao CR, Sinharay S. New York, Elsevier, 2007.

41. Cai L: Potential applications of latent variable modeling for the psycho-

metrics of medical simulation. Mil Med 2013; 178(10)(Suppl): 115–20.

42. Patz RJ, Junker BW, Johnson MS, Mariano LT: The hierarchical rater

model for rated test items and its application to large-scale educational

assessment data. J Educ Behav Stat 2002; 27(4): 341–84.

43. Shavelson RJ, Webb NM: Generalizability Theory: A Primer. Thousand

Oaks, CA, Sage, 1991.

44. Brennan RL: Generalizability Theory. New York, Springer-Verlag, 2001.

45. Chiu CWC: Scoring Performance Assessments Based on Judgements:

Generalizability Theory. New York, Kluwer, 2001.

46. Messick S: Validity. In: Educational Measurement, Ed 3, pp 13–103.

Edited by Linn R. Phoenix, AZ, The Oryx Press, 1993.

47. Thompson B: Exploratory and Confirmatory Factor Analysis: Under-

standing Concepts and Applications. Washington, DC, American

Psychological Association, 2004.

48. Kirkpatrick DL, Kirkpatrick JD: Evaluating Training Programs: The

Four Levels, Ed 3. San Francisco, Berrett-Koehler, 2006.

49. Kirkpatrick DI: Evaluating Training Programs: The Four Levels, ED 2.

San Francisco, Berrett-Koehler, 1998.

50. McNulty JA, Halama J, Espiritu B: Evaluation of computer-aided

instruction in the medical gross anatomy curriculum. Clin Anat 2004;

17: 73–8. doi: 10.1002/ca.10188

51. Via DK, Kyle RR, Trask JD, Shields CH, Mongan PD: Using high-

fidelity patient simulation and an advanced distance education network

to teach pharmacology to second-year medical students. J Clin Anesth

2004; 16(2): 144–51.

52. Fitch MT: Using high-fidelity emergency simulation with large groups

of preclinical medical students in a basic science course. Med Teach

2007; 29: 261–3.

53. Swick S, Hall S, Beresin E: Assessing the ACGME competencies in

psychiatry training programs. Acad Psychiatry 2006; 30: 330–51.

54. Brünken R, Seufert T, Paas F: Measuring cognitive load. In: Cognitive

Load Theory, pp 181–202. Edited by Plass J, Moreno R, Brünken R.

New York, Cambridge University Press, 2010.

55. Hays RT: The Effectiveness of Instructional Games: A Literature

Review and Discussion. Technical report 2005–004. Orlando, FL,

Naval Air Warfare Center Training Systems Division, 2005. Available at

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA441935; accessed

May 7, 2013.

56. Bewley WL, Chung GKWK, Delacruz GC, Baker EL: Assessment

models and tools for virtual environment training. In: The PSI Handbook

of Virtual Environments for Training and Education: Developments for

the Military and Beyond, Vol. 1, pp 300–13. Edited by Schmorrow D,

Cohn J, Nicholson D. Westport, CT, Greenwood Publishing, 2009.

57. Swanson DB: A measurement framework for performance-based tests.

In: Further Developments in Assessing Clinical Competence, pp 13–45.

Edited by Hart I, Harden R. Montreal, Can-Heal Publications, 1987.

58. van der Vleuten C, Swanson DB: Assessment of clinical skills with

standardized patients: state of the art. Teach Learn Med 1990; 2: 58–76.

59. Morgan PJ, Cleave-Hogg D, DeSousa S, Tarshis J: High-fidelity patient

simulation: validation of performance checklists. Br J Anaesth 2004;

92(3): 388–92.

60. Murray D, Boulet J, Ziv A, Woodhouse J, Kras J, McAllister J: An acute

care skills evaluation for graduating medical students: a pilot study

using clinical simulation. Med Educ 2002; 36: 833–41.

61. Boulet JR, Murray D, Kras J, Woodhouse J, McAllister J, Ziv A: Reli-

ability and validity of a simulation-based acute care skills assessment

for medical students and residents. Anesthesiology 2003; 99: 1270–80.

62. Boulet JR, McKinley DW, Whelan GP, Hambleton RK: Quality assur-

ance methods for performance-based assessments. Adv Health Sci

Educ Theory Pract 2003; 8: 27–47.

63. Regehr G, MacRae H, Reznick R, Szalay D: Comparing the psychomet-

ric properties of checklists and global rating scales for assessing perfor-

mance on an OSCE-format examination. Acad Med 1998; 73: 993–7.

64. Williamson DM, Xi X, Breyer FJ: A framework for evaluation and use

of automated scoring. Educ Meas 2012; 31(1): 2–13.

65. Shermis MD, Burstein JC (editors): Automated Essay Scoring: A Cross-

Disciplinary Perspective. Mahwah, NJ, Erlbaum, 2003.

66. Baker EL: Model-based performance assessment. Theory Pract 1997;

36(4): 247–54.

67. Baker EL, Freeman M, Clayton S: Cognitive assessment of history for

large-scale testing. In: Testing and Cognition, pp 131–53. Edited by

Wittrock MC, Baker EL. Englewood Cliffs, NJ, Prentice-Hall, 1991.

68. Herl HE, O’Neil HF Jr., Chung GKWK, Schacter J: Reliability and

validity of a computer-based knowledge mapping system to measure

content understanding. Comput Human Behav 1999; 15: 315–33.

69. Burstein J: The e-rater scoring engine: automated essay scoring with

natural language processing. In: Automated Essay Scoring: A Cross-

Disciplinary Perspective, pp 113–22. Edited by Shermis MD, Burstein JC.

Mahwah, NJ, Erlbaum, 2003.

70. Bennett RE, Bejar II: Validity and automated scoring: it’s not only the

scoring. Educ Meas 1998; 17(4): 9–17.

71. Bennett RE: Moving the field forward: Some thoughts on validity and

automated scoring. In: Automated Scoring of Complex Tasks in Com-

puter-Based Testing, pp 403–12. Edited by Williamson DM, Behar II,

Mislevy RJ. Mahwah, NJ, Erlbaum, 2006.

72. Baker EL, O’Neil HF Jr.: Performance assessment and equity. In:

Implementing Performance Assessment: Promises, Problems, and Chal-

lenges, pp 183. Edited by Kane MB, Mitchell R. Mahwah, NJ, Erlbaum,

1996. p. 183–99.

73. Stevens R, Soller A, Cooper M, Sprang M: Modeling the Develop-

ment of Problem Solving Skills in Chemistry with a Web-Based

Tutor, pp 580–91. Proceedings of the 7th International Conference

on Intelligent Tutoring Systems. Berlin, Springer-Verlag, 2004.

74. Baker EL, Chung GKWK, Delacruz GC: Design and validation of

technology-based performance assessments. In: Handbook of Research

on Educational Communications and Technology, Ed 3, pp 595–604.

MILITARY MEDICINE, Vol. 178, October Supplement 201374

Evaluation of Medical Simulations

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
ilm

e
d
/a

rtic
le

/1
7
8
/s

u
p
p
l_

1
0
/6

4
/4

3
4
4
7
9
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Edited by Spector JM, Merrill MD, van Merriënboer JJG, Driscoll
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