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A brain computer interface BCI enables direct communication between a brain and a computer
translating brain activity into computer commands using preprocessing, feature extraction,
and classification operations. Feature extraction is crucial, as it has a substantial effect on the
classification accuracy and speed. While fractal dimension has been successfully used in various
domains to characterize data exhibiting fractal properties, its usage in motor imagery-based BCI
has been more recent. In this study, commonly used fractal dimension estimation methods to
characterize time series Katz’s method, Higuchi’s method, rescaled range method, and Renyi’s
entropy were evaluated for feature extraction in motor imagery-based BCI by conducting offline
analyses of a two class motor imagery dataset. Different classifiers fuzzy k-nearest neighbours
FKNN, support vector machine, and linear discriminant analysis were tested in combination with
these methods to determine the methodology with the best performance. This methodology was
then modified by implementing the time-dependent fractal dimension TDFD, differential fractal
dimension, and differential signals methods to determine if the results could be further improved.
Katz’s method with FKNN resulted in the highest classification accuracy of 85%, and further
improvements by 3% were achieved by implementing the TDFD method.

1. Introduction

A brain computer interface (BCI) enables direct communication between a brain and a
computer translating brain activity into computer commands, thus providing nonmuscular
interaction with the environment. Sensorimotor rhythms (SMRs) are rhythmic brain waves
found in the frequency range of 8 to 12Hz over the left and right sensorimotor cortices.
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Movement, movement preparation, and motor imagery desynchronize SMRs, whereas
during relaxation or postmovement, they are synchronized [1]. Since motor imagery does
not require any muscular activity, motor imagery-regulated SMRs are commonly utilized
in BCI [2, 3]. This is particularly beneficial for people with neurological disorders, since
their voluntary muscular activities might be impaired. Another advantage of the utilization
of motor imagery-regulated SMRs in BCI is the short training period required [4]. Motor
imagery tasks are identified by detecting the synchronization and desynchronization of
SMRs. The most common motor imagery tasks are imagery hand [5], foot [4], and tongue
[3] movements. Once acquired, SMRs are analyzed using preprocessing, feature extraction,
and classification operations.

Feature extraction is the process of accurately simplifying the representation of data by
reducing its dimensionality while extracting its relevant characteristics for the desired task.
It has a substantial effect on the classification accuracy and speed, since classification carried
out without a successful feature extraction process on a high dimensional and redundant data
would be computationally complex and would overfit the training data. Fractal dimension
is a statistical measure indicating the complexity of an object or a quantity that is self-similar
over some region of space or time interval. It has been successfully used in various domains
to characterize such objects and quantities [6, 7], but its usage in motor imagery-based BCI
has been more recent [8, 9]. There are several fractal dimension estimation methods, some of
which are not applicable to all types of data exhibiting fractal properties. In order to achieve
a higher classification accuracy and speed, the fractal dimension estimation method that is
most suitable to the data at hand should be chosen.

In this study, Katz’s method [10], Higuchi’s method [11], the rescaled range (R/S)
method [12], and Renyi’s entropy [13] were evaluated for feature extraction in motor
imagery-based BCI by conducting offline analyses of a two-class motor imagery dataset.
Fuzzy k nearest neighbors (FKNN), support vector machine (SVM), and linear discriminant
analysis (LDA) were tested in combination with these methods to determine the method-
ology with the best performance. This methodology was then modified by implementing
time-dependent fractal dimension (TDFD) [14], differential fractal dimension, (DFD) and
differential signals (DS) [15].

2. Materials and Methods

2.1. Dataset

The motor imagery dataset from the BCI Competition II (Data set III) provided by the De-
partment of Medical Informatics, Institute for Biomedical Engineering, University of Tech-
nology Graz was analyzed. The data was acquired over seven runs from a healthy 25-year-
old female subject during imagery left and right handmovements. The signals were recorded
with a sampling rate of 128Hz from three electrodes placed at the standard positions of the
10–20 international system (C3, Cz, and C4) and filtered between 0.5 and 30Hz. Each run
consisted of 40 trials and each trial was nine seconds long. During the first two seconds of
each trial, neither a stimulus was presented nor did the subject perform any motor imagery
task. After this period, an acoustic and a visual stimulus indicating the beginning of themotor
imagery task were presented. Then, for six seconds, a cue (a left or right arrow) indicating the
required motor imagery task was presented (in a random order for each trial), and the subject
performed this task. During this period, a feedback bar was displayed. Both the training and
testing sets consisted of 140 samples.
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2.2. Preprocessing

The samples from each electrode were zero phase filtered using a 6th-order bandpass digital
Butterworth filter with cutoff frequencies of 0.5 and 30Hz in both the forward and reverse
directions. The last six seconds of each trial were extracted to discard the period without any
motor imagery. Two different electrode configurations (C3 and C4, and C3, Cz, and C4)were
tested.

2.3. Feature Extraction

In Katz’s method, Higuchi’s method, and the R/S method, the fractal dimension of the
samples from selected electrodes were concatenated into feature vectors. In the TDFD,
DFD, and DS methods, the fractal dimensions were estimated using the fractal dimension
estimation method of the methodology with the best performance.

2.3.1. Katz’s Method

Katz’s method [10] calculates the fractal dimension of a sample as follows: the sum and
average of the Euclidean distances between the successive points of the sample (L and a,
resp.) are calculated as well as the maximum distance between the first point and any other
point of the sample (d). The fractal dimension of the sample (D) then becomes

D =
log(L/a)

log(d/a)
=

log(n)

log(n) + log(d/L)
, (2.1)

where n is L divided by a.

2.3.2. Higuchi’s Method

Higuchi’s method [11] calculates the fractal dimension of a sample as follows: first, sub-
sample sets (Xk) are constructed from the sample (X) as

Xm
k = {X(m + ik)}

[(N−m)/k]
i=0 , (2.2)

where k ∈ [1, kmax],m ∈ [1, k] andN is the sample size. Then, the length of each Xk (Lm) is
calculated as

Lm(k) =

(

∑[(N−m)/k]
i=1 |X(m + ik) −X(m + (i − 1)k)|(N − 1)/([(N −m)/k]k)

)

k
. (2.3)

Finally, the fractal dimension of the sample (D) is solved from

〈L(k)〉 ∝ k−D, (2.4)
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where 〈L〉 is the average of Lm. Three kmax values from the range of 8 to 18 [16] (8, 13, and
18) were tested.

2.3.3. R/S Method

The R/S method [12] calculates the fractal dimension of a sample by iteratively dividing
it into nonoverlapping subsamples with decreasing subsample size and performing the
following operations at each iteration: for each subsample, a new subsample (X) is
constructed from its zero mean (ξ) such that the nth point of X is the cumulative sum of the
first n points of ξ. Then, the difference between the maximum and the minimum values, and
the standard deviation ofX (R and S, resp.) are calculated in order to obtain their ratio (R/S).
Finally, R/S of each X is averaged ((R/S)avg). After obtaining (R/S)avg at each iteration, the
Hurst exponent (H) becomes the slope of the log-log plot of (R/S)avg versus subsample size.
The fractal dimension then becomes 2 −H.

2.3.4. Renyi’s Entropy

Renyi’s entropy [13] is generalization of Shannon’s entropy. Renyi’s entropy is defined as

Rq =
1

1 − q
log2

(

n
∑

i=1

p
q

i

)

, (2.5)

where q > 0, q /= 1. However, R1 exists and the value is subset of Shannon’s entropy.
Therefore, Shannon’s entropy is limit case to Rq when q = 1

lim
q→ 1

Rq = S. (2.6)

This is the fractal dimension on the basic of Renyi’s entropy

Dq = lim
δx→ 0

1

1 − q
log2

log2
∑n

i=1p
q

i

log2δx
, (2.7)

can be replaced with faster algorithm

Dq = lim
δx→ 0

log2
∑n

i=1N
q

i − qlog2N

log2δx
. (2.8)

2.3.5. TDFD Method

In TDFD method, a window (with size s) is slid over a sample by a time step, and the fractal
dimension of the part of the sample inside the window is estimated. The fractal dimensions
were concatenated into feature vectors. Different window sizes were tested using a time step
of one second.
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2.3.6. DFD and DS Methods

The DFD method is a variation of the DS method. In the DFD method, first, the fractal

dimensions of the samples from selected electrodes are estimated, and then, the pairwise

differences of the fractal dimensions are calculated. However, in the DS method [15], first,

the pairwise differences of the samples from selected electrodes are calculated, and then, the

fractal dimensions of the pairwise differences are estimated. In both methods, the resultant

values were concatenated into feature vectors. Only the three electrode configuration was

tested, since the two electrode configuration results in one-dimensional feature vectors.

2.4. Classification

After constructing the feature vectors, the test samples were classified as imagery left or right

hand movements using different classifiers. FKNN, SVM, and LDA were tested.

FKNN is a variation of KNN. Themain difference between the two is that KNN assigns

a class label to a sample that is most frequent among the k nearest neighbors of that sample,

whereas FKNN assigns a membership value for each class in this neighborhood and classifies

the sample as the class with the highest membership value. The membership value for a

class was calculated by dividing the sum of the distances between the samples belonging

to this class and the test sample by the sum of the distances between all the samples in the

neighborhood and the testing sample. Number of nearest neighbors between one and the

square root of the sample length were tested.

SVM separates the samples using a hyperplane that maximizes the margin between

those belonging to different classes. SVM with a linear kernel was used.

LDA finds a linear combination of features that best separates the samples belonging

to different classes and can be used as a classifier. To assign a class label to a sample, the

probabilities of the sample belonging to each class were estimated using LDA. The label of

the class with the highest probability was then assigned to the sample.

3. Results

The classification accuracies (Table 1) and the computation times (Table 2)were evaluated for

each fractal dimension calculation method and classifier combination. Katz’s method was the

fastest method, and combining it with FKNN, the highest classification accuracy of 85% (the

three electrode configuration and k = 9) as well as the second highest classification accuracy

of 83% (the two electrode configuration and k = 9) were achieved. R/S method with any

classifier performed the slowest with the classification accuracies and the computation times

ranging from 69% to 71% and 7.32 to 11.07 s, respectively. On the other hand, Renyi’s entropy

with any classifier performed theworst with the classification accuracies and the computation

times ranging from 55% to 66% and 1.84 to 4.87 s, respectively. The performances of the rest
of the combinations were similar (Tables 1 and 2). The classification accuracies (except for

the R/S method and Renyi’s entropy) and computation times (except for the R/S method)

increased with the number of the number of selected electrodes.
Table 3 shows the computation times and classification accuracies obtained by

modifying the best performing methodology. Although all the modifications increased the
computation time, further improvements in the classification accuracy (by 3%)were achieved
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Table 1:Maximum classification accuracies (percentage of correctly classified testing samples) obtained by
the combination of fractal dimension estimation methods and classifiers with the two and three electrode
configurations (and the parameters (k and k max) used to obtain these values).

Classification accuracy (%)

Katz’s method Higuchi’s method R/S method Renyi’s entropy

C3, C4
C3, Cz,
C4

C3, C4 C3, Cz, C4 C3, C4
C3, Cz,
C4

C3, C4
C3, Cz,
C4

FKNN
83

(k = 9)
85

(k = 9)

77
(k = 7,

kmax = 18)

79
(k = 5,

kmax = 18)

71
(k = 9)

69
(k = 9)

66
(k = 9,
q = 4)

65
(k = 9,
q = 5)

SVM 77 79
78

(kmax = 13)
81

(kmax = 13)
71 70

59
(q = 2)

55
(q = 4)

LDA 78 81
78

(kmax = 13)
79

(kmax = 13)
71 70

59
(q = 3)

57
(q = 18)

Table 2: Computation times (time it took for feature extraction and classification) corresponding to the
maximum classification accuracies obtained by the combination of fractal dimension estimation methods
and classifiers with the two and three electrode configurations (and the parameters (k and k max) used to
obtain these values).

Computation time (s)

Katz’s method Higuchi’s method R/S method Renyi’s entropy

C3, C4
C3, Cz,
C4

C3, C4 C3, Cz, C4 C3, C4
C3, Cz,
C4

C3, C4
C3, Cz,
C4

FKNN
0.17

(k = 9)
0.23

(k = 9)

1.03
(k = 7,

kmax = 18)

1.5
(k = 5,

kmax = 18)

7.37
(k = 9)

11.07
(k = 9)

2.35
(k = 9,
q = 4)

2.60
(k = 9,
q = 5)

SVM 0.34 0.34
1.07

( kmax = 13)
1.4

(kmax = 13)
7.36 10.99

1.90
(q = 2)

4.87
(q = 4)

LDA 0.12 0.21
0.83

(kmax = 13)
1.26

(kmax = 13)
7.32 10.99

1.84
(q = 3)

3.01
(q = 18)

Table 3: Computation times and classification accuracies obtained by modifying the highest performing
methodology (Katz’s Method with FKNN) (and the parameters (k and s) used to obtain these values).

TDFD method DFD method DS method

C3, C4 C3, Cz, C4 C3, Cz, C4 C3, Cz, C4

Classification accuracy (%) 88 (k = 5, s = 10) 85 (k = 7, s = 64) 84 (k = 11) 71 (k = 11)

Computation time (s) 3.47 (k = 5, s = 10) 0.94 (k = 7, s = 64) 0.41 (k = 11) 0.26 (k = 11)

only by implementing TDFD method (the two channel configuration, k = 5 and s = 10).
However, implementing the DFD and DS methods resulted in lower classification accuracies.

Mental activity may modulate FD of EEG signal which implies that it is timed-
ependent in nature. By implementing TDFD method in Katz’s Method with FKNN, we may
measure the fractality in short time intervals of time-sequential data from one end of the
waveform to the other sequentially, and we may observe the dynamical changes in the FDs
with respect the time series. These FDs, namely, are referred to the time-dependent fractal
dimensions (TDFD) [17, 18].

Katz’s algorithm is the most consistent method due to its exponential transformation
of FD values and relative insensitivity to noise. Hiaguchi’s method, however, yields a more



Discrete Dynamics in Nature and Society 7

accurate estimation of signal FD, when tested on synthetic data, but it is more sensitive to
noise. In the experiment, EEG datasets used are real data sets which contain noise, hence
Katz’s method exhibits better result [19].

4. Conclusions

Since all fractal dimension estimation methods are not applicable to all types of data ex-
hibiting fractal properties, commonly used fractal dimension estimation methods to char-
acterize time series with different classifiers were evaluated to find the most suitable method
for motor imagery data. Katz’s method with FKNN was determined to be the best meth-
odology, and the results were further improved by implementing the TDFD method. The
results warrant further research to use this methodology in online analysis of motor imagery
data and analysis of other signals.

Acknowledgments

The authors would like to thank Alfonsius Geraldi, Umut Güçlüa, and Yağmur Güçlütürkaal
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