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Evaluation of Methods for Detecting Recombination from DNA Sequences:
Empirical Data

David Posada
Department of Zoology, Brigham Young University, Provo, Utah

The performance of 14 different recombination detection methods was evaluated by analyzing several empirical
data sets where the presence of recombination has been suggested or where recombination is assumed to be absent.
In general, recombination methods seem to be more powerful with increasing levels of divergence, but different
methods showed distinct performance. Substitution methods using summary statistics gave more accurate inferences
than most phylogenetic methods. However, definitive conclusions about the presence of recombination should not
be derived on the basis of a single method. Performance patterns observed from the analysis of real data sets
coincided very well with previous computer simulation results. Previous recombination inferences from some of
the data sets analyzed here should be reconsidered. In particular, recombination in HIV-1 seems to be much more
widespread than previously thought. This finding might have serious implications on vaccine development and on
the reliability of previous inferences of HIV-1 evolutionary history and dynamics.

Introduction

The detection of recombination from DNA se-
quences is relevant to the understanding of evolutionary
and molecular genetics. Not surprisingly, a plethora of
methods have been developed during the last 15 years
to detect the presence of recombination in sequence
alignments. However, the performance of these methods
has been evaluated only recently (Maynard Smith 1999;
Brown et al. 2001; Posada and Crandall 2001; Wiuf,
Christensen, and Hein 2001).

Although computer simulations offer an unlimited
range of possibilities for the evaluation of the statistical
performance of a given method, results from simulation
studies alone are always limited. Models used in simu-
lation studies are simplifications of reality. Recombina-
tion among sequences has been simulated using the co-
alescent with recombination (Brown et al. 2001; Posada
and Crandall 2001; Wiuf, Christensen, and Hein 2001)
or using a more classical forward approach (Maynard
Smith 1999). In these simulations, recombination frag-
ments are defined from a single breakpoint to the end
of the sequences, and the exchange is performed in a
reciprocal way, so each sequence is a donor and a re-
ceptor of a fragment. However, this is not the way that
recombination occurs in many organisms, including vi-
ruses and bacteria, where recombinational events often
include more than one breakpoint, and nonreciprocal ex-
changes are the norm. In addition, nucleotides are
evolved under simple reversible substitution models,
which assume independence of sites and a stationary
and homogeneous substitution process. Moreover, it is
not easy to design a simulation study that does not favor
some method(s) (Hillis, Mable, and Moritz 1996). Dif-
ferent methods make different assumptions on the pro-
cesses that generate data. In a simulation study, methods
that make the same assumptions as the model used to
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generate the data should be, in principle, favored. For
example, Brown et al. (2001) use the performance of a
likelihood ratio test of recombination based on the co-
alescent as the reference with which the performance of
other recombination detection methods is compared.

Despite their limitations, computer simulations are
useful. If a result holds in simulations across a wide
variety of conditions, they can suggest that the result is
general and should apply in real data sets (Swofford et
al. 1996). One obvious way of checking this proposal is
through the analysis of real data sets utilizing the same
software implementations used in the computer simu-
lations. By comparing the results obtained from com-
puter simulations with the inferences obtained from real
data, we simultaneously serve two purposes. First, sim-
ilar results from both types of studies strengthen con-
clusions regarding performance of the methods evalu-
ated. Second, the analysis of empirical data provides a
check of simulation studies, validating (or not) the util-
ity of the models used in the simulations to evaluate a
method’s performance.

The analysis of empirical data sets alone may be
useful to study the performance of recombination meth-
ods, especially when the recombinational events are
more or less known (Drouin et al. 1999). However, per-
formance of a method is best evaluated through the
combined analysis of empirical and simulated data. In-
deed, the analysis of empirical data sets is a very desir-
able and rare complement to simulation studies (Hillis
and Huelsenbeck 1994). Here, several empirical data
sets are analyzed for the presence of recombination to
compare the inferences with those obtained from pre-
vious computer simulations (Posada and Crandall 2001).
The objectives of this study are threefold (1) to decipher
the presence of recombination in several representative
empirical data sets, (2) to obtain a better understanding
of the performance of recombination detection methods,
and (3) to evaluate the utility of models of reticulated
sequence evolution.

Materials and Methods

The methodology employed here consists of the
following steps: (1) select two groups of empirical data
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sets, where (a) recombination is assumed to be absent
and (b) recombination has been suggested; (2) apply 14
different methods to detect the presence of recombina-
tion; and (3) for each data set, compare the inferences
obtained among different recombination methods.

Methods for Detecting Recombination

For the last 20 years, a number of methods have
been developed to detect recombination from a set of
aligned DNA sequences. David Robertson (Zoology,
University of Oxford) provides a web site with links to
many of these methods at http://grinch.zoo.ox.ac.uk/
RAPplinks.html. In general, recombination methods
could be tentatively classified as described in the sub-
sequent paragraphs.

(a) Distance Methods

Distance methods search for inversions along the
alignment of the distance patterns among sequences
(Weiller 1998). In general, they use a sliding window
approach and estimate statistics based on genetic dis-
tances among sequences. Because the phylogeny does
not need to be known, these methods are typically fast.

(b) Phylogenetic Methods

Several methods infer recombination when phylog-
enies from different parts of the genome result in dis-
cordant topologies. When comparisons of adjacent se-
quences yield different branching patterns, there is rea-
son to suspect recombinational events. If the conse-
quence of such changes results in reconciling different
sequence phylogenies to a single phylogeny, then the
existence of such events becomes a reasonable hypoth-
esis (Hein 1990, 1993; Grassly and Holmes 1997;
Holmes, Worobey, and Rambaut 1999; Lole et al. 1999;
Martin and Rybicki 2000). These are the methods most
extensively used in the literature.

(c) Compatibility Methods

Compatibility methods are phylogenetic methods
that are based on site-by-site analyses (Drouin et al.
1999). These methods define two sites as compatible
when their evolutionary history is congruent with the
same tree (Sneath, Sackin, and Ambler 1975), and they
do not require the phylogeny of the sequences to be
known (Jakobsen and Easteal 1996; Jakobsen et al.
1997).

(d) Substitution Distribution

Nucleotide substitution distribution methods ex-
amine the sequences either for a significant clustering
of substitutions or for a fit to an expected statistical dis-
tribution (Stephens 1985; DuBose, Dykhuizen, and Hartl
1988; Sawyer 1989; Maynard Smith 1992; Takahata
1994; Sneath 1995; Maynard Smith and Smith 1998;
Sawyer 1999; Worobey 2001).

Implementation of Recombination Detection Methods

Fourteen recombination methods were implement-
ed (table 1). The details of each of these methods have
been described elsewhere (see also Posada and Crandall
2001). Particular details of the implementations are de-
scribed subsequently.

(1) Bootscanning (Salminen et al. 1996)

The windows program Simplot (Lole et al. 1999)
(http://www.med.jhu.edu/deptmed/sray/download/) was
modified by Stuart Ray (Simplot’s author) to implement
the bootscanning of every sequence in the alignment
against the rest. A sliding window size of 200 bp and
step size of 10 nt were used. Neighbor-Joining trees
were estimated using F84 distances (Felsenstein 1984,
1991), and bootstrap values were obtained from 100 rep-
licates. Several bootstrapping thresholds for assignment
of parenthood were explored (70%, 90%, and 95%), but
because only the 95% threshold provided a false positive
rate below 10% in computer simulations, this was the
threshold used here.

(2) Geneconv (Sawyer 1999)

The program Geneconv 1.81 (http://www.math.
wustl.edu/;sawyer/geneconv/index.html) was em-
ployed. The global permutation P-values based on
BLAST-like global scores (10,000 replicates) smaller
than 0.05 were considered as evidence of recombination.
A multiple comparison correction is already built into
these P-values. The default value of the parameter
gscale (gscale 5 0) was used.

(3) Homoplasy Test (Maynard Smith and Smith 1998)

Two qbasic programs written by J. Maynard Smith
(http://www.biols.susx.ac.uk/home/JohnpMaynardpSmith/)
were translated into a single C program. No outgroup was
used, and the number of effective sites, Se, was taken to
be 0.6 3 the total number of sites. For coding sequences,
only third positions were included in the analysis.

(4) Informative Sites Test (Worobey 2001)

The program Pist (Worobey 2001) (http://evolve.
zoo.ox.ac.uk/software/PIST/PIST.html) was used. Max-
imum likelihood trees and substitution estimates were
obtained in PAUP* (Swofford 2000) for the best-fit
model selected by Modeltest 3.06 (Posada and Crandall
1998). In the case of coding sequences, only third po-
sitions were used. For the parametric simulation of the
null distribution of the test statistic, 100 replicates were
used.

(5) Maximum Chi-Square (Maynard Smith 1992)

The computer program MaxChi2 was written in C,
implementing a modification of the maximum chi-
square method (Maynard Smith 1992) suggested by
Wiuf, Christensen, and Hein (2001). The statistic em-
ployed was the maximum chi-square in the original
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alignment. For each pair of sequences, this statistic was
calculated on a sliding window that moved one nucle-
otide at a time and included only variable sites. The
width of this window was arbitrarily set to the total
number of variable sites divided by 1.5. The P-value for
the null hypothesis of no recombination was estimated
as the number of times the maximum chi-square was
smaller than the maximum chi-square out of 1,000 per-
muted alignments (obtained by randomizing the position
of the columns in the alignment).

(6) Maximum Match Chi-Square (Posada and
Crandall 2001)

The computer program Chimaera was written in C
implementing the maximum mismatch chi-square meth-
od. This method is a modification of the maximum chi-
square (see previously). The only differences are that a
different test statistic is used (in this case the statistic is
the maximum match chi-square), and that the test sta-
tistic is calculated for each possible triplet of sequences
(instead of for each pair). For each triplet, each sequence
was treated alternatively as the potential recombinant,
and the maximum match chi-square statistic was cal-
culated. The maximum match chi-square is the chi-
square statistic from the contingency table built with the
number of sites in the putative recombinant that match
each one of the parental, before and after an arbitrary
breakpoint.

(7) Phylogenetic Profile (Weiller 1998)

The computer program PhyPro was written in C
extending the Phylogenetic Profile method, which in its
original form does not provide statistical significance.
The test statistic employed was the minimum distance
vector correlation in the original alignment. For each
data set, this statistic was calculated on a sliding window
that moved one nucleotide at a time and included only
variable sites. The width of this window was arbitrarily
set to the total number of variable sites divided by 1.5.
The P-value for the null hypothesis of no recombination
was estimated as the number of times the minimum dis-
tance vector correlation was smaller than the minimum
distance vector correlation out of 1,000 permuted align-
ments (obtained by randomizing the position of the col-
umns in the alignment).

(8) Partial Likelihood Assessed Through Optimization
(Grassly and Holmes 1997)

The program Plato (Grassly and Holmes 1997)
(http://evolve.zoo.ox.ac.uk/software/Plato/Plato2.html)
was used. Maximum likelihood trees and substitution
model estimates were obtained in PAUP* (Swofford
2000) for the best-fit model selected by Modeltest 3.06
(Posada and Crandall 1998). For the simulation of the
null distribution, 100 Monte Carlo replicates were used.
Default window settings were used (minimum size 5 5,
step 5 1).

(9) Recombination Detection Program (Martin and
Rybicki 2000)

The Windows program Rdp (Martin and Rybicki
2000) (ftp://ftp.uct.ac.za/pub/data/geminivirus/recomb.
htm) was generously modified by D. Martin for the sim-
ulations. The reference sequences used were internal and
external. The window size was set to 10 nt.

(10) Recombination Parsimony (Hein 1990, 1993)

The C program RecPars (K. Fisker; ftp://ftp.
daimi.aau.dk/pub/empl/kfisker/programs/RecPars) was
used. In order to specify the substitution costs between
nucleotides, a step matrix was estimated upon the max-
imum likelihood tree for each data set using Mac-
Clade4.0 (Maddison and Maddison 2000). A recombi-
nation cost of three times the maximum substitution cost
(d 5 3 3 s) was used. This particular recombination
cost was chosen because it performed the best in pre-
vious computer simulations. Recombination was in-
ferred when more than one history was suggested for a
given data set.

(11) Reticulate (Jakobsen and Easteal 1996)

The C program Reticulate (Jakobsen and Easteal
1996) (http://jcsmr.anu.edu.au/dmm/humgen/ingrid/
reticulate.htm) was modified for the simulations. The
test statistic used was the neighbor similarity score,
and the number of permutations was set to 1,000.

(12) Runs Test (Takahata 1994)

A C program was written implementing the Runs
Test proposed by Takahata (1994).

(13) Sneath Test (Sneath 1995, 1998)

A program written by P. Sneath in qbasic (ftp://
ftp.ebi.ac.uk/pub/software/dos/) was translated into C
for the simulations.

(14) Triple (Kuhner et al. 1991)

A program written in Fortran by Mary Kuhner (Ku-
hner et al. 1991) that implements an extension to the
method of Stephens (1985) was translated into C. On
the basis of the results from computer simulations, the
Bonferroni correction was applied to each individual test
with a family alpha level of 0.01 to obtain an approxi-
mate false positive rate of 5%.

Performance Evaluation

The question addressed in this study is whether re-
combination methods detect the presence of recombi-
nation. Although some methods provide a qualitative an-
swer for the presence of recombination (yes or no), most
methods calculate a P-value (table 1). In the latter case,
recombination was inferred when the provided P-value
(calculated using some statistical distribution or using
permutations) was smaller than 0.05.
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Table 2
Empirical Data Sets Evaluated for the Presence of Recombination (Available from the Author)

Data Set Reference Gene Homology Group
Taxonomic

Level

BoletalesATP6 . . . . . .
Candidula16S . . . . . . .
DaphniaCO1. . . . . . . .
DmelCytB. . . . . . . . . .
GymnND4 . . . . . . . . .
HIV(B)EnvNR . . . . . .
HIVEnvNR. . . . . . . . .

(Kretzer and Bruns 1999)
M. Pfenninger and D. Posada (unpublished data)
(Schwenk, Posada, and Hebert 2000)
(Ballard and Kreitman 1994)
Pellegrino et al (personal communication)
Los Alamos HIV databasea

Los Alamos HIV databasea

ATP6
16S
CO1
CytB
ND4
Env
Env

Orthologs
Orthologs
Orthologs
Orthologs
Orthologs
Orthologs
Orthologs

Fungi
Snail
Cladoceran
Fly
Lizard
Virus
Virus

Order
Species
Genus
Species
Species
Subtype
Group

HumanHRVI. . . . . . . .
InsectaCOII. . . . . . . . .
Perom12S . . . . . . . . . .
VertebCOI. . . . . . . . . .

WolfCR. . . . . . . . . . . .
Armillaria-mtDNA. . .
Candida-mtDNA. . . .
Fusarium3 . . . . . . . . .
FusariumTri101 . . . .
HGVgenome . . . . . . .
HIVEnv . . . . . . . . . . .
HumanDRB1. . . . . . .
MaizACT . . . . . . . . . .

HVR databaseb

M. Whiting (personal communication)
(Sullivan, Holsinger, and Simon 1995)
(Cunningham 1997)

(Vilá et al. 1999)
(Saville, Kohli, and Anderson 1998)
(Anderson et al. 2001)
(O’Donnell et al. 2000)
(O’Donnell et al. 2000)
(Worobey and Holmes 2001)
Los Alamos HIV databaseb

(Klein and Schonbach 1993)
(Moniz de Sá and Drouin 1996)

HRVI
COII
12S
COI

Control region
mtDNA
mtDNAc

Al-Tri101-Ppd

Tril01e

Genome
Env
DRB1
Actin

Orthologs
Orthologs
Orthologs
Orthologs

Orthologs
Orthologs
Orthologs
Orthologs
Orthologs
Orthologs
Orthologs
Orthologs
Paralogs

Human
Insecta
Rodent
Vertebrate

Wolf
Fungi
Fungi
Fungi
Fungi
Virus
Virus
Human
Plant

Species
Class
Subfamily
Above

Superclass
Species
Species
Species
Species
Species
Species
Group
Species
Species

MammPDH . . . . . . . .
MammPGK . . . . . . . .
NeisseriaArgF . . . . . .
PetuniaS-RNase . . . .

(Fitzgerald et al. 1996)
(Fitzgerald et al. 1996)
(Zhou and Spratt 1992)
(Wang et al. 2001)

Pdh
Pgk
ArgF
S-RNase

Paralogs
Paralogs
Orthologs
Orthologs

Mammal
Mammal
Bacteria
Plant

Class
Class
Genus
Species

NOTE.—Plain font indicates that recombination is assumed to be absent; bold font indicates that the presence of recombination has been inferred in previous studies.
a http://hiv-web.lanl.gov. A partial alignment was used.
b http://db.eva.mpg.de/hvrbase/index.html.
c Seven mtDNA fragments.
d Ammonia ligase 1 Tril01 1 Phosphate permase.
e 3-O-acetyltransferase.

Selection of Empirical Data Sets

A total of 24 nucleotide data sets were selected
from the literature and public databases. In 12 of these
data sets recombination is assumed to be absent, where-
as in the other 12 data sets the presence of recombina-
tion has been suggested in the literature (table 2). Data
sets were selected to represent different conditions (lev-
els of genetic diversity, taxonomic level, number of se-
quences, number of sites, rate heterogeneity among
sites) (table 3). Already aligned data sets (available from
the author) were obtained. In some cases, regions with
abundant missing data were removed from the align-
ment. Nucleotide substitution parameters (required by
some recombination methods) for each data set were
estimated in PAUP* (Swofford 2000) for the best-fit
model of nucleotide substitution (Posada and Crandall
1998).

Results
Recombination Inference

Different methods for detecting recombination dis-
agreed regarding the presence or absence of recombi-
nation for several data sets. In some cases, inference was
not possible because of the requirements of a given
method (e.g., more than three sequences). In only one
case was recombination not inferred by all methods
(DmelCytB). There were no data sets for which all
methods detected recombination. Notice that in figure 1

the data sets are quite scrambled in terms of the pre-
conceived notions of recombination (data sets in bold
vs. not data sets not in bold). However, four of five data
sets with the least recombination detected were previ-
ously thought to be recombination free and all five data
sets with the strongest inference of recombination were
previously thought to contain recombinants. The behav-
ior of each recombination method is briefly summarized
subsequently.

MaxChi2 and Rdp seem to identify quite well when
recombination is present (or likely to be present) without
claiming that recombination has occurred when it seems
unlikely.

Chimaera could be inferring potential false posi-
tives (MammPGK) and missing some likely recombi-
nant data sets (HIV(B)EnvNR).

Reticulate and Geneconv seem to wrongly infer re-
combination in some divergent data sets (DaphniaCO1
and InsectaCOII), but they do recognize well the occur-
rence of recombination where it is most likely.

PhyPro does not infer many potential false posi-
tives, but it seems to fail to identify some likely recom-
binant data sets (HIV(B)EnvNR and MaizACT).

The Homoplasy Test seems to incorrectly infer re-
combination when rate heterogeneity among sites is
high (WolfCR and Armillaria-mtDNA). Also, it did not
seem able to detect recombination in highly diverse data
sets (HIV(B)EnvNR, HIVEnvNR, BoletalesATP6, and
HIVEnv). Interestingly, this is exactly the same behavior
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Table 3
Genetic Variation

Data set
Number of
Sequencesa

Number
of Sites

Segregating
Sites

Informative
Sites Diversity a

BoletalesATP6. . . . . . . . .
Candidula16S . . . . . . . . .
DaphniaCO1 . . . . . . . . . .
DmelCytB . . . . . . . . . . . .
GymnND4 . . . . . . . . . . . .
HIV(B)EnvNR . . . . . . . .
HIVEnvNR . . . . . . . . . . .
HumanHRVI . . . . . . . . . .
InsectaCOII . . . . . . . . . . .
Perom12S . . . . . . . . . . . .
VertebCOI . . . . . . . . . . . .
WolfCR . . . . . . . . . . . . . .

31
46
19 (18)
17 (6)
14
15
11
21 (12)

7
9
5

34

639
326
466

1,137
803

2,454
2,724

428
609
757

1,506
230

372
37

214
8

358
831

1,646
22

303
93

586
28

265
17

183
1

270
407
945
12

178
48

276
16

0.1704
0.0187
0.1630
0.0009
0.1837
0.0888
0.2456
0.0110
0.2480
0.0452
0.2292
0.0243

0.3611
1.4693
0.0095

`
1.3078
0.6789
0.5193

`
6.6827
0.0912
1.2810
0.0007

Armillaria-mtDNA . . . .
Candida-mtDNA . . . . . .
Fusarium3 . . . . . . . . . . .
FusariumTril01 . . . . . . .
HGVgenome. . . . . . . . . .
HIVEnv. . . . . . . . . . . . . .
HumanDRB1 . . . . . . . . .
MaizACT . . . . . . . . . . . .
MammPDH . . . . . . . . . .
MammPGK . . . . . . . . . .
NeisseriaArgF . . . . . . . .
PetuniaS-RNase . . . . . . .

23
49 (37)
28 (16)
28 (24)
16
20

3
8
5
6
9

14

2,234
2,553
1,336
4,146
8,508
2,724

153
1,008
1,104
1,248

787
504

7
62

220
64

2,413
1,748

24
363
399
584
234
391

5
58

118
36

1,513
1,185

0
230
130
231
122
300

0.0022
0.0070
0.0083
0.0105
0.0936
0.2121
0.1046
0.1708
0.1889
0.2294
0.1152
0.3604

0.0018
0.1523

`
`

0.5088
0.5660

`
0.2801
0.4411
0.4725
0.6862
2.3846

NOTE.—Plain font indicates that recombination is assumed to be absent; bold font indicates that recombination has
been inferred in previous studies. Diversity is calculated as the average pairwise number of observed differences per site.
a is the shape of the gamma distribution and represents the strength of rate variation among sites (Yang 1993). Small
values of a indicate strong rate variation among sites, whereas a 5 ` indicates that there is no rate variation among sites.

a The number of haplotypes is shown in parentheses.

observed in previous computer simulations (Posada and
Crandall 2001).

Pist showed a tendency to wrongly detect recom-
bination in divergent data sets (e.g., GymnND4,
DaphniaCO1, and VertebCOI), although it did not clear-
ly detect recombination in the most divergent data set
(PetuniaS-RNase). In the simulations, however, the
amount of diversity did not seem to induce false posi-
tives for Pist, except when high rate variation was pre-
sent in the data.

Plato seems to erroneously infer recombination in
two data sets with high rate variation (WolfCR and Ar-
millaria-mtDNA), even though rate variation was in-
cluded in the model used for the calculation of the like-
lihoods. In addition, when rate variation is included in
the model, recombination was not detected in argF; this
data set was used as an example of recombination in the
original paper.

RecPars did not detect recombination in clear re-
combinant data sets, such as Fusarium3 or Candida-
mtDNA. This could be because of the somehow low
number of parsimony informative sites in these data sets
(118 and 58, respectively). This may imply that RecPars
needs a minimum sequence divergence (.1%) to detect
recombination.

Runs Test performance does not fit an obvious pat-
tern, and it does not detect recombination in data sets
where recombination most likely has occurred. How-
ever, it detects recombination in data sets where recom-
bination seems unlikely. Interestingly, the Runs Test

showed the worst performance of all methods in previ-
ous computer simulations (Posada and Crandall 2001).

The bootscanning implementation, Simplot, seems
very conservative when a 95% threshold is used. When
the bootscanning threshold was dropped from 95% to
70%, it detected recombination in the HIV data sets
(data not shown). However, in simulations it was ob-
served that even a bootscanning threshold of 90% re-
sulted in high false positive rates. In addition, it infers
recombination in the VertebCOI data set, which may be
a false positive.

The Sneath Test seems to work well, except for the
likely wrong detection of recombination in Perom12S
and InsectaCOII. Because the Sneath Test works in a
pairwise manner, this inference could reflect some spe-
cific pattern not recognized in the data as a whole.

Finally, Triple does infer what seem to be false
positives (e.g., Perom12S), while failing to reject what
seem to be clear recombinant data sets (e.g.,
HGVgenome).

Discussion
Recombination Detection Patterns

The different recombination methods explored in
this study showed different behavior. Conclusions here
depend on a good knowledge of which data sets are
recombinant and which ones are not. Obviously, we do
not know the true recombination status of these data
sets, but it seems reasonable to assume that in some of
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FIG. 1.—Recombination inference. Data sets in plain font indicate that recombination was assumed to be absent. Data sets in bold font
indicate that recombination has been suggested. Cells in black indicate recombination was detected. Dark gray indicates that recombination was
detected but with a P-value marginally significant (0.05 . P-value . 0.01). Light gray indicates recombination was not detected but the P-
value was marginally nonsignificant (0.10 . P-value . 0.05). Cells in white indicate that recombination was not detected. Crossed cells indicate
that inference was not possible. Data sets were ordered by the strength of the recombination inference, from least to most, using an arbitrarily
defined recombination score (R-score). The R-score, the 50% consensus, and the consensus power and false positive error rates are described
in the text. Methods abbreviations are—Chi: Chimaera; Gen: Geneconv; Hom: Homoplasy Test; Max: MaxChi2; Phy: PhyPro; Pis: Pist; Pla:
Plato; Rdp: Rdp; Rec: RecPars; Ret: Reticulate; Run: Runs Test; Sim: Simplot; Sne: Sneath Test; Tri: Triple.

the data sets recombination has occurred, whereas in
others it is absent.

To summarize inferences obtained by the different
methods (see fig. 1), data sets were ordered by the
strength of the recombination inference, from least to
most, using an arbitrary recombination score (R-score)
that ranges from 0 to 1, defined as R-score 5 ([number
of methods inferring recombination with a P-value less-
er than 0.01 3 6 1 number of methods inferring recom-
bination with a P-value greater than 0.01 but lesser than
0.05 3 3 1 number of methods inferring recombination
with a P-value greater than 0.05 but lesser than 0.10]/
[24 3 6]). For each data set, a 50% consensus decision
(yes or no) about the presence of recombination was
obtained by considering whether the R-score was greater
than 0.5. Because recombination was inferred in Fusar-
ium3 by most methods, the 50% consensus for
FusariumTriq101, which is a subset of the Fusarium3
data set, including the putative breakpoint, was also
scored as yes. In addition, to assess the accuracy and
false rate for each recombination method, a consensus
power was calculated as the percentage of time a method
inferred recombination for a data set with an R-score .
0.5 (i.e., the inference consensus for the data set was
‘‘yes’’ and the method inferred ‘‘yes’’). A consensus
false rate was also calculated as the percentage of time

a method inferred recombination for a data set with an
R-score , 0.5 (i.e., the inference consensus for the data
set was ‘‘no’’ and the method inferred ‘‘yes’’).

Given the statistics described previously, Gene-
conv, MaxChi2, Reticulate, and Sneath Test, were the
most powerful methods, followed by Chimaera, Pist,
Rdp, and Triple. Among the methods with least power
were Homoplasy Test, RecPars, and Simplot. Regarding
false positives, Chimaera, MaxChi2, PhyPro, Rdp,
RecPars, and Simplot showed the lowest values
(,0.10), whereas Pist, Runs Test, and Triple showed the
highest false positive rates (.0.4). These results suggest
that substitution and compatibility methods seem to be
more powerful than the phylogenetic or the distance
methods. Among all methods, MaxChi2 performed the
best.

Recombination seems to be easier to detect, in gen-
eral, with increasing levels of divergence. However, re-
combination was inferred in Candida-mtDNA by most
recombination methods, even though there is not much
variation in this data set (,1%). No relationship was
found between the number of sequences, sites, segre-
gating sites or informative sites, and power to detect
recombination, but this is most likely a product of the
low number of data sets evaluated. Nevertheless, there
is a clear indication that the number of sites influences
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the power to detect recombination. A recombination
event was suggested to have occurred in FusariumTri101
data set (O’Donnell et al. 2000), but all methods, except
one (Geneconv) did not detect recombination in this data
set. However, when two other genes (in which there is
no evidence of recombination) situated on both sides of
the Tri101 gene are added to build the Fusarium3 data
set, most methods detect recombination. In fact, some
methods identify the breakpoint in the Tri101 gene only
in the Fusarium3 data set.

The detection patterns observed here are in good
agreement with those observed in the computer simu-
lations. The best performing methods here (considering
power and false positive error rates) were also the best
in previous computer simulations (Posada and Crandall
2001). Also, the worst performing method here (Runs
Test) was the worst performing method in the computer
simulations. Likewise, recombination methods seem to
be more powerful with increased levels of divergence,
both with simulated and real data sets. In addition, meth-
ods confounded by the presence of high rate variation
among sites in simulations here inferred recombination
from putative nonrecombinant data sets that showed
high levels of rate among sites (e.g., Homoplasy Test
with WolfCR).

Reevaluation of Previous Recombination Inferences

The results of the recombination analyses carried
out in this study do not completely agree with previous
inferences. In some data sets where recombination has
been claimed (PetuniaS-RNase) or assumed to be absent
(Candidula16S), inferences were very ambiguous, and
the disagreement with previous studies cannot be easily
elucidated. For other data sets, however, inferences here
are congruent enough to suggest that previous beliefs
should be reconsidered.

Although it has been claimed that recombination
has occurred in MammPGK and MammPDH (Fitzgerald
et al. 1996) on the basis of phylogenetic incongruence,
the evidence for recombination in those data sets is very
weak here, and it is only strongly suggested by a few
methods (Pist, Plato, RecPars, Triple). Interestingly, all
these methods are phylogenetic methods. For divergent
data sets with some rate variation among sites (as in
MammPGK and MammPDH), these phylogenetic meth-
ods showed some power without inferring false posi-
tives in the computer simulations (Posada and Crandall
2001). It is possible that the recombination events in
these data sets are very old, and that the substitution
pattern has been obscured since by repeated mutation;
therefore, they are no longer identifiable by the substi-
tution methods. However, the inference in the original
paper has some potential problems. In particular, the au-
thors measured phylogenetic incongruence by consid-
ering bootstrap support for different clades in different
regions of the alignment. Bootstrap values are not de-
signed to compare phylogenetic hypotheses (trees); for
this purpose, adequate methods exist (Shimodaira and
Hasegawa 1999). Using such methods in a maximum
likelihood framework, the PDH trees regarded as dif-

ferent by Fitzgerald et al. (1996) do not seem to be
significantly different. There is thus reasonable doubt
about the presence of recombination in these data sets.

Recombination has also been claimed to be present
in the Armillaria-mtDNA data set (Saville, Yoell, and
Anderson 1996; Saville, Kohli, and Anderson 1998),
whereas here only the Homoplasy Test, Plato, and the
Sneath Test infer its presence. Armillaria-mtDNA is a
low-divergence data set (,1%) with extreme rate vari-
ation among sites. It is precisely in this situation where
the Homoplasy Test shows 90% false positives (Posada
and Crandall 2001). However, Plato and the Sneath Test
do not show an excess of false positives in computer
simulations under these conditions, but they do infer re-
combination in some mitochondrial data sets where re-
combination seems very unlikely (e.g., Perom12S,
InsectaCOII, VertebCOI). Of course, there may be some
aspects of real data sets that may induce false positives
that were not explored in the computer simulations, like
nonindependence among sites. The presence of recom-
bination in this data does not seem conclusive but can-
not be discarded.

The analysis here suggests that recombination has
occurred in the mitochondria of Boletales (Boletales-
ATP6). This finding is even more interesting when we
consider that this data set is composed of divergent spe-
cies. Recombination in the mitochondria of fungi also
seems to be very evident in the Candida-mtDNA data
set.

Although the HIV(B)EnvNR (only subtype B se-
quences) and HIVEnvNR (several subtypes represented)
data sets do not include known circulating recombinant
forms (http://hiv-web.lanl.gov/CRFs/CRFs.html), this
analysis indicates that recombination is prevalent in
those sequences. This finding suggests that the frequen-
cy of recombination in HIV-1 is currently underesti-
mated, especially within subtypes. Indeed, this result has
very serious implications for vaccine development and
HIV-1 dynamics, and it implies that coinfection might
be more common than currently thought. In addition,
many past inferences based on HIV-1 evolutionary his-
tory assumed no recombination, especially when dealing
with within-subtype sequences. A thorough analysis of
the known HIV-1 sequences is imperative to evaluate
the impact of recombination on our current understand-
ing of this virus.

Evaluating Methods for Detecting Recombination

The performance of methods for detecting recom-
bination could be evaluated using several criteria. Here
the only criterion employed—and the most basic—was
the ability to detect, qualitatively, the presence of re-
combination. Other possible performance criteria relate
to the characterization of the recombination events, like
the identification of the parental and recombinant se-
quences involved or the estimation of the recombina-
tional breakpoints. However, these criteria are less ad-
equate for the purpose of comparing these 14 recombi-
nation methods. First, there are not many well-charac-
terized recombination events (but see Drouin et al.
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1999). Second, several of the data sets studied here pre-
sumably have been subject to numerous, and overlap-
ping, recombination events, making the characterization
of each recombination event cumbersome. Third, not all
methods evaluated here are designed to characterize the
recombination events (see table 1).

Recombination methods detect recombination ei-
ther directly (Yes-No answer; e.g., Bootscanning) or cal-
culate a P-value for the null hypothesis of no recombi-
nation (P-value obtained from permutations of the data,
from Monte Carlo simulation, or from a statistical dis-
tribution). To evaluate these methods I have used the
criteria offered by each program, trying to reproduce the
behavior of a researcher using these same programs or
methods. In the case of RecPars, an arbitrary decision
was made. The output of RecPars consists of one tree
or more for different regions of the alignment. Here,
recombination was inferred when more than one tree
was estimated for a given alignment. This kind of sta-
tistic (0/1) is not very powerful, and it could explain
why RecPars, as implemented here, did not detect re-
combination in the Candida-mtDNA or Fusarium3 data
sets. It is possible that permutations of the data would
be a reasonable approach to build a proper null distri-
bution of this test statistic. However, the program
RecPars does not currently provide this possibility. A
potential problem with methods that simulate the Monte
Carlo P-value (Plato and Pist) is that in the generated
data sets the amount of diversity is not the same as in
the original data set. This might help explain why these
methods did not perform among the best.

Choosing a Method to Detect Recombination

A researcher planning to scan his or her data for
recombination might select the most appropriate meth-
od, according to different criteria. One of the first things
to consider is what the purpose of the study is. If the
researcher just wants to detect the presence of recom-
bination, any of the methods evaluated here could po-
tentially be used. However, if the characterization of the
recombination events (identification of parental and re-
combinant sequences or recombination breakpoints [or
both]) is of interest, only a few methods are appropriate
(see table 1). If the interest is to measure the amount of
recombination, among those evaluated here only meth-
ods like the Homoplasy Test and Pist might be used.
Second, the methods contemplated here are able to deal
with alignments of homologous sequences. Therefore,
whether the sequences analyzed are orthologs from the
same locus or members of a multigene family seems
irrelevant for the selection of a recombination method.
Third, in some cases, a researcher could be interested
only in analyzing two sequences where there are some
reasons to believe that recombination or gene conver-
sion has occurred. The minimum number of sequences
that a method requires is indicated in table 1. Fourth, in
order to maximize performance, that is, increase power
and decrease false positives, data sets with very low
divergence (1%) could be analyzed with the Homoplasy
Test (as long as a high level of rate variation among

sites does not exist; this conclusion is also based on the
computer simulations), MaxChi2, or Rdp. For higher
levels of divergence (.1%), the Homoplasy Test is not
adequate, and methods like MaxChi2 (the best perform-
ing method), Geneconv, Reticulate, or Rdp could be
used (see also Posada and Crandall 2001). However, it
does not seem that one should rely too much on a single
method.
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