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ABSTRACT: A process-oriented approach is developed to evaluate warm-season mesoscale convective system (MCS)

precipitation and their favorable large-scale meteorological patterns (FLSMPs) over the United States. This approach

features a novel observation-driven MCS-tracking algorithm using infrared brightness temperature and precipitation fea-

tures at 12-, 25-, and 50-km resolution and metrics to evaluate the model large-scale environment favorable for MCS

initiation. The tracking algorithm successfully reproduces the observed MCS statistics from a reference 4-km radar MCS

database. To demonstrate the utility of the new methodologies in evaluating MCS in climate simulations with mesoscale

resolution, the process-oriented approach is applied to two climate simulations produced by theVariable-ResolutionModel

for Prediction Across Scales coupled to the Community Atmosphere Model physics, with refined horizontal grid spacing at

50 and 25 km over North America. With the tracking algorithm applied to simulations and observations at equivalent

resolutions, the simulated number of MCS and associated precipitation amount, frequency, and intensity are found to be

consistently underestimated in the central United States, particularly from May to August. The simulated MCS precipi-

tation shows little diurnal variation and lasts too long, while the MCS precipitation area is too large and its intensity is too

weak. The model is able to simulate four types of observed FLSMP associated with frontal systems and low-level jets (LLJ)

in spring, but the frequencies are underestimated because of low-level dry bias and weaker LLJ. Precipitation simulated

under different FLSMPs peak during the daytime, in contrast to the observed nocturnal peak. Implications of these findings

for future model development and diagnostics are discussed.

KEYWORDS: Convective storms; Mesoscale systems; Storm environments; Cloud tracking/cloud motion winds; Climate

models; Model evaluation/performance

1. Introduction

Realistic representation of the hydrologic cycle and related

extremes in Earth system models has important societal ben-

efits. As Earth continues to warm, hydrological cycle changes

such as ‘‘the wet get wetter and the dry get drier’’ (Held and

Soden 2006; Trenberth 2011) have significant implications for

infrastructure planning and management of water resources.

More importantly, the increased water vapor supply to storms

under a warmer climate and the additional latent heat released

can invigorate storms and enhance precipitation intensity

(Trenberth et al. 2003), increasing the risk of flooding. Large

disagreements in phase 5 of the Coupled Model Intercomparison

Project (CMIP5; Taylor et al. 2012) projections of future precipitation

show that the current generation of global climate models (GCMs)

have large uncertainties in simulating one of the key components of

the water cycle. In contrast, high-resolution GCMs have been shown

to provide improved, globally consistent information on hydrologic

hazards and impacts compared to traditional coarse resolutionmodels

(Roberts et al. 2018).

In the midlatitude, intense precipitation events are com-

monly associated with synoptic-scale disturbances such as

extratropical cyclones and mesoscale disturbances such as

tropical cyclones. In the contiguous United States (CONUS),

mesoscale convective systems (MCSs), the largest form of deep

convective storms, produce over 50% of annual and seasonal

rainfall over large regions east of the Continental Divide

(ECONUS; Feng et al. 2019; Haberlie andAshley 2019). MCSs

consist of an assembly of cumulonimbus clouds on scales of

100 km or greater and produce mesoscale circulations (Houze

2004, 2018). They are also responsible for over half of the ex-

treme daily rainfall events, trailed by synoptic and tropical

systems in the ECONUS (Stevenson and Schumacher 2014).

The warming climate in the past three decades has already

resulted in an observed increase in the frequency and intensity

of MCS precipitation during spring (Feng et al. 2016), and such

increases are projected to further intensify under future warming

(Prein et al. 2017).
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MCSs are notoriously difficult to simulate in traditional

GCMs. This is partly due to the multiscale interactions be-

tween convective-scale dynamics and microphysics and the

upscale feedbacks and interactions through latent heating

(Feng et al. 2018; Yang et al. 2017), which are challenging for

GCMs because the scale-separation assumptions used in most

convection parameterizations are violated (Moncrieff 2010).

Failure of traditional GCMs in simulating MCSs over

ECONUS is manifested in the erroneous diurnal cycle of

precipitation and large warm bias in the near-surface temper-

ature (Lin et al. 2017). Various causes of the long-standing

warm and dry biases in GCMs are documented in the Clouds

Above the United States and Errors at the Surface (CAUSES)

project (Morcrette et al. 2018), including biases in simulating

different types of clouds (Van Weverberg et al. 2018) and er-

rors in the surface energy budget (Ma et al. 2018).

Besides important influence of physical processes, MCSs in

ECONUS are closely related to the large-scale environments

(Feng et al. 2019; Song et al. 2019). Long-term observations of

MCSs in the United States show distinctly different large-scale

environments associated with the initiation and structure of

MCSs in spring versus summer (Feng et al. 2019; Song et al.

2019). During spring, baroclinic waves and frontal systems

provide strong lifting mechanisms and the Great Plains low-

level jet (LLJ) provides anomalous moisture for favorable

dynamical and thermodynamical environments for MCS de-

velopment. In contrast, during summer, favorable environ-

ments featuring significantly weaker baroclinic lifting and

thermodynamic instability suggest much lower predictability

of MCSs compared to spring (Song et al. 2019). Besides limi-

tations in physics parameterizations, it is unclear if GCMs are

able to simulate different types of observed large-scale envi-

ronments favorable for MCS development (Song et al. 2019).

Several different approaches to higher resolution modeling

have been used to improve simulation ofMCSs. The multiscale

modeling framework (MMF), in which a cloud-resolving

model is embedded in each GCM grid column to replace the

cumulus parameterizations, have shown some advantages in

simulating MCS-like features over ECONUS (Kooperman

et al. 2013; Lin et al. 2019; Pritchard and Somerville 2009a,b).

Convection-permitting regional models (grid spacing # 4 km)

can produce significantly more realistic warm season MCSs

comparable to observations (Feng et al. 2018; Prein et al. 2020),

but they are still prohibitively expensive for long-term climate

simulations. Global models with grid spacing finer than 100 km

have the potential for substantial improvements at synoptic-

scale processes (Roberts et al. 2018), which can result in more

intense and less frequent precipitation that agrees better with

observations (Chen and Dai 2019; Wehner et al. 2014). More

recently, the variable-resolution (VR) approach, in which

higher resolution over a region of interest and a gradual tran-

sition to coarser resolution elsewhere, has been explored for

studying regional processes at a lower computational cost

compared to global high-resolution models. Previous works

showed that VR models are able to produce climate statistics

such as precipitation in the refinement region comparable to

their global uniform high-resolution counterparts (Gettelman

et al. 2018; Sakaguchi et al. 2015). However, it is unclear if the

increase in intense precipitation events with higher resolution

reflects a correct representation of the underlying processes,

which is critically important for providing reliable future pro-

jections of changes in the hydrological cycle based on models.

Better simulations of synoptic-scale processes and intense

precipitation by models with grid spacing finer than 100 km

(Chen and Dai 2019; Demory et al. 2014; Roberts et al. 2018)

may have important impacts on modeling MCS and their

characteristics in the United States, but such effects have not

been investigated.

Evaluating high-resolution simulations of MCS is particu-

larly timely as a set of climate experiments with horizontal

resolution of at least 50km is becoming available as part of phase

6 of the Coupled Model Intercomparison Project (CMIP6;

Eyring et al. 2016) High Resolution Model Intercomparison

Project (HighResMIP; Haarsma et al. 2016) to systematically

assess the robust benefits of increased model resolution based

on a multimodel ensemble. Previous high-resolution climate

model evaluation efforts have not focused on directly evaluating

the ability of models to simulate MCS and non-MCS precipita-

tion against observations. Therefore, new methods to evaluate

MCS precipitation characteristics as well as their favorable

large-scale environments simulated by climate models across

different resolutions are needed.

In this study, we develop a process-oriented approach to

systematically evaluate the performance of climate models at

mesoscale resolutions (grid spacing 10–50 km) in simulating

warm-season MCS-like precipitation features and their favor-

able large-scale environments over the United States. Climate

simulations at mesoscale resolutions are becoming more

commonly available (e.g., Caldwell et al. 2019; Gutjahr et al.

2019; Roberts et al. 2019), motivating the need to develop

evaluation and diagnostic methods to probe their ability in

capturing mesoscale features such as MCS, which has been a

challenge for models with parameterized convection (e.g.,

Davis et al. 2003). To reduce the computational cost of running

global simulations at mesoscale resolutions, the VR approach

is taken by coupling the dynamical core of the Model for

Prediction Across Scales (VR-MPAS; Skamarock et al. 2012)

withVR capability to the widely usedCommunityAtmosphere

Model version 5 (CAM5) physics (Sakaguchi et al. 2015; Zhao

et al. 2016). Simulations from this model with regional refine-

ment atmesoscale resolution over NorthAmerica are analyzed

as a test case to demonstrate the utility of the new diagnostic

approach developed in this study for model evaluation and

guiding the directions for future development.

At the core of the developed framework is a novel MCS

tracking algorithm for mesoscale resolution models based on

high-resolution observations. To facilitate understanding of

the model biases in simulating MCS, a metric is also developed

to evaluate the ability of the model in reproducing the ob-

served favorable large-scale environments for MCS develop-

ment. The paper is organized as follows: section 2 describes the

model simulation setup and observational datasets; section 3

details the methodological developments for tracking MCS

and identifying their large-scale environments; application of

the MCS evaluation methodology to two sets of climate

simulations is presented in section 4; section 5 evaluates the
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simulated favorable MCS large-scale environments and asso-

ciated precipitation evolution; Summary of the key findings

and discussion on guidance for future model development are

provided in section 6.

2. Model setup and observational data

a. Model setup

This study uses the beta version of the Community Earth

System Model (CESM) version 2, to which the nonhydrostatic

MPAS–Atmosphere (Skamarock et al. 2012) version 4 has

been added as an experimental option for dynamical cores in

CAM. A similar model code was used by Gettelman et al.

(2018) to test the VR capability of another dynamical core, the

spectral element model. Two regionally refined global meshes

were created with a high-resolution region centered over the

CONUS (Fig. 1). As shown in Fig. 1, the grid spacing of the VR

grids (25–100 and 50–200 km, hereafter referred to asMP25km

and MP50km) varies smoothly from low- to high-resolution,

taking advantages of the grid generation used by MPAS (Ju

et al. 2011; Ringler et al. 2010).

We use the physics package of CAM5.4, which is an interim

version toward CAM version 6 (Bogenschutz et al. 2018) and

was available at the time MPAS coupling was done. Physics

parameterizations in CAM5.4 are summarized in Table 1. A

major difference between CAM5.4 and the previous version

CAM5.0 (the atmosphere component of CESM1) is the prog-

nostic precipitation mass and number concentrations (rain and

snow; rimmed ice particles are not considered) in the new

cloud microphysics scheme, MG2 (Gettelman and Morrison

2015). Using prognostic concentrations reduces model as-

sumptions necessary for a diagnostic approach (e.g., advection

of precipitating particles is assumed to be negligible), so it is

more appropriate for high-resolution simulations.

Following Bacmeister et al. (2014) and the HighResMIP

protocol, aerosols are prescribed in this study. The monthly

mean aerosol mass concentrations for year 2000 conditions

derived from a previous CAM4 simulation on a 18 (0.98 3

0.1258) grid with the three-moment modal aerosol scheme (Liu

et al. 2012) are used as input. With the prescribed aerosols,

aerosol number concentrations are calculated using a pre-

scribed relationship between the mass and number concen-

trations, and both concentrations are passed to the cloud

microphysics for droplet activation and ice nucleation (Gettelman

et al. 2015). Therefore, both direct and indirect aerosol effects are

considered in the gridscale cloud microphysics but likely with

larger uncertainty than modeling using prognostic, interactive

aerosols. The simpler microphysics in the shallow and deep con-

vection schemes do not consider the impact of varying aerosol

number concentrations. Such a simple representation of aerosols

may limit the areal coverage of anvil clouds (Chakraborty et al.

2016) and possible convection invigoration by aerosols (Chen

et al. 2020).

Parameters for the physics parameterizations are tuned

based on a global CAM5.4 simulation with the finite-volume

FIG. 1. Variable-resolution mesh for the twoMPAS-CAM simulations used in this study. Regional refinement of

horizontal grid spacing at (a) 50 km (‘‘MP50km’’) and (b) 25 km (‘‘MP25km’’) over CONUS are shown in the inside

mesh. The grid spacing is smoothly coarsened to 200 km in (a) and 100 km in (b) outside of North America.

TABLE 1. Physics parameterizations used in CAM5.4 and their

references.

Physics Reference

Deep convection Neale et al. (2008) and Zhang and

McFarlane (1995)

Shallow convection Park and Bretherton (2009)

Boundary layer Bretherton and Park (2009)

Cloud macrophysics Park et al. (2014)

Cloud microphysics Gettelman and Morrison (2015)

Radiation Iacono et al. (2008)

Prescribed aerosol Bacmeister et al. (2014) and Kiehl

et al. (2000)
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dynamical core on the 18 grid. No attempt has been made to

tune the parameter values differently at each resolution, so the

parameter values are not necessarily optimal for the two VR

simulations conducted in this study. It is noted that resolution-

dependent tuning seems to be necessary to take advantage of

increased resolution for many aspects of the simulated

hydrological cycles (Xie et al. 2018). But following the

HighResMIP protocol for a clean evaluation of the impact of

horizontal resolution, we do not tune model parameters dif-

ferently at each resolution. Exceptions are time step lengths,

numerical diffusion coefficients, and the convective time scale

used in the Zhang–McFarlane convection scheme (Neale et al.

2008; Zhang and McFarlane 1995) (Table 2). Although the

Zhang–McFarlane scheme does not explicitly address scale

awareness, especially with regard to the convective time scale,

adjusting the time scale in proportion to the physics time step

length has been shown to mitigate some of its resolution sen-

sitivity (Gross et al. 2018; Williamson 2013). Typical physics

time step and convective time scale are 1800 and 3600 s, re-

spectively, for global simulations at;18 grid spacing. Note that

the dynamical time steps are constrained by the smallest grid

spacings of the variable-resolution mesh.

Our simulations follow the setup of the Atmosphere Model

Intercomparison Project (‘‘FAMIPC5’’ compset of CESM), in

which the atmosphere and land models are active while sea sur-

face temperature (SST) and sea ice cover are prescribed based on

observations. We use the SST and sea ice cover from the ERA-

Interim reanalysis (Dee et al. 2011). The 6-hourly ERA-Interim

data are averaged to daily for used as model input. The land

model is the Community Land Model version 4 (Lawrence et al.

2011) with prescribed, static land cover types and vegetation

properties (e.g., leaf area index) roughly representing the condi-

tions for year 2000. The simulations were run from 1989 to 2013,

but only the last 10 years (2004–13) are analyzed to take advan-

tage of better availability of observational data (section 2b).

As suggested by previous studies, we do not expect many

aspects ofMCSs to bewell simulated by thismodel configuration

at resolutions requiring parameterized convection. We empha-

size again that the focus of the study is to describe and demon-

strate the utility of our new diagnostic approach targeted at

simulated MCSs and associated large-scale environments. In

particular, the approach is designed to reveal whether the in-

tensity and diurnal cycle of precipitation are simulated for the

correct reasons. Along with the model configuration similar to

those in HighResMIP, the results presented below would be

useful to many users and developers of global climate models.

b. Observation datasets

The observational dataset used in this study is a recently

developed 13-yr (2004–16) high-resolution (;4 km, 1 hourly)

MCS database (Feng et al. 2019). This dataset synthesizes

geostationary infrared brightness temperature Tb, Next

Generation Radar Network (NEXRAD) 3D radar reflectivity

and Stage IV radar-based precipitation estimates with rain

gauge bias correction. Long-lived and intense MCSs (i.e., ro-

bust MCSs) were defined as a large cold cloud system (CCS;

Tb , 241K) area exceeding 6 3 104 km2, with a precipitating

feature (PF) of at least 100 km, containing convective feature

radar reflectivity. 45 dBZ at any vertical level, and persisting

for at least 6 h. Feng et al. (2019) showed that these robust

MCSs account for 50%–60% warm season (March–August)

total precipitation over the majority of the central United

States. These MCSs are the main focus in the current study.

To match the horizontal grid spacing of high-resolution

GCMs, including the two sets of VR-MPAS simulations in this

study, the 4-kmMCS database is down-sampled to three sets of

coarser resolution (12, 25, 50 km) datasets using the Earth

System Modeling Framework (ESMF) regridding software

(https://www.ncl.ucar.edu/Applications/ESMF.shtml) and the

NetCDF Operators (Zender 2019). Brightness temperature

Tb and precipitation (i.e., flux variables) are regridded using

conservative mapping, and MCS location masks are regridded

using nearest neighbor to preserve their tracked numbers. The

regridding procedure essentially creates a reference MCS

dataset that depictsMCSTb and precipitation characteristics at

the respective coarsened spatial resolutions.

3. Methodological development for model evaluation

a. Methodology to track MCS across resolutions

While the coarsened MCS database provides a reference

observational dataset at the equivalent model grid spacing, it is

difficult to directly compare with the model simulations be-

cause the MCS tracking uses radar reflectivity at 4 km resolu-

tion, which is not available from the model outputs. To

facilitate evaluation of model-simulated MCS, we develop a

new method to track MCSs using observed Tb and precipita-

tion data. The procedure is described in detail in this section.

Since Tb and precipitation are two variables commonly ob-

served by various remote sensing platforms (e.g., satellite and

radar), we choose these two variables to describe deep cumu-

lonimbus cloud systems with intense precipitation that achieve

mesoscale dimension and longevity, hence satisfying the MCS

definition. In addition, model simulations commonly output

outgoing longwave radiation (OLR, which can be converted to

Tb) and surface precipitation, allowing more direct compari-

sons with observations. AnMCS tracking algorithm that can be

consistently applied to these two variables in the observations

and model simulations is appealing.

The main workflow for tracking MCSs is similar to the

procedure of the Flexible Object Tracker (FLEXTRKR; Feng

et al. 2018, 2019). Tracking is performed on CCS associated

with deep convection. The CCS segmentation follows the de-

tect and spread method detailed in Feng et al. (2018) to iter-

atively grow a cold cloud core with Tb , 225K outwards to

reach 241K. CCSs between two successive time steps (1 h

apart) are tracked if they overlap for more than 50% of their

area. Tracking is terminated if no features between two time

TABLE 2. Convective time scales used in the Zhang–McFarlane

convection scheme for the two sets of simulations.

Grids

Physics

Dt (s)

Dynamics

Dt (s)

Convective

time scale (s)

50–200 km 900 150 1800

25–100 km 600 90 1200

2614 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 08/04/22 06:36 PM UTC

https://www.ncl.ucar.edu/Applications/ESMF.shtml


steps satisfy the overlap criteria. After deep convective clouds

are tracked using CCSs, we use precipitation data within the

CCS to better characterize the evolution of the convective

system (Figs. 2a,b). This is where the identification of MCS

differs from previous work. Feng et al. (2019) used persistence

of radar defined PF size and echo intensity at 4-km resolution

to identify MCSs. It is not clear how MCS-associated PF

characteristics change at coarser resolutions such as those in-

vestigated in this study. Conceptually (Fig. 2b), MCS consists

of both convective features that produce heavy precipitation

over a relatively small area and a stratiform region that pro-

duces moderate-to-light precipitation over a large area during

the genesis and mature stages of its life cycle (Feng et al. 2019).

Therefore, it is expected thatMCS typically contains a large PF

with moderately high mean rain rate, especially during the

upscale growth stage where most of the precipitation are

convective, and a positive skewness for the rain rate distribu-

tion during the mature stage when mixed convective and

stratiform rainfall coexist.

Our aim is to derive key PF quantities that can be used to

identify MCSs at different resolutions. To quantify the PF

characteristics, we make use of the 4-km MCS database that

has been regridded to coarser resolutions described in

section 2b. For each MCS tracked by the 4-km radar data, we

calculate their PF area, major axis length, mean rain rate, and

rain rate skewness within the MCS location masks using the

respective coarsened precipitation dataset (Fig. S1 in the on-

line supplemental material). Only MCSs that spent over half

their lifetime in the central United States are included in this

calculation. Figure 3 shows several bottom percentile values

for these four PF parameters at 25 km resolution as a function

of MCS lifetime. In Fig. 3, a majority of the radar tracked

MCSs have specific PF parameters higher than those indicated

by the dots. For example, the 5th percentile value of MCS PF

area for MCS lifetime of 15 h is approximately 7500 km2. That

means 95%of the radar trackedMCSs lasting 15 h contain a PF

larger than 7500 km2. It is apparent that all PF parameters in-

crease with MCS lifetime, suggesting that longer-lived MCSs

generally have larger and more heavily precipitating PFs, with

morepositively skewed rain ratedistributions (i.e.,more convective-

like precipitation).

Linear fit lines to each of the PF values were determined and

their intercepts and slopes are provided in the legends of Fig. 3.

Similar fits for 12- and 50-km resolution are shown in Figs. S2

FIG. 2. Schematic of MCS identification using joint CCS and PF characteristics developed in this study.

(a) Depiction of the evolution of long-lived deep convective clouds from cloud-top view perspective, (b) depiction

of the evolution of collocated precipitation associated with the deep convective clouds, and (c) identification of

MCSusing bothCCS and PF characteristics. The yellow shading in (c) denotes theMCSperiod as defined byCCS.

60 000 km2, with a PF major axis length larger than 100 km for longer than 6 continuous hours. During this period,

the PF area, mean rain rate, and rain-rate skewness must exceed the thresholds denoted by the magenta dashed

lines to qualify as an MCS.
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and S3. These fit lines are used as thresholds to identify MCSs

(Fig. 2c). With these collocating CCS and PF characteristics,

we define an MCS in this study as a convective system with:

1) CCS . 6 3 104 km2 containing a PF with major axis

length . 100 km (same as the standard FLEXTRKR

at 4 km);

2) PF area, mean rain rate, and rain rate skewness larger than

the lifetime dependent thresholds provided by the linear fits

in Fig. 3 and Fig. S3;

3) both conditions 1 and 2 aremet continuously for at least 6 h.

A conceptual depiction of our MCS definition is shown

in Fig. 2.

The idea of using PF characteristics to identify MCSs in the

absence of 3D radar reflectivity data is similar to our previous

work in Feng et al. (2016), where we used hourly precipitation

data alone to track MCS in constructing a long-term historical

MCS database over the CONUS. Compared to that previous

method, our current methodology in tracking MCSs is more

stringent because it requires both deep convective cloud sys-

tems (i.e., CCS) and heavy precipitating features (PFs) to

achieve mesoscale dimension and persists for longer than the

typical isolated convective storms, both of which are key dis-

tinctions of MCSs. The PF criteria are designed to exclude

large cloud and precipitation bands associated with frontal

systems and/or midlatitude cyclones that would satisfy the size

and duration requirement, but the precipitation is not con-

vective in nature and should not be included as MCSs.

To find the optimal PF parameter thresholds that will result

in an MCS database more consistent with our reference 4-km

MCS database, we tested various combinations of these PF

parameters under each resolution separately. This is done

manually by varying the PF parameter values for different sets

of percentile values together (e.g., choosing percentile values

of 3rd, 5th, and 10th for all three PF parameters) and com-

paring the resulting MCS characteristics to those of the refer-

ence 4-km dataset. Obtaining the smallest error in the spatial

distribution of MCS precipitation amount and the fraction to

total precipitation (Fig. 5) are more important than obtaining a

similar number of MCS as shown in Fig. 4. Choosing lower PF

thresholds results in more but weaker MCS identified and a

positive bias in the MCS precipitation amount; on the other

hand, choosing higher PF thresholds retains only the stronger

MCS resulting in underestimating MCS precipitation amount.

The PF parameters that produce the smallest error in MCS

precipitation amount compared with the 4-km reference MCS

database are shown in Table 3. The PF characteristics thresh-

olds are adjusted for each set of resolutions. As the resolution

coarsens, the PF area thresholds increase, mean rain rate in-

tensity and skewness thresholds decrease, representing weaker

PF with reduced spatial variability at coarser resolutions. We

note that except for the MCS precipitation amount, the impact

of the PF parameter values on the overall MCS characteristics

(see section 3b) is relatively small, suggesting that our results

are not particularly sensitive to the exact PF thresholds used.

b. Evaluation of MCS tracking across resolutions

The seasonal cycle of MCSs from observations at four dif-

ferent resolutions in the central United States is shown in

Fig. 4. Overall, tracking of MCSs using PF at three coarser

resolutions provides a consistent MCS seasonal cycle with

MCS activity increasing from March, peaking in June, and

decreasing in the fall. There are some observable differences

between the PF tracking and the 4-km reference dataset. The

total number of MCS systematically decreases with lower

resolution, particularly from March to June. This is expected

because the Tb and precipitation data are smeared at coarser

resolution, making nearby MCSs that are separable at high

resolution indistinguishable, particularly at 50-km resolution.

Although the VR-MPAS simulations in this study do not in-

clude 12-km horizontal grid spacing, simulations at this re-

finement grid spacing are ongoing and would benefit from the

MCS tracking algorithm tuned for this resolution.

The spatial distribution of the average number of MCS,

MCS precipitation amount, and fraction of MCS-to-total pre-

cipitation from March–August are shown in Fig. 5. The spatial

distributions in these important MCS quantities are quite

consistent across the four resolutions, except the spatial

FIG. 3.MCS PF characteristics at 25-km resolution as a function ofMCS lifetime: (a) PF area, (b) PFmean rain rate, and (c) PF rain-rate

skewness. Dots are specific percentile values shown in the legend, and solid lines are linear fits to each set of percentile values. The fit

intercepts and slopes are shown in the legends.
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distribution of the number of MCSs seems to be slightly higher

at coarser resolution. While this seems to contradict the lower

number of MCSs shown in Fig. 4, the spatial distribution of the

number of MCSs in Fig. 5 is also affected by the size of MCSs.

As the resolution decreases, neighboring clouds and PFs that

are separated at 4-km resolution could be smeared and appear

as one larger MCS that covers a larger area during its lifetime.

The smearing effect is supported by comparison of the MCS

characteristics across four resolutions (Fig. S4). While the

distribution of MCS lifetime is very consistent between the

coarse resolution tracking applied to the reference dataset,

the MCS PFs are successively larger and have weaker mean

rain rate (except for 12 km, which remains comparable with the

reference 4 km) and smaller rain rate skewness with decreasing

resolution. Therefore, the spatial distribution shows a slightly

higher number of MCSs at coarser resolution, although the

impact on MCS precipitation amount and fraction of MCS-to-

total precipitation is quite small (Fig. 5).

Besides statistical agreement, we also find that a majority of

the major individual MCS events are consistently captured in

our tracking across all four resolutions with high statistical skill

scores (not shown). This is rather encouraging particularly for

coarser resolutions such as 25 and 50 km. We demonstrated

that given Tb (or OLR) and precipitation similar to those in

observations, our algorithm can reliably track MCSs across

resolutions ranging from 12 to 50 km that are consistent with

the reference 4-km MCS database. The new MCS tracking

algorithm tailored for resolutions at 25 and 50 km is applied

to the VR-MPAS model simulations to demonstrate its utility

in evaluating the performance of the MCS simulations in

section 4.

c. Methodology to evaluate large-scale environment

favorable for MCS initiation

Song et al. (2019) identified four favorable large-scale me-

teorological patterns (FLSMPs) associated with MCS initia-

tion during boreal spring by applying self-organizing map

(SOM) analysis to the North American Regional Reanalysis

(NARR) dataset (Mesinger et al. 2006). In their application of

SOM, neural network was used to discriminate the different

environments for MCS initiation based on the Euclidean dis-

tance among the horizontal winds at three levels (200, 500, and

925 hPa) and specific humidity at two levels (500 and 925 hPa).

Large-scale patterns that are similar to each other, as measured

by the Euclidean distance among all input variables, are clus-

tered through an iterative procedure to train the SOM. This

procedure updates the ‘‘winning’’ pattern with the smallest

Euclidean distance among the initiating nodes until the

FIG. 4. Monthly average number of observedMCS occurrences in the central United States

(red box in the inset map) per year between 2004 and 2016. The color bars show the averaged

number tracked at each respective resolution, and the error bars show the standard deviation

from the 13 years. The numbers in the figure legend are the average number of MCSs from

March to October.

TABLE 3. PF parameters used to identify MCSs at 12-, 25-, and 50-km resolution.

12 km 25 km 50 km

Minimum rain rate to define

a PF

1mmh21 0.5mmh21 0.5mmh21

PF area (km2) 3491.06 1 78.868 3 lifetime 10 334.1 1 368.02 3 lifetime 14 675.3 1 350.918 3 lifetime

PF mean rain rate (mmh21) 2.388 99 1 0.013 658 2 3 lifetime 2.184 561 0.014 870 93 lifetime 1.777 641 0.016 907 33 lifetime

PF skewness (unitless) 0.568 637 1 0.007 207 69 3

lifetime

0.700 061 1 0.010 779 7 3

lifetime

0.203 418 1 0.011 769 5 3

lifetime
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patterns are stable and the nodes are self-organized. The re-

sulting SOM types that are physically interpreted to provide

dynamically and thermodynamically favorable large-scale en-

vironments for MCS development are called FLSMPs. They

represent the mean 3D large-scale patterns from many indi-

vidual cases with similar patterns. During spring, two FLSMPs

are associated with frontal systems, which feature an anoma-

lous cyclone to the west and an anomalous anticyclone to the

east of the Great Plains in the upper levels and strong midlevel

upward motion over the Great Plains. The other two FLSMPs

are associated with enhanced LLJ over the Great Plains but

differ in their meridional extent.

To evaluate the model’s ability in reproducing the four types

of FLSMP observed during boreal spring, we compare the

large-scale environment in the simulations and observations

associated with each FLSMP and its frequency of occurrence.

First, we regrid the simulated zonal and meridional winds at

three levels (925, 500, and 200 hPa) and the specific humidity at

two levels (925 and 500 hPa) to the same 18 3 18 resolution

region (208–558N, 708–1108W) that defines the FLSMPs de-

rived from NARR (Song et al. 2019). A cosine-latitude

weighting is adopted when the spatial dimensions of the vari-

ables are collapsed into a single dimension for calculating the

Euclidean distance. Then, at each model output instance (i.e.,

every 6 h), we calculate the Euclidean distance between the

model 3D environmental fields (same as those used in NARR)

and each of the four observed FLSMP types. If the shortest

Euclidean distance to a particular type of FLSMP among the

four FLSMP types is smaller than a threshold, the large-scale

environment is considered to be similar to this type of FLSMP.

The threshold is used to ensure a reasonable level of similarity

between the large-scale environment and the FLSMP and

taken as the average Euclidean distance between each sample

among one SOM type and the FLSMP for this SOM type,

roughly equal to 6500. To give equal weighting to each of the

environmental fields, each variable is normalized as follows:

V
n
5 (V

i
2V

i
)/s

Vi
, (1)

whereVi andVn are the variable at grid point i before and after

normalization, respectively; and Vi and sVi
are the mean and

standard deviation of the variable at the same grid point

within a season (e.g., spring), respectively.

In Eq. (1), Vi and sVi
from observations are used to nor-

malize both the model and observed (NARR) variable. To

evaluate the effect of model biases, we also useVi and sVi
from

simulations to normalize the simulated variable to quantify the

impact of model biases on the Euclidean distance. Normalization

can also be performedusing a combination ofmodel and observed

Vi and sVi
for different variables to isolate the effect of model

biases in the specific variables (e.g., winds versus moisture) or the

specific statistical moments (e.g., mean versus standard deviation)

on the Euclidean distance. Different normalization procedures

are used in this study and the results are discussed in section 5b.

FIG. 5. Comparison of the spatial distribution of observed warm season (March–August) MCSs tracked in four different resolutions for

2004–16. Each column represents one resolution (from left to right) 4, 12, 25, and 50 km. (a)–(d) Number of MCSs, (e)–(h) MCS pre-

cipitation amount, and (i)–(l) MCS precipitation percentage to total precipitation. The number ofMCSs in (a)–(d) is calculated by adding

each swath of an MCS PF during its lifetime (counted as one sample over each grid point within the swath) over all 13 warm seasons

divided by the total number of seasons (13). The magenta numbers are mean values in the central U.S. region shown by the magenta box.
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4. Evaluation of model-simulated MCSs

In this section, we evaluate the VR-MPAS simulated MCS

directly against observations at equivalent resolutions. We

track MCSs in both observations and model simulations using

the same algorithm detailed in section 3. The consistency in

resolution and tracking algorithm facilitates the comparison

and interpretation between simulations and observations. The

simulated OLR and precipitation are used as inputs for

FLEXTRKR to track convective clusters/objects. OLR is

converted to Tb following the empirical relationship provided

byYang and Slingo (2001). Since we are tracking cloud-top and

precipitation signatures as proxies of organized convection in

the simulations, we consider the tracked precipitation objects

‘‘MCS-like’’ features. These proxies mean that the model-

simulated precipitation from deep convective clouds evolve

similarly to those produced by MCSs in reality, but the proxies

do not guarantee that the model is able to simulate all aspects

of the observed MCSs such as their precipitation intensity and

vertical heating profiles that are most impactful to surface

hydrology and upscale effects on atmospheric circulations,

respectively (Feng et al. 2018). Details of the simulated ‘‘MCS-

like’’ features, which will simply be referred to as simulated

MCSs, will be evaluated against observations. As multiple

criteria are used in this study to define MCS, including size,

duration, and intensity of both cloud and PF, we also examine

the model evaluation sensitivity to MCS criteria in section 4c.

a. MCS frequency and precipitation

The seasonal cycle of the number of simulated MCSs in the

central United States is shown in Fig. 6. It is clear that the

average number of MCSs are significantly underestimated in

VR-MPAS, particularly from May to August. The model bia-

ses are not evidently reduced with higher resolution, as the

observed PF characteristics at 25 km is larger and stronger than

those at 50 km (see Table 3), resulting in fewer simulated PF in

MP25km that satisfy the MCS criteria.

Figure 7 shows the spatial distribution of the model biases in

total precipitation, MCS precipitation and MCS number in

spring (March–May). Both simulations generally underesti-

mate the total precipitation over the central United States, but

overestimate it over the Rocky Mountains and eastern United

States. The dry bias for MCS precipitation is much larger,

particularly over the Southern Great Plains (SGP) region,

where MCS precipitation is underestimated by ;50%. The

bias in the number of MCSs over the central United States is

similar between MP25km and MP50km (;52%). Similar bias

in MCS precipitation in that region between MP25km and

MP50km is mainly caused by underestimations of the fre-

quency (;40%) rather than intensity (;16%) of MCS pre-

cipitation (Fig. S5). Compared to spring, the biases are much

larger in the summer (Fig. S6). Not only do the two simulations

miss the majority of MCSs and their associated precipitation

(;86%) in the central United States, the total precipitation is

also underestimated by 17% in that region.

Song et al. (2019) compared different types of observed

FLSMP and found that synoptic patterns associated with the

passage of strong baroclinic waves during spring are much

more skillful in estimating the occurrence of MCSs than those

during the summer. Their findings are consistent with those

reported by Jankov and Gallus (2004) and Squitieri and

Gallus (2016) that forecasting of MCS rainfall is more skillful

under strong large-scale forcing conditions typically associ-

ated with cold fronts and LLJ, while model performance is

poor in midsummer under warm or stationary front. Song

et al. (2019) hypothesized a more important role of smaller-

scale disturbances such as surface fluxes and shortwave

troughs (e.g., midtropospheric perturbations, Wang et al.

2011a,b) that may limit the predictability of summer MCSs.

Considering the finest model resolution used in this study

(25 km) is likely not sufficient to resolve the smaller-scale

perturbations, and parameterized convection poorly repre-

sents convective processes and precipitation over land, we

FIG. 6. As in Fig. 4, but for observations and MPAS-CAM simulations (MP25km and

MP50km) during 2004–13.Different fromFig. 4, the numbers are forMCS initiatedwithin the

red box region in the inset map.
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focus our subsequent analysis on the spring season with

stronger large-scale forcings for MCSs.

b. Diurnal cycle and properties of simulated MCSs

The composite diurnal cycle of total and MCS precipitation

as functions of longitude over the central United States is

shown in Fig. 8. In observations, both total and MCS precipi-

tation shows eastward propagation over the Great Plains, with

total precipitation peaking between 1800 and 2400 LT. MCS

precipitation peaks several hours later around local midnight,

accounting for 60%–70% of the total nocturnal precipitation.

The diurnal amplitude of the observed precipitationmaximizes

in the Great Plains and significantly decreases outside, partic-

ularly for MCS precipitation. In contrast, both models simu-

lated the total precipitation peaking in the early afternoon with

similar amplitudes, followed by a much-dampened nocturnal

peak of MCS precipitation that is shifted to the east of the

Great Plains. The simulated MCS precipitation only accounts

for 20%–40% total nocturnal precipitation.

Figure 9 shows the diurnal cycle of MCS initiation and

precipitation amount averaged within the central United

States. Precipitation amount is separated into MCS and non-

MCS precipitation, where non-MCS precipitation includes

precipitation from both isolated convection and nonconvective

stratiform precipitation. Observed MCSs most frequently

initiate between midafternoon to early evening (1400–2000

LT), and the results are comparable for the two resolutions.

Model-simulated MCSs tend to initiate slightly more often

during nocturnal and morning hours, although the diurnal

amplitude (the first harmonic) is 2–8 times weaker than ob-

served. After initiation, observed MCSs go through upscale

growth for several hours and reach maximum precipitation

around midnight, and the precipitation gradually decreases in

the morning to reach a minimum around local noon. Observed

MCS precipitation diurnal amplitude is 2 times that of non-

MCS precipitation, which peaks around 1900–2000 LT. MCS

and non-MCS precipitation each account for;60% and;40%

of the observed total precipitation. In contrast, simulated non-

MCS precipitation diurnal amplitude is more than twice

stronger than observed, accounting for 75% of simulated total

precipitation, and peaks 4 h earlier (;1500 LT), while simu-

lated MCS precipitation has very little diurnal variation and

only account for 25% total precipitation.

Comparisons of the simulated MCS characteristics with

observations are shown in Fig. 10. The simulated MCS life-

times are longer than observations at comparable resolutions

(Fig. 10a). A larger fraction of simulated MCSs have lifetime

between 25 and 50 h compared to observations, and the aver-

aged simulated lifetime is longer by 3–4 h (12%–18% over-

estimated). Composite evolution of MCS PF area, mean

FIG. 7. Comparison of the spatial distribution of spring (MAM)MCSs between observations (OBS) andMPAS-CAM simulations. (left)

OBS25km, (center)MP25km2OBS25km, and (right)MP50km2OBS50km. (a)–(c) Total precipitation, (d)–(f)MCS precipitation, and

(g)–(i) number of MCSs. The magenta numbers are mean values from observations in (a), (d), and (g) and mean relative biases from the

simulations in the central U.S. region shown by the magenta box.
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precipitation rate and volumetric precipitation are shown in

Figs. 10b–d as a function of normalized MCS time. The simu-

lated PF areas are consistently overestimated throughout the

life cycle of MCS by ;40%–80%, while simulated PF mean

precipitation rates are underestimated by ;15%, consistent

with weaker mean MCS precipitation intensity shown in

Fig. S5h and S5i. The resulting averaged volumetric precipi-

tation perMCS is overestimated by 50%–70%due to the larger

error in PF area than mean intensity. The biases in PF area and

volumetric rainfall are larger in MP25km than MP50km, sug-

gesting the higher resolution alone (without tuning) does not

produce more realistic MCS PFs. Since most of the observed

MCSs in spring occur under FLSMP (Song et al. 2019), these

results suggest that the model tends to produce continuous

precipitation features that are too large and too weak com-

pared to observations under strongly forced baroclinic envi-

ronments. We will further examine the model-simulated

precipitation under different types of FLSMP in more detail

in section 5c.

c. Sensitivity to MCS criteria

As multiple criteria are used in this study to define MCS,

including size, duration, and intensity of both cloud and PF, it is

important to evaluate the sensitivity of the MCS model eval-

uation results to the different criteria used in the MCS defini-

tion described in section 3b. Such analysis is also informative of

the aspects of MCS that the model tends to fail to reproduce,

and hence potential solutions to address the model biases.

By relaxing each of the MCS criteria to approximately 50%

of the thresholds used in the observations, we find that the

model-simulated PF characteristics (i.e., PF area, PFmean rain

rate, PF rain rate skewness) have the largest impact on the

biases, followed by the PF duration. Among the three PF

characteristics used to define MCS, the model PF most fre-

quently fails the PF mean rain rate criteria (.80% failure),

followed by the rain rate skewness (30%–50% failure), while

only ;20% of the PF fails the PF area criteria (Table S1).

The sensitivity of the number of identified MCS in the sim-

ulations to various thresholds can be seen by comparing the

increase in the MCS number relative to that using the same

criteria as observations (Fig. S7). Reducing the CCS area and

CCS duration has very little impact on the number of MCS

identified. On the other hand, reducing the PF duration to 3 h

increases the number of MCS by 60%–70%, while further re-

ducing the PF characteristics criterion to the 7th percentile

thresholds (vs 15th percentile thresholds in observations)

FIG. 8. Diurnal cycle of precipitation as a function of longitude over the central United States (magenta box in Fig. 5) during spring.

(left) Observations (OBS), (center) MP25km, and (right) MP50km. (a)–(c) Total precipitation, (d)–(f) MCS precipitation, and (g)–(i)

percentage of MCS precipitation to total precipitation. Orange lines show the amplitude of the first harmonic of the mean diurnal cycle

(for each variable) at each longitude. Approximate locations of the Rocky Mountain foothills and the Great Plains are marked.
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increases the MCS number by 1.6–1.8 times, resulting in a

comparable number of MCSs with observations from March–

May (biases from June–August are still larger than 50%).

Physically, these results mean that the model can sometimes

simulate large and intense PFs that resemble MCS, but their

duration are shorter, and the precipitation intensity and vari-

ability are weaker than observations. By relaxing the PF du-

ration and PF characteristics criteria, more simulated PFs can

be identified as MCS.

Specifically, relaxing all MCS thresholds by approximately

50% for both the MPAS-CAM simulations and observations

results in;50% bias reduction inMCS precipitation frequency

and amount (Figs. S8b,c,e,f), as the number of weaker PFs

tracked as MCS in the simulations is larger than those in ob-

servations. Further, by relaxing the MCS thresholds for

MPAS-CAM simulations by;50%but keeping the sameMCS

thresholds in section 3a for observations to account for model

deficiencies in simulating weaker precipitation intensity, the

simulated and observed MCS numbers become more compa-

rable and the precipitation amount biases are further reduced

by ;15% (Figs. S9b,c,e,f). While relaxing the MCS criteria

reduces the bias in the MCS number and MCS precipitation

amount, other aspects of the biases remain, including the

underestimated MCS precipitation intensity (Figs. S8 and

S9h,i) and erroneous MCS and non-MCS precipitation diurnal

cycle (Figs. S10 and S11). The sensitivity tests described here

suggest that while changing the MCS criteria affects the simu-

lated MCS evaluation results quantitatively, the major biases in

model-simulated MCS characteristics presented in Sections 4a

and 4b hold regardless of the thresholds used. Therefore, it is

important to examine multiple aspects of the simulated MCS

characteristics to better diagnose model deficiencies.

5. Simulated MCS favorable large-scale environments

a. Moisture and wind associated with the Great Plains LLJ

In this section, we examine the LLJ to illustrate the physical

linkages between the model biases in large-scale environments

and the total andMCS precipitation discussed in section 4. The

link will be elaborated and generalized by using FLSMP in the

next subsection. Previous studies have shown that the LLJ

plays a critical role in controlling warm season heavy precipi-

tation over the central United States (Harding and Snyder

2015; Higgins et al. 1997; Wang and Chen 2009). For example,

more accurate simulation of LLJ under strongly forced syn-

optic environments result in better MCS precipitation forecast

FIG. 9. Diurnal cycle of (a) MCS initiation time and (b) MCS and non-MCS precipitation

averaged in the central United States during spring. Numbers in the legends in (a) are the

amplitude and phase (peak timing) of the first harmonic of the diurnal cycle, and in (b) the

amplitude, phase of the diurnal cycle, and the fraction of the total rainfall, respectively.
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skill (Squitieri and Gallus 2016). We use the NARR dataset

as a reference. NARRhas a 32-kmhorizontal resolution, which

is comparable to the regional refinement grid spacing of

MP25km. Berg et al. (2015) compared six commonly used re-

analysis products against long-term radiosonde observations

over the SGP region and found that NARR is among the best

reanalysis products in representing the frequency and vari-

ability of the LLJ, although the moisture transport by the

stronger LLJs are still underestimated by a factor of 2. The

model outputs are regridded to the NARR grid to facilitate the

comparison in this section.

Compared to NARR, we find that both the 50- and 25-km

simulations underestimate the climatological meridional wind

speed in the central United States, resulting in an overall low-

level (below 700 hPa) dry bias over the Great Plains extending

to the Appalachian Mountains (not shown). To quantitatively

evaluate the VR-MPAS simulated LLJ and associated mois-

ture transport, we follow the LLJ identification methodology

by Bonner (1968) and Whiteman et al. (1997). A total of four

LLJ categories are defined, based on the maximumwind speed

below 700 hPa (i.e., the LLJ nose) and the wind speed reduction

above the level of the maximum wind speed but below 700hPa

(Table 4). The methodology was applied to the instantaneous

3D wind fields from NARR and VR-MPAS outputs.

Figure 11 shows the frequency of the four categories of LLJ

from NARR and the biases (model 2 NARR) from the two

sets of model simulations. Stronger LLJ (category 2–3) oc-

currence is confined more within the SGP compared to those

from weaker LLJ (category 0–1) in NARR (Figs. 11a–d). Both

simulations underestimate the frequency of the LLJ across all

four categories over the Great Plains, but stronger LLJ fre-

quency biases are significantly larger, particularly over the SGP.

Comparisons of the mean vertically integrated vapor trans-

port (IVT) associated with the four categories of LLJ (from

surface to 700 hPa) are shown in Fig. 12. Over the SGP region,

IVT from LLJ category 1–3 accounts for the majority of the

total IVT in NARR, each contributing similarly to the IVT

amount except that category 1 has a broader spatial extent.

These results are qualitatively consistent with those reported

by Berg et al. 2015. Compared to NARR, the VR-MPAS

simulations underestimated the LLJ IVT by 25%–50% over

the SGP, particularly for the stronger LLJ categories. The above

evaluation and the known influence of the LLJ on warm-season

FIG. 10. (a) Frequency distribution of MCS lifetime, composite evolution ofMCSs over the central United States

during spring (MAM) for (b) PF area, (c) PF mean rain rate, and (d) volumetric rain rate. In (b)–(d), the x axis

shows normalized MCS time, where hour 0 denotes convective initiation and hour 20 denotes dissipation. Lines

show the average values, and shadings denote the 25th and 75th percentile values at each time. Numbers in the

legends are the averaged values across the MCS lifetime, and the numbers in parentheses are average bias

percentages.

TABLE 4. Criteria to define LLJ categories (adapted from Berg

et al. 2015.

LLJ category Umax (m s21) DUz (m s21)

0 $10 $5

1 $12 $6

2 $16 $8

3 $20 $10
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precipitation strongly suggest that the weaker LLJ and asso-

ciated moisture transport contribute to the dry bias found in

the total and MCS precipitation reported in section 4. This

logic is supported by the FLSMP diagnosis, as shown in the

next section, which further suggests that the LLJ is not the only

large-scale environment that models need to capture to real-

istically simulate MCS.

b. Simulated MCS favorable large-scale meteorological

patterns

Analysis of the LLJ suggests that biases in the large-scale

environment may limit the ability of the model to simulate

MCSs. Besides LLJ, other aspects of the large-scale environ-

ment have also been identified to favorMCS development.Here

we examine how well VR-MPAS simulates different types of

FLSMP for MCS initiation. The methodology described in

section 3 is used to identify and compare the simulated and

observed large-scale environments associated with each of the

four types of observed FLSMP found by Song et al. (2019).

Figure 13 compares the composite of the NARR and

MP25km large-scale environment associated with each

FLSMP during MAM. Both observations and simulations are

normalized using the NARR mean and standard deviation.

The composite patterns for MP50km are very similar to

MP25km and thus not shown. The results show that the model

is able to produce the large-scale environment associated with

different types of FLSMP that are comparable to that of

NARR. Specifically, type 1 and 3 are associated with frontal

systems that provide a large-scale liftingmechanism, and type 2

and 4 are related to enhanced Great Plains LLJ that provides

anomalous low-level moisture (Song et al. 2019). This agree-

ment is partly related to the use of the same threshold of 6500

to ensure comparable similarity between the observed and

simulated large-scale environment and the observed FLSMP

(see details in section 3c). Therefore, a more important ques-

tion is how oftenVR-MPAS simulates large-scale environment

comparable to the four types of FLSMP and how this fre-

quency compares with that of observations.

The frequency of occurrence of observed MCSs initiation

and observed and simulated large-scale environment associ-

ated with FLSMP during MAM are shown in Table 5. The

observed number of MCS initiation is significantly lower than

the observed number of FLSMP occurrence. This is because

eachMCS (on average lasting 201 hours) is only counted once

at its initiation, while the environment associated with FLSMP

could last longer and is counted multiple times at 6-hourly

interval during the entireMCS lifetime. Hence the significantly

lower number of FLSMP than the number of MCS initiation

does not imply a weak relationship between the FLSMP and

MCS initiation. Song et al. (2019) already demonstrated sig-

nificant correlation between the FLSMP andMCS initiation in

spring. Therefore, comparing the frequency of large-scale en-

vironment associated with FLSMP between NARR and the

VR-MPAS simulations provides an indication of the

FIG. 11. Frequency of the four categories of LLJ during MAM identified from (a)–(d) NARR, (e)–(h) MP25km biases (MP25km 2

NARR), and (i)–(l) MP50km biases (MP50km 2 NARR). Terrain heights are in magenta contours (500, 1000, and 2000m).
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contribution of biases in the large-scale environment to the

biases in MCS initiation in the model.

Overall, the VR-MPAS simulated total occurrences associ-

ated with FLSMP are underestimated by 50%–60% compared

to those from NARR. Among the four types of FLSMP, VR-

MPAS shows larger biases (61%–79%) in simulating the oc-

currence of frontal systems (type 1 and 3) compared to the

biases (22%–59%) of LLJ types (type 2 and 4). We examined

the diurnal cycle of the large-scale environment and found a

much weaker diurnal amplitude for both NARR and model

simulations (Fig. S9) than that of MCS initiation (Fig. 9). This

suggests that the favorable large-scale environments are less

efficient at initiating MCSs during nocturnal and morning

hours in the absence of surface heating from solar insolation that

helps trigger convection. The VR-MPAS simulated FLSMP

occurrences are underestimated across the diurnal cycle, espe-

cially for the FLSMPs featuring frontal systems.

To better understand the relative contributions of model

biases in dynamics (i.e., biases in wind) and thermodynamics

(i.e., biases in moisture) to modeling the environment favor-

able for MCSs, we conducted several sensitivity tests by vary-

ing how the Euclidean distance of the wind and moisture field

between model simulation and NARR is calculated. In nor-

malizing the simulations, we replaced the mean Vi and stan-

dard deviation sVi
[Eq. (1) in in section 3c] from NARR with

those from VR-MPAS so the calculation of the Euclidean

distance is based on model anomalies and the effect of model

biases is removed. The frequency of occurrence of the simu-

lated environment associated with each FLSMP is recalculated

by replacing the mean and standard deviation of NARR with

that of the simulation one at a time. This analysis only

provides a first-order estimate of the relative contribution of

dynamic (winds) versus thermodynamic (moisture) biases to

the total bias, since low-level moisture and meridional winds

are not independent over the Great Plains.

The results from the sensitivity tests are shown in Tables 6

and 7. Generally speaking, model biases in the low-level

moisture dominate the occurrence biases of the environment

associated with type 1 and 2 FLSMP, while themeridional wind

biases have larger impact on the environment of type 1 and 3

FLSMP, as indicated by 80% or larger changes in the occur-

rences of these FLSMPs. The LLJ penetrates further inland and

transports larger amount of moisture reaching the Northern

Great Plains in type 1 and 2 than type 3 and 4 (Figs. 13a,b,e,f).

Therefore, a dry bias would have larger effect on type 1 and 2 by

limiting the moisture flux reaching the higher latitudes. For type

1 and 3, frontal convergence associated with the low-level wind

likely plays a more important role (Figs. 13a,c,e,g). For type 4

(LLJ), biases in meridional wind and moisture equally contrib-

ute to biases in simulating the FLSMP (Figs. 13d,h). In addition,

contribution from the biases in the mean state versus variabil-

ity is also examined for each variable by using the simulated

FIG. 12. Mean vertically integrated vapor transport (IVT) associated with four types of LLJ (from surface to 700 hPa) during MAM

identified from (a)–(d) NARR, (e)–(h) MP25km biases (MP25km2NARR), and (i)–(l) MP50km biases (MP50km2NARR). Shadings

are IVT magnitudes, and vectors show both the direction and magnitude of IVT.
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Vi and sVi
separately in the normalization procedure. The re-

sults show that biases in the variability of the model-simulated

large-scale environment dominate the total bias. Overall, anal-

ysis of the large-scale environment suggests that different model

biases contribute to the biases of certain FLSMP type differ-

ently. Furthermore, comparing Table 6 with Table 7, removing

the effect of model biases in the mean and standard deviation

induces a larger difference in the occurrence of favorable envi-

ronment at 25- than 50-km resolution. This difference indicates

generally larger model biases in these variables for MP25km

than MP50km.

c. Evolution of precipitation under FLSMP

To better understand the response of precipitation under

different FLSMPs, we composited the temporal evolution of

precipitation with respect to the occurrence of large-scale en-

vironment associated with each type of FLSMP, based on

normalization using the NARR mean and standard deviation.

Hence this represents a fair comparison of the precipitation

under environments in both observation and model simula-

tions comparable to the observed FLSMPs. From Fig. 14, the

two types of FLSMP associated with frontal systems (type 1

and 3) typically produce more intense precipitation compared

to the other two types associated with the Great Plains LLJ

(type 2 and 4) in observations. This is particularly true for type

3 with a stronger frontal boundary as indicated by the drier

northwesterly winds at 925 hPa (Fig. 13) and stronger 500-hPa

vertical motion (Fig. 5 in Song et al. 2019). Observed precipi-

tation in the central United States tends to increase sharply

about 3 h after the initiation time determined by the FLSMP

and peak 6–12 h later (Figs. 14a–d). The initial sharp increase

of precipitation denotes the upscale growth of convection into

MCS genesis, while the peak precipitation 6–12 h later is con-

sistent with the mature stage of MCSs that produces the ma-

jority of rainfall.

In contrast, except under type 3 FLSMP, the simulated

precipitation shows very little temporal change following

the occurrence of large-scale environment associated with

TABLE 5. The average number of occurrences per season for observed MCS initiation (first row), observed FLSMP (second row), and

MPAS simulated FLSMP for 25 km (third row) and 50 km (fourth row) during MAM. The6 values are the standard deviations denoting

year-to-year variability. Parentheses in the last two rows show the percentage of model mean biases in FLSMP occurrence. The FLSMP

occurrences are calculated using 6-hourly model outputs.

Type 1 (frontal) Type 2 (LLJ) Type 3 (frontal) Type 4 (LLJ) All

OBS No. of MCS

initiation

11.7 6 7.6 12.3 6 5.5 14.1 6 5.9 11.2 6 5.3 47.9 6 5.5

NARR FLSMP 55.2 6 22.6 31.9 6 17.6 49.0 6 17.9 57.5 6 18.5 193.6 6 21.7

MP25km FLSMP 11.7 6 6.4 (279%) 13.2 6 11.8 (259%) 17.0 6 8.1 (265%) 35.6 6 17.9 (238%) 77.5 6 18.4 (260%)

MP50km FLSMP 21.5 6 18.4 (261%) 24.8 6 12.2 (222%) 13.8 6 9.1 (272%) 33.0 6 13.0 (243%) 93.1 6 27.3 (252%)

FIG. 13. Comparisons of NARR and MP25km large-scale environment associated with MCS favorable large-scale meteorological

patterns (FLSMPs) (Song et al. 2019). (a)–(d) Composites of the NARR large-scale environment associated with four types of FLSMP;

(e)–(h) as in (a)–(d), but for composites of theMP25km large-scale environment. Shadings are 925-hPa specific humidity (g kg21), vectors

are 925-hPawinds (m s21), and contours are 500-hPa geopotential height (gpm). Themagenta box shows the region used in calculating the

Euclidean distance between the NARR andMP25km large-scale environment and the FLSMPs to determine their similarity. See text for

more details about the methodology used in identifying the large-scale environment associated with each FLSMP.
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FLSMP, as rainfall remains weak 6–12 h later (Figs. 14e–h).

This weak precipitation bias is consistent with the persistently

weakermean PF rain rate simulated during upscale growth and

mature stage of MCSs (Fig. 10). Further, the model precipita-

tion seems to have a weak maximum approximately 18–24 h

after the occurrence of FLSMP that is absent in the observation.

To examine this peculiar peak, we compare the composite di-

urnal cycle of precipitation under different FLSMPs in Fig. 15.

In observations, precipitation is consistently maximized

between early evening (1800 LT) and early morning hours

(0600 LT) among all four FLSMPs, with type 3 frontal systems

producing the most rainfall amount further east of the Great

Plains (908–958W), consistent with the frontal convergence

zone being further eastward (Fig. 13c) compared to other

types. In contrast, the majority of the simulated precipitation

peaks during the daytime hours (0900–1800 LT), regardless of

the FLSMP. Nonnegligible nocturnal precipitation is simu-

lated only in frontal system (type 3) and when the LLJ is

constrained over the SGP (type 4). Dividing the total precipi-

tation into convective and large-scale precipitation in the

model (not shown), convective precipitation contributes more

to the total precipitation for the first two types, but large-scale

precipitation dominates the total precipitation in type 3

(frontal system) and type 4 (LLJ). These results agree with

previous studies (e.g., Zhang 2002, 2009) that precipitation

simulated by the Zhang–McFarlane convection parameteri-

zation is strongly tied to the diurnal timing of the surface-based

convective available potential energy (CAPE), rather than

other forcings such as the elevated instability associated with

the LLJ, which could be decoupled from the surface during

nocturnal hours (Geerts et al. 2017).

6. Summary and discussion

In this study, we develop a process-oriented approach to

systematically evaluate the performance of climate models in

simulating warm-season MCS-like precipitation features and

their spring favorable large-scale meteorological patterns

(FLSMPs) over the United States. The new method is applied

to two sets of 10-yr simulations with refined horizontal grid

spacings at 50 and 25 km over North America using VR-MPAS

coupled with the CAM5.4 physics.

To directly evaluate model-simulated MCS-like precipita-

tion with observations, a new observation-driven methodology

to trackMCSs across three different resolutions targeting next-

generation GCMs (50, 25, 12 km) has been developed. The

method jointly uses infrared brightness temperature (or out-

going longwave radiation) and surface precipitation, both

commonly available in observations andmodel output, to track

TABLE 6. The average number of occurrences of large-scale environment associated with each type of FLSM per season for MP25km

when normalized with different model variables. Parentheses show the percentage of mean occurrence changes compared to occurrences

using normalization with observed values; q, u, and y denote specific humidity, zonal wind and meridional wind, respectively.

Normalization tests Type 1 (frontal) Type 2 (LLJ) Type 3 (frontal) Type 4 (LLJ)

All variables normalized with OBS 11.7 13.2 17.0 35.6

qi: replace with model qi and sqi 21.9 (87%) 26.8 (103%) 23.5 (38%) 47.9 (35%)

qi: replace with model qi 15.9 (36%) 16.2 (23%) 18.2 (7%) 34.1 (24%)

qi: replace with model sqi 17.5 (50%) 20.5 (55%) 22.2 (31%) 49.1 (38%)

ui: replace with model ui and sui 21.2 (81%) 16.6 (26%) 25 (47%) 37.1 (4%)

ui: replace with model ui 16.0 (37%) 11.1 (216%) 18.4 (8%) 28.6 (220%)

ui: replace with model sui 15.8 (35%) 18.3 (39%) 22.7 (34%) 48.6 (37%)

yi: replace with model yi and s
yi

21.4 (83%) 19.7 (49%) 30.8 (81%) 50.2 (41%)

yi: replace with model yi 15.6 (33%) 12.9 (22%) 22.1 (30%) 33.1 (27%)

yi: replace with model s
yi

18.3 (56%) 20.8 (58%) 24.7 (45%) 53.8 (51%)

All si replaced with model sVi
29.1 (149%) 37.2 (182%) 37.0 (118%) 86.8 (144%)

All Vi replaced with model Vi 27.0 (131%) 21.1 (60%) 25.1 (48%) 29.0 (219%)

TABLE 7. As in Table 6, but for MP50km.

Normalization tests Type 1 (frontal) Type 2 (LLJ) Type 3 (frontal) Type 4 (LLJ)

All variables normalized with OBS 21.5 24.8 13.8 33

qi: replace with model qi and sqi 32.7 (52%) 36.4 (47%) 16.3 (18%) 42.7 (29%)

qi: replace with model qi 27.7 (29%) 27.5 (11%) 11.3 (218%) 33.8 (2%)

qi: replace with model sqi 25.6 (19%) 30.4 (23%) 17.4 (26%) 42.3 (28%)

ui: replace with model ui and sui 33.4 (55%) 28.2 (14%) 17.8 (29%) 37.8 (15%)

ui: replace with model ui 27.3 (27%) 21.7 (213%) 11.8 (214%) 28.6 (213%)

ui: replace with model sui 25.7 (20%) 32.0 (29%) 18.6 (35%) 45.6 (38%)

yi: replace with model yi and s
yi

33.3 (55%) 29.5 (19%) 24.2 (75%) 47.4 (44%)

yi: replace with model yi 25.1 (17%) 22.5 (29%) 16.2 (17%) 32.1 (23%)

yi: replace with model s
yi

27.4 (27%) 31.8 (28%) 20.2 (46%) 49.3 (49%)

All si replaced with model sVi
33.2 (54%) 47.4 (91%) 30.1 (118%) 82.6 (150%)

All Vi replaced with model Vi 39.7 (85%) 25.9 (4%) 18.8 (36%) 32.0 (23%)
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and identifyMCSs.We show that this new tracking algorithm is

able to track MCSs consistently across the three resolutions to

reproduce the MCS frequency, seasonal, and diurnal cycle,

impact on precipitation (Figs. 4 and 5), as well as a majority of

individual MCS events from the reference 4-km U.S. radar

MCS database (Feng et al. 2019). This result is particularly

encouraging because the algorithm can be consistently applied

to observations and global/regional model simulations at

moderate-to-high resolution to facilitate direct comparisons.

Applying the newMCS tracking algorithm to theVR-MPAS

simulations and observations at equivalent resolution, we are

able to quantify model biases from multiple aspects of MCS.

First, the number of simulated MCSs in the central United

States is significantly underestimated in both simulations,

particularly from May to August (Fig. 6). Without resolution-

specific tuning, the model biases do not seem to be reduced

with the higher 25-km grid spacing. As a result, the simulated

precipitation amount, particularly MCS precipitation in the

central United States, is underestimated by ;50% during

spring (Fig. 7), and the model misses most of the MCS pre-

cipitation (;86%) during summer, resulting in low total pre-

cipitation amount bias by 17%.

The high temporal resolution (hourly) of our MCS database

allows us to quantify model errors at subdaily time scales as

well. Spring MCSs in VR-MPAS tend to initiate slightly more

often during nocturnal and morning hours, in contrast to late

afternoon initiation in observations (Fig. 9). The simulated

MCS precipitation has very little diurnal variation, while non-

MCS precipitation diurnal amplitude is more than twice

stronger than observed and accounts for 75% of the simulated

total precipitation as opposed to 40% in observations. The

model produces average MCS lifetimes 3–4 h longer than ob-

servations, while the simulated MCS PF areas are larger by

40%–80% and PF mean rain rates are lower by ;15%, re-

sulting in a 50%–70% overestimation of volume rainfall per

MCS (Fig. 10). Simulation at 25 km has larger biases in MCS

PF characteristics than those at 50 km, again suggesting higher

model resolution does not produce more realistic MCS PFs

without resolution-specific tuning or scale-aware physics

parameterizations.

To better understand the potential cause of the biases in

simulating MCSs and associated precipitation, it is also nec-

essary to examine several aspects of the modeled large-scale

environments. This is particularly important for spring MCSs,

which are more predictable by the large-scale environments

(Song et al. 2019). For the VR-MPASmodel used in this study,

both the 50- and 25-km simulations underestimate the LLJ

frequency and associated moisture transport, particularly for

the stronger LLJs (Figs. 11 and 12). The LLJ bias likely play a

role in the weaker climatological low-level (below 700 hPa)

meridional wind speed and drier low-level environment.

Looking beyond the LLJ, we develop and demonstrate the

use of a diagnostic framework to evaluate the favorable large-

scale meteorological patterns (FLSMP) for MCS development

(Song et al. 2019). In this framework, we compare the simu-

lated and observed large-scale environment associated with

four types of FLSMP that are found to be skillful in explaining

the observed MCS variability in spring (Song et al. 2019). The

result reveals that VR-MPAS has larger biases (61%–79%) in

simulating the frequency of frontal systems compared to the

FIG. 14. Composite precipitation temporal evolution as a function of longitude associated with four types of FLSMP during spring.

(a)–(d) Observations and (e)–(h) MP25km simulation. The two purple dashed lines show the relative time of FLSMP occurrence at 0 and

12 h after, respectively.
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LLJ type FLSMPs (22%–59%). Our framework also allows us

to tease out the relative contributions of model biases in dy-

namics and thermodynamics. And we find that the model low-

level moisture biases have larger contribution to the biases of

two types of FLSMP, where the moisture biases are limiting

moisture transport to reach further inland in the central United

States. In contrast, meridional wind biases have more signifi-

cant impact on the other two types of FLSMP, where the

strength of the low-level convergence is more important. In

general, bias in the model-simulated variability of the large-

scale environment dominates the total bias compared to the

mean state bias. In particular, we find that VR-MPAS at both

50 and 25 km have weaker low-level meridional wind vari-

ability (not shown), which is consistent with the underestima-

tion of the frequency and/or intensity of frontal systems.

The FLSMP analysis further finds that the simulated pre-

cipitation evolves differently under different FLSMPs than

observations. While observed precipitation tends to increase

sharply about 3 h after detection of the FLSMP and peak

6–12 h later, the VR-MPAS precipitation shows very little

temporal variability, as it remains weak throughout the MCS

life cycle and persists for too long, except for precipitation

associated with frontal systems (Fig. 14). A majority of the

simulated precipitation under different FLSMPs peaks during

daytime, in contrast to the observed peak between early

evening and early morning peak (1800–0600 LT).

The results in this study suggest that VR-MPAS at 50 and

25 km can simulate the different types of observed FLSMPs

associated with spring MCSs, but the frequency is under-

estimated primarily due to the weaker Great Plains LLJ and

drier low-level environment. Combined with the biases in the

MCS characteristics, the understanding gained from the newly

developed methodologies has already guided us to investigate

several aspects of the particular configuration of MPAS cou-

pled to CAM physics used in this study for improving simula-

tion ofMCS in the future. For example, the low-level wind bias

could be related to the turbulent mountain stress parameteri-

zation introduced in the CAM5 physics, which is used in our

VR-MPAS simulations (Neale et al. 2010; Richter et al. 2010).

Previous studies showed that this parameterization helps re-

duce model biases in the large-scale circulation but makes the

near-surface wind tooweak over land, particularly over regions

with complex topography or areas covered by grass/crop that

has small surface roughness lengths (Liang et al. 2017; Lindvall

et al. 2013). Sensitivity simulations conducted with the turbu-

lent mountain stress turned off result in a visible difference in

the seasonal-mean precipitation over the Great Plains (not

shown). The diurnal cycle biases revealed by theMCS tracking

and FLSMP analysis strengthen the general notion about the

parameterized convection, particularly the drizzling tendency

and the overly strong response to diurnal solar forcing. Recent

developments in the ZM convection scheme allowing air par-

cels to launch above the boundary layer enable the model to

capture nocturnal elevated convection (Wang et al. 2015; Xie

et al. 2019) and may alleviate the precipitation diurnal timing

biases. For the spring MCSs, more directly linking the con-

vective trigger or closure to large-scale forcings may be helpful

(Bechtold et al. 2014; Zhang 2002, 2009). We are currently

investigating the performance of the Grell–Freitas convection

parameterization implemented in the CAM-MPAS framework.

FIG. 15. Composite precipitation diurnal cycle as a function of longitude associated with four types of FLSMP during spring. (a)–(d)

Observations and (e)–(h) MP25km simulation.
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The Grell–Freitas convection scheme includes the aforemen-

tioned closures as well as scale awareness over the convection

gray-zone (Freitas et al. 2018; Grell and Freitas 2014).

While the new developments briefly discussed above seem

promising, we reiterate our notion that simply increasing the inten-

sity and/or nocturnal precipitation in model simulations does not

necessarily mean that the model captures the processes underlying

MCSs. In the newly developed method reported here, we track the

time, location, and other physical characteristics of MCS-like fea-

tures along with diagnosis of the large-scale environment in which

MCS is embedded, or FLSMP and compare them against obser-

vations at equivalent mesoscale resolutions. By exposing model

biases frommultiple perspectives, we are able to look deeper at the

model fidelity in the underlying processes. The potential improve-

ments in simulating MCS precipitation under various FLSMPs and

at higher mesoscale resolution will be reported in future studies.

As global and climate-orientedmodel simulations start to resolve

the mesoscale processes, it is expected that the processes critical to

regional hydrological cycles and extreme events, such as MCSs, are

represented more realistically than in previous generation models

(Roberts et al. 2018). What is also needed is the methodology to

analyze such mesoscale processes simulated in the next-generation

climate models. The process-oriented evaluation and diagnostic

approach developed in this study will be useful for identifying the

cause of model biases in simulating MCS precipitation and under-

standing the performance of model physics for improving modeling

of MCSs in the central United States.
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