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Accurate modeling of the sequence specificities of TFs is of cen-

tral importance for understanding the function and evolution of 

genomes. Ideally, sequence specificity models should predict the 

relative affinity (or dissociation constant) for different individual 

sequences and/or the probability of occupancy at any position in the 

genome. The major paradigm in modeling TF sequence specificity is 

the position weight matrix (PWM) model1–3. PWMs represent the 

DNA sequence preference of a TF as an N by B matrix, where N is 

the length of the site bound by the TF, and B is the number of pos-

sible nucleotide bases (that is, A, C, G or T). Each position provides a 

score for each nucleotide, representing the relative preference for the 

given base. PWM models provide an intuitive representation of the 

sequence preferences of a TF, including the exact position where it 

would bind the DNA, and involve relatively few parameters. However, 

recent studies suggest that shortcomings of PWMs, including their 

inability to model variable-width gaps, capture dependencies between 

the residues in the binding site or account for the fact that TFs can 

have more than one DNA-binding interface, can make them inac-

curate4–9. Alternative models have been developed that extend the 

PWM model by considering the contribution of combinations of 

nucleotides, for example, dinucleotides or combinations of multi-

ple motifs4,6,7,10. Another alternative, k-mer–based approaches7,11, 

assign a score to every possible sequence of length k, and hence make 

no assumptions about position dependence, variable gap lengths or 

multiple binding motifs. To our knowledge, the relative efficacies of 

these approaches have not been systematically compared.

A major difficulty in studying TF-DNA binding specificity and, 

therefore, in evaluating models for representing this specificity has 

been scarcity of data. The process of training and testing models 

benefits from a large number of unbiased data points. In the case of  

TF-DNA binding models, the required data are the relative preferences 

of a TF for a large number of individual sequences. Ideally, such data 

should be obtained in an in vitro setting, as many confounding factors 

can influence the binding of a transcription factor in vivo (e.g., chro-

matin state, TF concentration or interactions with cofactors). Methods 

for measuring in vitro binding specificity include (HT)-SELEX/SELEX-

seq12–15, HiTS-FLIP8, mechanically induced trapping of molecular 

interactions (MITOMI)9,16, cognate site identifier17, bacterial one-

hybrid18 and protein binding microarrays (PBMs)19.

PBMs have enjoyed widespread use owing to the ease, accessibility 

and relatively high information content of the assay. Raw PBM data 

consist of a score (that is, fluorescence signal intensity) representing 

the relative preference of a given TF to the sequence of each probe 

contained on the array. PBM data represent specificity (that is, how 

strongly a given TF binds to a given sequence, relative to all other 

sequences), as opposed to binding affinity (that is, how strongly a TF 
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Genomic analyses often involve scanning for potential transcription factor (TF) binding sites using models of the sequence 

specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s DNA-binding 

specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein 

binding microarray data for 66 mouse TFs belonging to various families. For nine TFs, we also scored the resulting motif models 

on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from the in vivo data. Our 

results indicate that simple models based on mononucleotide position weight matrices trained by the best methods perform 

similarly to more complex models for most TFs examined, but fall short in specific cases (<10% of the TFs examined here).  

In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy 

in eukaryotic TF sequence preferences.
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binds to a single sequence); specificity is the more important measure, 

because in vivo, the TF must be able to distinguish its functional sites 

from all accessible sequences in the genome20. A typical universal 

PBM is designed using a de Bruijn sequence, such that all possible 

10-mers and 32 copies of every nonpalindromic 8-mer are contained 

within ~40,000 60-base probe sequences (each containing either 35 

or 36 unique bases) on each array, offering an unbiased survey of TF 

sequence specificities19. Constructing arrays with different de Bruijn 

sequences, each capturing the sequence specificities of the same TF 

to entirely different sets of sequences, provides a means to test the 

relative performance of various algorithms for modeling and pre-

dicting TF sequence specificities, because models can be trained on  

one array and tested on the other7,19. Here we present an evaluation of 

26 different algorithms for modeling the DNA sequence specificity of 

a diversity of TFs, using two PBM array designs for each TF.

RESULTS

The DREAM5 challenge

The Dialogue for Reverse Engineering Assessments and Methods 

(DREAM) is a series of annual reverse-engineering systems biology 

challenges21–23. The DREAM5 TF-DNA Motif Recognition Challenge 

formed the basis for the analyses presented here. The challenge used 

PBM data to test the ability of different algorithms to represent the 

sequence preferences of TFs (here, ‘algorithm’ refers to the combina-

tion of data preprocessing, TF sequence specificity model, training 

and scoring). Briefly, we generated PBM data measuring the DNA 

sequence preferences of 86 mouse TFs, taken from 15 diverse TF 

families (Supplementary Table 1). All TFs were assayed in duplicate 

on two arrays with independent de Bruijn sequences (denoted ‘ME’ 

and ‘HK’ after the initials of the designers). In the DREAM5 chal-

lenge, the sequences of both arrays were made known, but only a 

subset of the PBM data was provided to participants, and the teams 

submitted predictions on the array data held back. For 20 randomly 

chosen TFs, array intensity data were provided from both array types, 

in order for the participants to calibrate and test their algorithms. For 

33 TFs, intensity data were provided only from the ME type of array; 

data for the remaining 33 TFs were provided only for the HK type of 

array. Given the output of probe intensities of one PBM array type, the 

challenge consisted of predicting the probe intensities of the second 

array type for each of the 66 TFs.

The probe intensity predictions from each participant were then 

evaluated using five criteria (that is, scores) that assess the ability of 

an algorithm to either predict probe sequence intensities or assign 

high ranks to preferred 8-mer sequences. These criteria and a com-

bined score that summarizes the performance of each algorithm 

are described in Supplementary Note 1. Briefly, the k-mer–based 

method of Team_D11 outperformed all other algorithms, with algo-

rithms ranked two through five performing similarly to each other 

(Supplementary Table 2). Of note, the top five teams represent a 

wide range of sequence specificity models (Table 1), suggesting that 

the algorithm, its implementation and its scoring system might be of 

greater importance than the type of model used.

The DREAM5 outcome, along with feedback from participants and 

others, led us to revisit and investigate several aspects of the results. 

First, we wanted to revisit the evaluation criteria. Second, we wanted 

to account for the possibility that microarray data preprocessing 

might have an effect on the final performance of a model or algo-

rithm, as it clearly did for Team_D11. Third, we wanted to incorpo-

rate published algorithms that were not represented in the challenge, 

including three biophysical energy–based algorithms, BEEML-

PBM24,25, FeatureREDUCE (T.R.R. and H.J.B., unpublished data)  

and MatrixREDUCE26, as well as two statistical algorithms, 

RankMotif++27 and Seed-and-Wobble19. We also wanted to exam-

ine the impact of dinucleotide-based PWM models and ‘secondary 

motifs’, which can model proteins with multiple modes of binding 

DNA7. Here, we include 15 published and unpublished algorithms, 

in addition to 11 algorithms submitted as part of the original chal-

lenge (Table 1). Fourth, we wished to examine whether the results 

we obtained for in vitro data were supported by in vivo analyses and 

alternative in vitro assays.

Revised evaluation criteria

We considered two general issues in revisiting the evaluation criteria. 

The first is that, ideally, a representation of DNA sequence preference 

(e.g., a PWM) should output a number that reflects relative prefer-

ence to a given sequence20. Most of the algorithms we considered 

aim to do this. In such cases it is reasonable to score using Pearson 

correlation. We note, however, that other models are intended to dis-

criminate bound from unbound sets of sequences, or to represent the 

best binding sequences. In addition, microarray data can be subject 

to noise and saturation effects. In such cases it is appropriate to ask 

whether highly bound sequences can be discriminated from unbound 

sequences, which can be measured by the area under the receiver 

operating characteristic (AUROC).

The second issue is whether scoring should be based on predict-

ing the 35-mer probe intensities or predicting their transformed 

8-mer values (we refer to full probe sequences as 35-mers, because 

each 60-base probe sequence contains 35 unique bases). The origi-

nal DREAM5 challenge included both. There are arguments for and 

against both7,19,24 and our comparisons to independent data did not 

support either as being superior overall (Supplementary Note 2). In 

addition, the 8-mer values can be derived by different means; one 

previous study7 directly predicted values for the test 8-mers with 

PWMs, whereas another24 first scored the test 35-mer scores and then 

converted these to 8-mer scores. We found that the latter approach24 

results in dramatically improved correlations to the measured test 

8-mer Z-scores (Supplementary Note 2), suggesting that previous 

conclusions regarding secondary motifs, which were derived using the 

former approach7, should be revisited. Using the latter procedure24, 

the correlations obtained for 8-mers and for 35-mers on the same 

array scale with each other almost perfectly, whether the 35-mers are 

scored with PWMs or with 8-mers (Supplementary Note 2). The only 

substantial difference we have observed between scoring 35-mers or 

8-mers is that secondary motifs appear to confer a slight advantage 

when scoring 8-mers, but not 35-mers.

In the evaluations below, we use two criteria that are based on 

prediction of 35-mer intensities (which was the original DREAM5 

challenge), but acknowledge that the data may be noisy and semi-

quantitative: (i) Pearson correlation between predicted and actual 

probe intensities (in the linear domain), and (ii) the AUROC of the 

set of positive probes, where positive probes are defined as those with 

actual intensities >4 s.d. above the mean probe intensity for the given 

experiment (average of 350 probes per experiment, out of ~40,000 

probes total) (Fig. 1). We calculate a normalized score in which the 

top-performing algorithm for the given evaluation criterion receives 

a 1, and all other algorithms receive scores proportional to the top 

algorithm. The final score for an algorithm is the average of its two 

normalized scores. We also report the Pearson correlation between 

measured and predicted 8-mer scores, and the AUROC of positive 

8-mers, where positive 8-mers are defined as those with associated 

E-scores > 0.45 in the actual experiment28, although these are not 

used to gauge the efficacy of algorithms or models.
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Results of new evaluations

In the revised evaluations, we used the 35-mer scores from the 

DREAM5 challenge directly for eight of the algorithms. For the top 

three algorithms in the initial DREAM5 challenge that take <24 CPU 

hours to run per experiment (originally ranked 1, 3 and 4), as well as 

the algorithms BEEML-PBM24, FeatureREDUCE (T.R.R. and H.J.B., 

unpublished data), RankMotif++27, Seed-and-Wobble19 and five simple 

algorithms we implemented to provide a baseline (PWM_align, PWM_

align_E, 8mer_max, 8mer_sum and 8mer_pos), we constructed a train-

ing data set from the combination of preprocessing steps that resulted 

in the best final score for the given algorithm (Supplementary Note 3). 

Algorithms that were not subjected to the preprocessing analysis may 

work better if given the same benefit. We scored all 26 algorithms across 

the panel of 66 mouse TFs used in the challenge (see Supplementary 

Table 3 for all evaluation scores of each algorithm on each TF).

The results of our revised evaluation scheme produced rank-

ings similar to those of the DREAM5 challenge, with the algorithm 

of Team_D again performing best among the original challenge 

 participants (Table 2). Final performance was robust to the choice 

of evaluation criteria (Supplementary Fig. 1). Overall, the highest-

scoring algorithm is FeatureREDUCE, which combines a dinucleo-

tide model in a biophysical framework with a background k-mer 

model explicitly intended to capture PBM-specific biases. In general,  

k-mer– and dinucleotide-based algorithms scored highest, although 

some PWM-based algorithms produced competitive results. Overall, 

it is notable that the specific algorithm is still more important than 

the type of sequence specificity model used by the algorithm. For 

example, BEEML-PBM, a published PWM-based algorithm, receives 

a better final score than four k-mer–based algorithms. Furthermore, 

algorithms based on the same sequence-specificity model type  

Table 1 Summary of evaluated  algorithms

Name (rank) Model type Description of algorithm

Team_D (1)11 k-mers Constructs a matrix indexing the presence of contiguous k-mers (size 4–8) on each probe.  
Estimates an affinity vector by applying a conjugate gradient method, and uses it to predict  
intensities11.

Team_F (2)/Dispom41 Markov model Constructs a probabilistic classifier based on foreground and background Markov models. Weighted 
extension of the Dispom algorithm.

Team_E (3) PWM + HMMs Trains PWMs using MEME42, retrains by Expectation-Maximization using a Hidden Markov Model43, 
and combines it with a probe-specific bias using a linear model.

Team_G (4) k-mers Models probe affinities as a product of an occurrence matrix of motif sequences (contiguous or 
gapped 6-mers) and a vector of unknown motif affinities. Estimates motif affinities using a multiple 
linear model.

Team_J (5)44,45 Dinucleotides Trains binding energy linear models with nearest-neighbor dinucleotide contributions, and combines 
them with probe sequence–dependent bias under an information theory–based framework44,45.

Team_I (6) / Amadeus46 k-mers + PWM Identifies and scores 20 de novo PWM models using Amadeus46. Combines the PWM with  
maximum probe sequence contiguous 6-mer AUC scores, and performs linear regression against  
the probe intensities.

Team_C (7) PWM + k-mers + Random forests Constructs blended predictions from random forests of contiguous k-mers (length 4 through 6)  
and RankMotif++27 PWMs.

Team_H (7)10 k-mers + dinucleotides Trains support vector regression models to directly learn the mapping from probe sequences (using 
inexact matches to dinucleotide k-mers of length 10 to 15) to the measured binding intensity10.

Team_A (10) k-mers Uses top 1,000 and bottom 250 8-mers for specific binding, and nucleotide triplet background 
frequencies for nonspecific binding. Performs linear regression between these features and the 
observed binding intensities using Lasso47.

Team_K (11) k-mers Identifies informative contiguous k-mers (length 1 to 8) using feature selection (allowing mis-
matches), learns their weights using regression against the probe intensities.

Team_B (13) PWM Uses top and bottom 1,000 probes as positive and negative sets for discriminative motif discovery 
using eTFBS48. Uses PWM scores as features for constructing regression models.

BEEML-PBM24,25 PWM or dinucleotides Obtains maximum likelihood estimates of parameters to a biophysical PWM24 or dinucleotide25 
model, including the TF’s chemical potential, nonspecific binding affinity, and probe position-spe-
cific effects.

FeatureREDUCE PWM, dinucleotides and/or k-mers Combines a biophysical free energy model (PWM or dinucleotide) with a contiguous k-mer  
background model (length 4 to 8) in a robust regression framework. Throughout, we use ‘Feature-
REDUCE’ to denote the combined dinucleotide and k-mer model, FeatureREDUCE_PWM to denote 
the PWM-only model, and FeatureREDUCE_dinuc to denote the dinucleotide-only model.

MatrixREDUCE26 PWM Performs a least-squares fit to a statistical-mechanical PWM model to discover the relative 
 contributions to the free energy of binding for each nucleotide at each position26.

RankMotif++27 PWM Trains PWMs by maximizing the likelihood of a set of binding preferences under a probabilistic 
model of how sequence binding affinity translates into binary binding preference observations27.

Seed-and-Wobble19 PWM Uses the 8-mer with the highest E-score as a seed, and inspects all single-mismatch variants  
(and positions flanking the seed sequence) to identify the relative contribution of each base at  
each position to the binding specificity19.

8mer_max k-mers Calculates the median probe score of all contiguous 8-mers. Prediction is the maximum 8-mer 
score on each probe.

8mer_pos k-mers Similar to 8mer_sum, but takes into account probe position effect in a manner similar to  
BEEML-PBM.

8mer_sum k-mers Calculates the median probe score of all contiguous 8-mers. Prediction is the sum of all 8-mer 
scores on each probe.

PWM_align PWM Aligns all contiguous 8-mers with E-score > 0.45 to create a PWM.
PWM_align_E PWM Aligns all contiguous 8-mers with E-score > 0.45, weighting each sequence by its E-score, to  

create a PWM.

The type of sequence specificity model used by each algorithm is indicated, along with a brief description of the algorithm (more information about the algorithms can be found in 
Supplementary Note 9). The final rank in the original DREAM5 challenge is indicated in parenthesis after the algorithm’s name, where applicable.
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(e.g., PWM, dinucleotides or k-mers) do not necessarily produce  

similar probe intensity predictions (Supplementary Fig. 2).

Algorithm performance varied substantially across the 66 TFs 

(Fig. 2a). The quality of the underlying experimental data, as opposed 

to inherent differences between TF families, 

appears to be the major factor in the overall 

ease of predicting probe intensities for a given 

TF (Fig. 2b and Supplementary Note 4).  

For example, TFs that were harder for most 

algorithms to model tended to have lower 

correlations between the 8-mer Z-scores of 

their training and test arrays, and fewer 8-mer  

E-scores > 0.45 on their training arrays.

To further examine the relative perform-

ance of the k-mer, dinucleotide and PWM 

models, we compared the final scores pro-

duced by the single algorithm from each 

model category that performed best for 

each TF. On average, the best k-mer–based 

algorithm outperformed the best dinucleo-

tide or PWM algorithm, but this is mainly 

because of large differences in a handful of 

specific TFs (Fig. 2b,c). Algorithms based 

on dinucleotides did substantially worse on 

these harder-to-model TFs, suggesting that 

they might be overfitting to array-specific 

noise. The best PWM-based algorithm per-

forms as well as the best k-mer–based algo-

rithm for the majority of TFs (Fig. 2c), with 

a median difference of only 0.014. PWM 

algorithms, in fact, did slightly better than 

k-mer–based algorithms for 18 TFs (Fig. 2c). 

However, of the five cases in which the final 

score for the best of one model type beats the 

best of the other type by >0.10, all but one 

favor k-mer algorithms (Fig. 2c). The majority of TFs for which the 

k-mer model performed better contained C2H2 zinc-finger arrays, 

which, depending on which C2H2 fingers are engaged, may have 

different binding modes; there is previous evidence for such pheno-

mena both in vivo and in vitro7,29. However, some of these C2H2 

zinc fingers present a challenge for all sequence-specificity models, 

perhaps owing to the small number of sequences they preferentially 

bind (Fig. 2 and Supplementary Note 4).

Despite the fact that more complicated algorithms produce higher 

scores, the results of these analyses suggest that the PWM model 

can accurately capture the sequence preferences for most TFs. 

Nevertheless, we observed a wide range in PWM-based algorithm 

performance across the 66 TFs (Fig. 2a). The fact that the two highest-

scoring PWM-based algorithms, Team_E and BEEML-PBM (Table 2),  

both model PBM-specific effects suggests that their high scores  

might not be solely due to superior PWMs. We carried out a series 

of analyses aimed at isolating the predictive ability of the PWMs 

produced by all of the PWM-based algorithms. Those produced by 

BEEML-PBM were the most accurate of all of the algorithms; the high 

performance of Team_E is due to its extensive modeling of PBM back-

ground effects and not to the quality of its PWMs (Supplementary 

Note 5). We also found this to be the case for predicting in vivo TF 

binding (see below).

Analysis of dinucleotide matrices and secondary motifs

Numerous studies have called into question the accuracy of the 

assumption inherent to the PWM model that bases are independent 

and many propose the use of dinucleotide dependencies to model 

TF binding. To quantify the relative accuracies of the dinucleotide 

and PWM models, we compared the performance of two of the top 
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Figure 1 Evaluation criteria used in this study. For each TF, we scored an 
algorithm’s probe intensity predictions using two evaluation criteria, which 
are illustrated here for TF_16 (Prdm11), using the predictions of BEEML-
PBM on the raw array intensity data. (a) Pearson correlation between 
predicted and actual probe intensities across all ~40,000 probes.  
(b) AUROC of the set of positive probes. Positive probes (black lines)  
were defined as all probes on the test array with intensities >4 s.d.  
above the mean probe intensity for the given array.

Table 2 Final evaluation results

Rank Algorithm Model
Final  
score

Corr  
(probes)

AUROC-0.5 
(probes)

Corr  
(8-mers)

AUROC-0.5 
(8-mers)

1 FeatureREDUCE Hybrid 0.997 0.693 0.449 0.786 0.497

2 Team_D k-mer 0.984 0.691 0.438 0.820 0.496
3 Team_E PWM 0.952 0.696 0.406 0.761 0.447
4 Team_G k-mer 0.950 0.652 0.433 0.767 0.494
5 FeatureREDUCE_dinuc Dinuc 0.924 0.624 0.428 0.694 0.490
6 BEEML-PBM_dinuc Dinuc 0.919 0.623 0.424 0.738 0.488
7 Team_Fa Other 0.901 0.610 0.416 0.764 0.476
8 8mer_pos k-mer 0.899 0.603 0.419 0.765 0.490
9 BEEML-PBM PWM 0.898 0.607 0.415 0.722 0.479
10 8mer_sum k-mer 0.896 0.598 0.419 0.766 0.490
11 Team_Ja Other 0.895 0.611 0.410 0.740 0.465
12 FeatureREDUCE_PWM PWM 0.880 0.586 0.413 0.647 0.485
13 8mer_max k-mer 0.846 0.541 0.411 0.688 0.494
14 Team_Ia Other 0.813 0.581 0.356 0.683 0.439
15 BEEML-PBM_sec 2 PWMs 0.812 0.539 0.382 0.671 0.477
16 Team_Ca Other 0.812 0.517 0.396 0.664 0.476
17 MatrixREDUCE PWM 0.791 0.526 0.371 0.669 0.455
18 FeatureREDUCE_sec 2 PWMs 0.790 0.508 0.382 0.610 0.482
19 Team_Aa k-mer 0.789 0.533 0.365 0.671 0.414
20 Team_Ha Other 0.778 0.468 0.397 0.625 0.491
21 PWM_align PWM 0.768 0.493 0.372 0.641 0.462
22 PWM_align_E PWM 0.757 0.511 0.351 0.666 0.468
23 Team_Ka k-mer 0.702 0.461 0.333 0.561 0.430
24 Seed-and-Wobble PWM 0.647 0.324 0.372 0.303 0.460
25 RankMotif++ PWM 0.582 0.275 0.346 0.408 0.460
26 Team_Ba PWM 0.509 0.266 0.286 0.354 0.393

Algorithms are ranked by their final score, which is a combination of the evaluation criteria indicated in the columns 
labeled “Corr (probes)” and “AUROC-0.5 (probes)” (Online Methods). Original DREAM challenge participants are 
indicated with their challenge ‘Team’ IDs. The highest score obtained for each evaluation criterion is in italics. Corr, 
Pearson correlation; AUROC (−0.5), area under the receiver operating characteristic curve (after subtracting 0.5).
aAlgorithms were not subjected to data preprocessing improvement attempts either because they did not finish in the top four 
of the original DREAM challenge, are not fully automated or take greater than one CPU week to run on a single experiment.
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algorithms, FeatureREDUCE and BEEML-PBM, both of which can be 

run using either type of model. Both did better overall when using the 

dinucleotide model (Table 2), although the difference was not dra-

matic, and certain TFs benefitted more than others (Supplementary 

Table 4; median improvement of 0.019 and 0.006, respectively). In 

general, an overall improvement is not surprising because the dinu-

cleotide model has more parameters. We note that the degree of 

improvement between FeatureREDUCE and BEEML-PBM is poorly 

correlated and is negatively correlated with how well each performs 

using only a mononucleotide PWM (Supplementary Fig. 3), sug-

gesting that much of the improvement may be due to suboptimal 

mononucleotide PWMs. Of the six cases in which a dinucleotide 

model results in an improvement of >5% in the final score for both 

FeatureREDUCE and BEEML-PBM, five are among the TFs for which 

it appears to be difficult to train a PWM (Fig. 2). These observa-

tions suggest that there are relatively few cases in which there are 

bona fide dinucleotide interactions that have a major impact on  

model performance.

Secondary motifs would represent alternative binding modes for 

a TF that are also not possible to capture with a single PWM7. The 

previously claimed widespread prevalence of secondary motifs7 was 

recently contested by the finding that a single BEEML-PBM PWM 

is more predictive than two PWMs derived by Seed-and-Wobble24, 

on the same data set used to support the original claim7. To more 

directly examine the importance of secondary motifs, we identified 

secondary motifs in both the PBM data of this study and that of the 

previous study7. We discovered secondary motifs by using the residu-

als of the primary motif probe signal intensity predictions for both 

BEEML-PBM and FeatureREDUCE, used regression on the training 

data to assign weights to the two motifs and evaluated their impact 

on the overall performance of each algorithm (Online Methods). The 

performance of both BEEML-PBM and FeatureREDUCE was, in fact, 

slightly weakened using this scheme (Table 2).

Because the decreased performance might be due to probe-level 

noise drowning out the comparatively weaker secondary motif 

 signal, we evaluated the performance of the secondary motifs using 
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BEEML-PBM_sec
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FeatureREDUCE_PWM_sec
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Seed-And-Wobble
RankMotif++
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Hybrid
k-mer
PWM
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Train E > 0.45

0 1Final score
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Statistic

66 TFsLeast variance Most variance

b

c 0.3

0

Max (k-mer) – Max (PWM)

Figure 2 Comparison of algorithm performance by TF. (a) Final score of each algorithm for each TF. TF name, ID and family are depicted across the 
columns, and sequence specificity model type and name are depicted across the rows. Algorithms are sorted in decreasing order of final performance 
across all TFs. TFs are sorted in decreasing order of mean final score across all algorithms. Numbers in parentheses indicate the number of zinc fingers 
in the protein. (b) Summary statistics for each TF across all algorithms: mean final score, maximum final score achieved by any k-mer, dinucleotide or 
PWM-based algorithm, Pearson correlation of 8-mer Z-scores between replicate arrays, and the number of 8-mers with E-scores > 0.45 on the training 
array (normalized by the maximum such value across all TFs). (c) Difference between the best score achieved by any k-mer–based algorithm and the 
best score achieved by any PWM-based algorithm for each TF.
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8-mer scores, using the newer 8-mer scoring 

procedure24 (Online Methods). Under this 

scoring scheme, secondary motifs provided 

a slight increase in overall performance (2–8% improvement in aver-

age correlation) (Supplementary Table 5). However, examination 

of secondary motif performance for each TF revealed that second-

ary motifs substantially increase performance only in specific cases 

(Supplementary Table 6). Moreover, as in the case of dinucleotide-

based models, the degree of improvement in FeatureREDUCE and 

BEEML-PBM is poorly correlated, and again correlates negatively 

with how well each algorithm scores using only a mononucleotide 

PWM (Supplementary Fig. 3). Manual inspection of these examples 

revealed that improvement can typically be attributed to either the 

identification of a minor variation on the primary motif, a ‘second 

chance’ after producing an inaccurate motif on the first attempt, or by 

the identification of the second half-site for a TF that can bind DNA 

as a homodimer (Supplementary Note 6). We did identify several 

instances of what appear to be alternative binding modes, includ-

ing three examples capturing the classic TAATA and ATGCWWW 

sequences of Pou+Homeodomain TFs, and extensions of primary 

motifs (e.g., extending the consensus sequence of Nr5a2 from 

AAGGTCA to TCAAGGTCA), indicating that our methodology can 

detect bona fide cases of secondary motifs (Supplementary Note 6). 

Nonetheless, it appears as if the major benefit of secondary motifs is 

to make up for shortcomings in the initial motif-finding process.

In vitro–derived PWMs accurately reflect in vivo binding

We next asked whether conclusions reached using in vitro data also apply 

to TF binding in vivo. The sequence specificity of a TF is only one of sev-

eral factors that determine where it binds in vivo (others include cofac-

tors and DNA accessibility); nonetheless, motifs consistent with those 

obtained in vitro can often be derived directly from in vivo data7,30,31, 

indicating that the intrinsic sequence specificity of TFs is a major factor 

in controlling their DNA binding in vivo. We obtained publicly available 

ChIP-seq data for five of the mouse TFs whose DNA sequence prefer-

ences were measured using PBMs in this study, and ChIP-exo data from 

four yeast TFs whose preferences have been measured using PBMs in 

other studies. We then trained models on the PBM data using each 

algorithm and gauged their ability to accurately distinguish sequences 

bound by ChIP-seq and ChIP-exo peaks from control sequences. We also 

trained PWMs on the same in vivo data by running ChIPMunk32 and 

MEME-Chip33, methods that have been specifically tailored for motif 

discovery from ChIP-seq data, in a cross-validation setting. We evalu-

ated each algorithm with AUROCs, which here measure the ability of a 

given algorithm to assign higher scores to positive (bound) sequences 

relative to control (random) sequences (Online Methods).

All PWM-based algorithms could discriminate ChIP-seq and ChIP-

exo peaks from control sequences to some degree, as evidenced by the fact 

that the average AUROC scores of all algorithms exceeded the random 

expectation of 0.5 (Fig. 3). Conversely, the algorithms that performed 

best in our in vitro evaluations (FeatureREDUCE and Team_D, which 

both incorporate k-mer sequence specificity models) perform poorly 

(Team_D) or substantially worse (FeatureREDUCE) in nearly all cases 

analyzed (as does the simple 8mer_sum algorithm; Fig. 3). Likewise, 

the dinucleotide versions of BEEML-PBM and FeatureREDUCE do 

not improve upon their PWM-based counterparts. The performance 

of the k-mer and dinucleotide-based in vitro-trained models on in vivo 

data could be due to a combination of modeling probe-specific effects 

such as GC content and complications arising from biases in genomic 

nucleotide content relative to PBM probe sequences. Indeed, the 8mer_

sum_high algorithm, which incorporates only 8-mers with Z-scores >3 

(a cutoff that likely excludes PBM-specific background noise), performs 

substantially better than the 8mer_sum algorithm, which incorporates 

scores across the entire range of k-mer values (Fig. 3).

Overall, PWMs produced by the FeatureREDUCE_PWM algorithm 

perform best on in vivo data (Fig. 3). Notably, FeatureREDUCE_PWM 

performs similarly to ChIPMunk, and out-performs the MEME-Chip 

algorithm, despite the fact that the latter algorithms trained their 

PWMs on the ChIP-seq data, and should thus incorporate features 

unique to in vivo data, such as nucleotide bias. All of our conclu-

sions were robust to a variety of positive and negative sequence set-

tings (Supplementary Table 7). Thus, at least for the nine TFs we 

examined here, in vitro–derived PWMs are in general better than 

in vitro–derived k-mer and dinucleotide models, and similar to  

in vivo–derived PWMs, in terms of predicting bound versus unbound 

ChIP-seq and ChIP-exo sequences.

Accurate prediction of data from alternative in vitro assays

Finally, we examined how well PBM-derived motifs, with or without 

dinucleotides, secondary motifs or k-mers, could predict data for 

24 TFs that have been assayed using the MITOMI9,16 or HiTS-FLIP  

technologies8, all of which also have PBM data available from other 

studies7,31,34. We trained the best-performing FeatureREDUCE algo-

rithm on the PBM data in each of its possible settings: PWM only,  

2 PWMs (secondary motifs), dinucleotides and dinucleotides+k-mers.  

We then compared the ability of each model to predict the values 

produced by the other technology.

The inclusion of features beyond mononucleotide PWMs had lim-

ited impact on the majority of these 24 TFs (Supplementary Note 7). 

Figure 3 Comparison of algorithm performance  
on in vivo data. For each algorithm, we trained  
a model (PWM, 2 PWMs, k-mer or dinucleotide) 
using PBM data, and gauged its ability to 
discriminate real from random ChIP peaks using 
the AUROC (Online Methods). Data for the first 
five TFs were taken from mouse ChIP-seq data. 
The final four are from yeast ChIP-exo data. The 
color scale is indicated at the bottom. Team_E was 
not run on the ChIP-exo data, because it requires 
initialization parameters specific to the individual 
TF. FeatureREDUCE was run using models of 
length 8, instead of length 10, owing to the 
superior performance of this length model on  
in vivo data (T.R.R. and H.J.B., unpublished data).

Algorithm Mean Esrrb Gata4 Tbx20 Tbx5 Zfx Gal4 Phd1 Rap1 Reb1

ChIPmunk 0.741 0.718 0.655 0.809 0.776 0.780 0.523 0.792 0.841 0.780

FeatureREDUCE_PWM 0.725 0.684 0.726 0.631 0.679 0.753 0.785 0.723 0.770 0.780

FeatureREDUCE_dinuc 0.721 0.685 0.729 0.624 0.679 0.761 0.794 0.731 0.714 0.780

BEEML-PBM 0.703 0.688 0.726 0.663 0.699 0.798 0.761 0.732 0.849 0.416

PWM_align_E 0.703 0.695 0.700 0.620 0.483 0.765 0.842 0.669 0.785 0.770

PWM_align 0.695 0.698 0.702 0.618 0.473 0.763 0.769 0.680 0.788 0.770

Seed-And-Wobble 0.693 0.675 0.633 0.609 0.558 0.729 0.749 0.712 0.804 0.774

FeatureREDUCE 0.681 0.625 0.725 0.529 0.683 0.805 0.781 0.727 0.703 0.558

MEME-ChIP 0.679 0.694 0.692 0.791 0.595 0.455 0.596 0.672 0.831 0.791

BEEML-PBM_sec 0.678 0.703 0.736 0.661 0.675 0.793 0.761 0.552 0.726 0.495

Team_E 0.663 0.577 0.714 0.636 0.599 0.789 N/A N/A N/A N/A

FeatureREDUCE_sec 0.653 0.699 0.637 0.627 0.582 0.704 0.733 0.720 0.611 0.564

8mer_sum_hi 0.637 0.633 0.717 0.527 0.533 0.755 0.721 0.607 0.594 0.651

RankMotif++ 0.630 0.511 0.666 0.609 0.423 0.669 0.749 0.733 0.680 0.633

MatrixREDUCE 0.628 0.347 0.659 0.568 0.572 0.791 0.759 0.730 0.454 0.775

BEEML-PBM_dinuc 0.610 0.677 0.744 0.573 0.716 0.803 0.382 0.731 0.411 0.453

Team_D 0.598 0.580 0.670 0.468 0.470 0.721 0.623 0.658 0.614 0.580

8mer_sum 0.567 0.496 0.603 0.415 0.425 0.717 0.631 0.675 0.572 0.575

< 0.50 0.85AUROC
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We note, however, that we detected specific examples where more com-

plicated models provided an increase in performance across platforms 

(Supplementary Note 7). For example, k-mers and secondary motifs 

both improve cross-platform performance for Cbf1. This finding con-

firms that PBMs are capable of detecting cases where more complicated 

binding modes exist, and that these models are capable of improving 

predictive performance on other data sources. Taken together, these 

results are consistent with our findings that PWMs work well for most 

TFs, although certain TFs require more complicated models.

DISCUSSION

We have come to several major conclusions on the basis of this study, 

which have broad implications for the representation of sequence spe-

cificity of DNA-binding proteins. We note that the exact conclusions 

reached depend on both the TFs used for evaluation and the evalu-

ation criteria, a fact that likely accounts for the ongoing controversy 

in this area. However, our general conclusions are robust to changes 

in the evaluation procedure. In addition, our conclusion that well-

implemented PWMs can perform as effectively as more complicated 

models in most cases is supported by cross-technology analysis of  

in vitro data and by analysis of in vivo data.

Our first major conclusion is that, when testing on PBM data,  

k-mer–based models score best overall. Other approaches do nearly 

as well, however, and details of implementation, such as parameter 

estimation techniques, can be as important to the performance of 

an algorithm as the underlying model. Indeed, the algorithms that 

produce the most predictive PWMs, FeatureREDUCE_PWM and 

BEEML-PBM, which both train PWMs in an energy-based frame-

work (Supplementary Note 8), perform similarly to more compli-

cated models for the majority of TFs, supporting the contention that 

imperfections in motif derivation (and scoring) underlie most of the 

apparent superiority of k-mer scoring that we previously reported7,24. 

PWMs consistently fared poorly in ~10% of the TFs, relative to  

k-mer–based sequence specificity models; however, many of these 

cases are characterized by having few high-scoring 8-mers (Fig. 2b 

and Supplementary Note 4). Thus, the scarcity of the data itself may 

limit the ability of algorithms to train a PWM. Modification of the 

algorithms may help improve these cases.

The fact that incorporation of dinucleotide interactions improves 

the performance of both BEEML-PBM and FeatureREDUCE, but for 

different sets of TFs, suggests that the need for these extensions to 

mononucleotide PWM is driven more by the algorithm than by a 

Box 1 Appearance and information content of a motif may not reflect its accuracy 

Sequence logos39,40 provide a simple, intuitive 

means for conveying information about a TF’s 

binding preferences. However, several aspects 

of their interpretation can be misleading. To 

 illustrate, logos produced by the eight PWM-

based algorithms evaluated here are depicted 

for TF_6, the C2H2 zinc finger TF Klf9 (Fig. 4). 

At a glance, the PWMs produced by Seed-and-

Wobble and the PWM_align algorithms might be 

interpreted as being superior to the others, given 

their high information content. However, based 

on our evaluations, these PWMs are in fact too 

stringent, and place too much emphasis on the 

consensus sequence of this TF (compare the 

final scores of each algorithm). Rather, the lower 

information motif produced by BEEML-PBM is a 

better predictor of Klf9’s sequence preferences. 

In general, this observation holds for almost all 

TFs analyzed here—the Seed-and-Wobble and the 

PWM_align algorithms tend to produce PWMs that 

are ‘too stringent’ and too long, and energy-based 

algorithms such as BEEML-PBM produce motifs 

that represent the correct degree of degeneracy 

and length (see Supplementary Fig. 4 for logos 

and Fig. 2 for evaluations).

Similarly, different interpretations might be 

made about a TF’s sequence preferences based 

on which visualization method is used to depict a 

PWM. For example, the importance of the initial 

T nucleotide in the TAACGG consensus sequence 

in the motifs of BEEML-PBM might be consid-

ered negligible upon viewing of the information 

content–based logo, whereas this nucleotide would likely be considered highly important based on the frequency logo. Indeed, the information specified at this 

position does play a large role in the overall effectiveness of the motif. When ignoring the frequencies specified at this position (that is, setting all four nucleotide 

frequencies to 0.25), the correlation between BEEML-PBM’s predicted and actual probe signal intensities drops from 0.58 to 0.38. Furthermore, the sequence 

logos for BEEML-PBM, MatrixREDUCE, FeatureREDUCE and Team_E appear nearly indistinguishable based on the sequence logos, despite their drastically differ-

ing final evaluation scores. In summary, we find that the appearance of sequence logos has little bearing on their predictive accuracy.

Figure 4 Characteristics of Klf9 motifs produced by the eight PWM-based algorithms evaluated 
in this study. The algorithms are ranked top to bottom in order of the overall score of their PWM 
for this TF in our evaluation scheme. Two popular visualization methods of the PWMs produced 
by each algorithm are depicted. On the left are traditional sequence logos39,40, which display the 
information content of each nucleotide at each position; the total information content (I.C.) of the 
PWM is given to the left of this logo. On the right are frequency logos, in which the height of each 
nucleotide corresponds to its frequency of occurrence at the given position40.
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property of the TF. Dinucleotide interactions clearly do exist25 and 

were highlighted in previous analyses using MITOMI9, HiTS-FLIP8 

and PBM19 data. However, these studies did not specifically ask how 

much of the overall variation in the data (e.g., using Pearson correla-

tion) is accounted for by mononucleotide versus dinucleotide PWMs. 

We also note that more complex models can be more prone to learn-

ing platform-specific noise. At present it is not clear what the best 

approach is for different platforms; resolving the source and relative 

contribution of complexities in DNA-binding data would benefit from 

analysis of the same TFs on multiple high-resolution platforms.

One striking outcome of our study is that the appearance and 

information content of a motif has little bearing on its accuracy. The 

motifs produced by BEEML-PBM and FeatureREDUCE_PWM—two 

of the highest-scoring PWM algorithms—are, in general, those with 

the lowest information content (Box 1, Fig. 4 and Supplementary 

Fig. 4). Conversely, PWMs produced by Seed-and-Wobble and 

PWM_align appear to be the strongest (that is, they are wider and 

have larger letters in the traditional ‘information content’ sequence 

logos), but they score substantially lower than those of BEEML-PBM 

and FeatureREDUCE_PWM, on both PBM and ChIP-seq data. We 

conclude from this analysis that information content has little to do 

with the accuracy and utility of a motif, underscoring the fact that 

degeneracy is common among eukaryotic TF sequence specificities, 

and that most TFs will bind to many variations of their ‘consensus 

sequence’, albeit at lower affinity. Indeed, previous studies have dem-

onstrated the importance of low affinity binding sites in vivo35–38. 

PWMs that allow for a greater amount of degeneracy (and hence have 

lower information content) are able to better capture the full range 

of lower affinity sites.

The finding that different algorithms excel (and fail) for different 

TFs suggests that an algorithm incorporating all of their advantages 

will likely outperform any individual one. To aid in the continued 

improvement of algorithms for the modeling of TF binding specifi-

cities, we have created a web server that allows users to upload their 

own probe intensity predictions, and compare them to those of the 

algorithms evaluated here (http://www.ebi.ac.uk/saezrodriguez-srv/

d5c2/cgi-bin/TF_web.pl). We anticipate that the availability of this 

resource will help encourage future improvements to algorithms for 

the modeling and prediction of TF binding specificities.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Data availability. PBM data, GEO: GSE42864. The data are also  

available on the project website (http://hugheslab.ccbr.utoronto.ca/

supplementary-data/DREAM5/). PWMs and algorithm source code 

are found in Supplementary Data 1 and 2.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Protein binding microarray experiments. Details of the design and use of 

PBMs have been described elsewhere19,28,49,50. Here, we used two different 

universal PBM array designs, designated ‘ME’ and ‘HK’, after the initials 

of their designers. Information about individual plasmids is available in 

Supplementary Table 8. We identified the DNA binding domain (DBD) of 

each TF by searching for Pfam domains51 using the HMMER tool52. DBD 

sequences along with 50 amino acid residues on either side of the DBD in the 

native protein were cloned as SacI–BamHI fragments into pTH5325, a modi-

fied T7-driven glutathione S-transferase (GST) expression vector. Briefly, we 

used 150 ng of plasmid DNA in a 15 µl in vitro transcription and/or translation 

reaction using a PURExpress In Vitro Protein Synthesis Kit (New England 

BioLabs) supplemented with RNase inhibitor and 50 µM zinc acetate. After 

a 2-h incubation at 37 °C, 12.5 ml of the mix was added to 137.5 ml of  

protein-binding solution for a final mix of PBS/2% skim milk/0.2 mg per ml 

BSA/50 µM zinc acetate/0.1% Tween-20. This mixture was added to an array 

previously blocked with PBS/2% skim milk and washed once with PBS/0.1% 

Tween-20 and once with PBS/0.01% Triton-X 100. After a 1-h incubation 

at room temperature, the array was washed once with PBS/0.5% Tween-20/ 

50 mM zinc acetate and once with PBS/0.01% Triton-X 100/50 mM zinc 

acetate. Cy5-labeled anti-GST antibody was added, diluted in PBS/2% skim 

milk/50 mM zinc acetate. After a 1-h incubation at room temperature, the 

array was washed three times with PBS/0.05% Tween-20/50 mM zinc acetate 

and once with PBS/50 mM zinc acetate. The array was then imaged using an 

Agilent microarray scanner at 2 µm resolution. Images were scanned at two 

power settings: 100% photomultiplier tube (PMT) voltage (high), and 10% 

PMT (low). The two resulting grid images were then manually examined, 

and the scan with the fewest number of saturated spots was used. Image spot 

intensities were quantified using ImaGene software (BioDiscovery).

Prediction of array intensities. We evaluated a panel of 26 algorithms, based 

on their ability to accurately predict array intensities (Table 1). Parameters 

used for the published and novel algorithms and full descriptions of the 

algorithms submitted as part of the DREAM5 challenge can be found in 

Supplementary Note 9.

Evaluation criteria. We evaluated the probe intensity predictions produced by 

each algorithm for each TF using two evaluation criteria (see Fig. 1 for illus-

trations, and below for descriptions). Before performing our evaluations, we 

removed all spots manually flagged as bad or suspect from the set of test probe 

intensities used in the evaluations. Each of the 66 experiments was scored indi-

vidually using each criterion. The final score for both criteria was calculated as 

the average across all 66 experiments. To assign a final score to each algorithm, 

the score distributions of both of the criteria were first converted to relative 

scores, such that the best-performing algorithm for the given criterion received 

a score of 1, and the scores of all other algorithms were relative to this best 

score (e.g., 0.90 as good as the top score, 0.80 as good). The final score for each 

algorithm was then calculated as the average of its two relative score, and can 

hence be interpreted as how well the algorithm performed relative to the best 

algorithm, on average. A similar calculation was done to achieve the final scores 

of the individual TFs depicted in Figure 2. In this case, the calculations were 

carried out as described above, but individually for each of the 66 experiments 

(that is, skipping the step of averaging across all 66 experiments).

Pearson correlation of probe intensities. We measured the correlation 

between the predicted probe intensities p and the actual intensities a using 

the (centered) Pearson correlation, r:

r p a

p p a a
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where N is the total number of probe sequences on the array, p  indicates the 

mean probe intensity across all predicted probe intensities, and a  indicates 

the mean across all actual probe intensities. We chose not to use the Spearman 

correlation because its rank transformation results in a loss of resolution in 

the high probe intensity range, placing greater emphasis on the (majority of) 

unbound, low intensity probes.

AUROC of probe intensity predictions. As a second measure of an algorithm’s 

accuracy, we quantified the ability of the given algorithm to assign high ranks 

to bright probes. We defined bright probes as those whose intensities were 4 

standard deviations above the mean in the actual experiment27. This results in 

an average of 350 bright probes per experiment, with an enforced minimum of 

50, and a maximum of 1,300. For each algorithm’s predictions for each TF, we 

ranked the ~40,000 probes based on their predicted intensities and calculated 

the AUROC of the actual bright probes. We subtracted 0.50 from the final 

AUROC score, so that a value of 0 corresponds to random expectation.

Identification and evaluation of secondary motifs. We identified pri-

mary and secondary PWMs for each TF in this paper and a set of previously  

published TFs7 using two of the top algorithms (FeatureREDUCE and  

BEEML-PBM), and used a combination of both PWMs to predict probe  

intensities using the following procedure:

1.  Run the algorithm to train a single PFM, PFM1, on the training array 

data.

2.  Use PFM1 to predict the probe intensities of the training array (intensities1).

3.  Regress the values of intensities1 against the actual training array intensities.

4.  Calculate the residuals by subtracting the regressed intensities from the 

actual training array intensities. Set any resulting negative values to 0.

5.  Run the algorithm to train a single PFM, PFM2, on the residuals.

6.  Use PFM2 to predict the probe sequences of the training array (intensities2).

7.  Regress the two sets of probe scores (intensities1 and intensities2) against 

the training probe intensities to learn the weights of the two PFMs.

8.  Use PFM1 to predict the probe intensities of the test array.

9.  Use PFM2 to predict the probe intensities of the test array.

10.  Combine the two sets of predicted probe intensities using the regression 

coe�cients learned on the training array in step 7.

We found that the resulting secondary motif probe intensity predictions 

decreased performance for both algorithms in our evaluation scheme (Table 2). 

We therefore tried an alternative scheme24 where we converted the training 

intensities and probe intensity predictions of PFM1 and PFM2 to 8-mers (using 

the median probe intensity), and then learned the weights of the two PWMs by 

performing regression on these 8-mer values. The resulting weights were then 

used to combine the predicted 8-mer scores of PWM1 and PWM2 on the test 

data. Using this strategy, we observed a minor increase in overall performance 

for both algorithms on both data sets (Supplementary Table 6).

Comparison of algorithm performance on in vivo data. We gauged the 

ability of each algorithm to predict in vivo TF binding by comparing the 

ability of their models to accurately predict ChIP-seq and ChIP-exo bind-

ing data. We searched for publicly available ChIP-seq data measuring the 

in vivo binding of any of the 66 mouse TFs evaluated here using a variety of 

sources, including the hmCHIP database53, ArrayExpress54 and the NCBI 

Gene Expression Omnibus55. Some data was unusable because scores were 

not assigned to individual peak calls. In total, we obtained data for five TFs: 

Esrrb (GEO accession GSM288355), Zfx (GEO accession GSM288352), 

Tbx20 (GEO accession GSM734426), Tbx5 (GEO accession GSM558908) and 

Gata4 (GEO accession GSM558904). We also obtained four yeast ChIP-exo  

experiments from the literature29.

For each in vivo data set, we defined a set of positive (bound) sequences 

and negative (control) sequences. Positive sequences were defined for ChIP-

seq data as the 500 highest-confidence peaks, using only the middle 100 bases 

of each peak (similar results were obtained when using the middle 50 bases; 

Supplementary Table 7). Full-length sequence reads were used for ChIP-exo 

data. Random sequences were defined in one of three ways: (i) 500 randomly 

chosen genomic regions of the same length as the positive sequences, exclud-

ing all repeat sequences using RepeatMasker; (ii) 500 sequences of length 100 

(or 50) randomly chosen from promoter sequences, where promoters were 

n
p
g

©
 2

0
1

3
 N

a
tu

re
 A

m
e

ri
c

a
, 

In
c

. 
A

ll
 r

ig
h

ts
 r

e
s

e
rv

e
d

.

http://www.ncbi.nlm.nih.gov/gds/?term=GSM288355
http://www.ncbi.nlm.nih.gov/gds?term=GSM288352
http://www.ncbi.nlm.nih.gov/gds?term=GSM734426
http://www.ncbi.nlm.nih.gov/gds?term=GSM558908
http://www.ncbi.nlm.nih.gov/gds?term=GSM558904


NATURE BIOTECHNOLOGY doi:10.1038/nbt.2486

defined as the 5,000 base upstream regions upstream of the transcription 

start site of Ref-seq genes, excluding all sequences flagged by RepeatMasker 

(obtained from the UCSC Genome Browser56); (iii) 500 randomly shuffled 

positive sequences, where dinucleotide frequencies were maintained.

We assessed the PWMs produced by each algorithm by scoring the posi-

tive and negative sequences, and calculating the AUROC of the sequence 

scores using the positive and negative probe labels. Positive and negative ChIP 

sequences were scored using the energy scoring framework of BEEML-PBM 

(setting mu to 0, and ignoring strand-specific biases). The final score for each 

algorithm on each TF was calculated as the mean AUROC across the three 

negative peaks sets. We also scored the probe sequences using the k-mer–based 

algorithms of Team_D, 8mer_sum, and FeatureREDUCE, and the dinucleotide 

algorithms of BEEML-PBM_dinuc and FeatureREDUCE_dinuc. We examined 

the performance of BEEML-PBM and FeatureREDUCE secondary motifs on the 

in vivo data using the PWMs and PWM weights learned from the in vitro data, 

as described above. To compare the in vitro generated motifs to in vivo-derived 

ones, we also used PWMs derived by ChIPMunk32 and MEME-Chip33 when run 

on the same in vivo data in a cross-validation setting. For these analyses, half of 

the positive probes were randomly chosen for training, and the other half were 

used for testing. This procedure was applied ten times, and the final numbers 

reported are the average evaluation scores across all ten iterations.

49. Philippakis, A.A., Qureshi, A.M., Berger, M.F. & Bulyk, M.L. Design of compact, 
universal DNA microarrays for protein binding microarray experiments. J. Comput. 

Biol. 15, 655–665 (2008).
50. Lam, K.N., van Bakel, H., Cote, A.G., van der Ven, A. & Hughes, T.R. Sequence 

specificity is obtained from the majority of modular C2H2 zinc-finger arrays. Nucleic 

Acids Res. 39, 4680–4690 (2011).
51. Finn, R.D. et al. The Pfam protein families database. Nucleic Acids Res. 38, 

D211–D222 (2010).
52. Eddy, S.R. A new generation of homology search tools based on probabilistic 

inference. Genome Inform. 23, 205–211 (2009).
53. Chen, L., Wu, G. & Ji, H. hmChIP: a database and web server for exploring publicly 

available human and mouse ChIP-seq and ChIP-chip data. Bioinformatics 27, 
1447–1448 (2011).

54. Parkinson, H. et al. ArrayExpress update–an archive of microarray and high-
throughput sequencing-based functional genomics experiments. Nucleic Acids Res. 
39, D1002–D1004 (2011).
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on. Nucleic Acids Res. 39, D1005–D1010 (2011).
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