
Summary There are several applications of combined phen-
ological time series; e.g., trend analysis with long continuous
time series, obtaining a compound and representative time se-
ries around weather stations for model fitting, data gap filling
and outlier detection. Various methods to combine phenologi-
cal time series have been proposed. We show that all of these
methods can be analyzed within the theory of linear models.
This has the advantage that the underlying assumptions for
each model become transparent providing a theoretical basis
for selecting a model for a particular situation. Moreover, the
common theoretical background provides a means of compar-
ing methods by Monte-Carlo simulation and with real data.
Additionally, we explored the influences of two outlier detec-
tion methods. We show that the error called the month-mis-
take, whose origin is known and which is one of the few mis-
takes that can be detected in phenological data because of its
large deviation, is best detected by the distribution-free 30-day
residual rule in combination with a robust estimation proce-
dure based on the minimization of the sum of absolute residu-
als (L1-norm).

Keywords: linear model, month-mistake, robust estimation.

Introduction

Climate change studies have resulted in increased interest in
phenological research in recent years. Evidence that the length
of the vegetation period has increased in northern latitudes in
recent decades (Keeling et al. 1996, Myneni et al. 1997) has
prompted research on the effects of climate change and change
in growing season length on growth and functioning of eco-
systems. The timing of phenological phases is an important
factor in analyses of changes in net primary production of trees
in response to interannual variation and long-term changes in
climate (Goulden et al. 1996, Kramer et al. 1996, 2000, Chen
et al. 1999, White et al. 1999).

Fragmentary phenological information is often available at
several observational stations and can be combined to provide
a continuous time series when single observation series over-
lap. Besides having the effect of gap filling, a merged continu-
ous time series also reduces the weight of exceptionally early
or late observations by the averaging process, thereby increas-

ing its reliability compared with single time series. A com-
bined time series can also be used to find outliers in individual
time series (Linkosalo et al. 1996, 2000). Methods for combin-
ing phenological time series have been applied in several
phenological studies (Häkkinen et al. 1995, Linkosalo et al.
1996, Linkosalo 2000).

Häkkinen et al. (1995) proposed four methods to combine
phenological time series, but did not rank the methods because
they provided no comparable measure of performance. The
objective of our study was to answer the following three ques-
tions. (1) Are there theoretical reasons for selecting a certain
method of combining fragmentary phenological data into one
continuous time series in order to increase the reliability of the
phenological information for subsequent analysis? (2) Is there
a particular technique that produces the most reliable esti-
mates of the parameters of the combined phenological time se-
ries? (3) What is the influence of different outlier detection
methods on the combined time series and what is an adequate
way to detect and treat outliers?

The answer to the first question was sought by embedding
the four methods proposed by Häkkinen et al. (1995) in a com-
mon theoretical framework to elucidate the underlying statisti-
cal assumptions of each method. The second and third ques-
tions were examined by applying several estimation tech-
niques and two outlier detection methods in a Monte-Carlo
simulation and to real data.

Methods

A common theoretical background

Häkkinen et al. (1995) proposed four methods of combining
phenological time series, hereafter referred to as Methods 1, 2,
3 and 4. We start by analyzing Method 3, which was the
method used by Linkosalo et al. (1996, 2000).

The combined time series, yi i = 1,…,M, of Method 3 is de-
fined as (Häkkinen et al. 1995):
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where yi can be interpreted as yearly means of the observations
xij of year i at station j, adjusted by bj, ni ≤ N is the number of
observations, i.e., stations with observations, in year i and N is
the total number of stations considered. Some xij are undefined
because no observations were made in year i at station j. The
value of bj is found by an iterative optimization algorithm that
minimizes the sum of squared residuals:

S x b yij j i
ji

2
2= − −∑∑ ( ) , (2)

where S2 is the sum of squared residuals.
Defining nij as 1 if xij exists, and 0 otherwise, we can rede-

fine Equations 1 and 2 as:
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The minimum of S2 is found by differentiating S2 with re-
spect to bj and yi and setting the resulting derivatives equal to
zero. This results in Equation 3 and:
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Inserting Equation 3 into Equation 5 and imposing
bji j

N =
=∑ 0 to obtain a unique solution, we can rearrange to

obtain linear equations for bj:
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Thus, the solution of Equation 4 with respect to b =
(b1,…,bN) is Equation 3 and b = C –1r, where C is a regular ma-
trix with the set of elements {cjk} and r is a vector with the set
of elements {rj} for j,k = 1,…,N with:
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It can be shown (Searle 1971, Rencher 2000) that the same
solutions of Equations 3 and 7 are obtained when we formulate
the problem of finding yi and bj in Equation 4 as a linear model
of a two-way crossed classification with fixed effects:

x m a b eij i j ij= + + + , (8)

setting yi = m + ai and applying the method of least squares to
estimate the parameters, where m is a general mean, ai is the
effect of year i, i = 1,…,M (hereafter called year effect) and bj

is the effect of station j, j = 1,…,N (hereafter called station ef-
fect). The eij are independent identically distributed random
errors with assumed expectancy E(eij) = 0 and common vari-
ance σ e

2. To find a well-defined solution m is set to zero and it
is assumed that bji

N =
=∑ 0

1
.

Thus mathematically equivalent solutions are obtained
when the problem of finding a combined phenological time se-
ries is formulated as in Equations 1 and 2 or as a two-way
crossed linear model with fixed effects (Equation 8).

Häkkinen et al. (1995) defined the combined time series ac-
cording to Method 1 as y xi i= •, i.e., simply taking the mean
observation each year. We obtain this solution when we define
our linear model as:

x m a eij i ij= + + , (9)

i.e., a one-way linear model with fixed effects, and set yi = m +
ai. The eij are independent identically distributed random er-
rors with assumed expectancy E(eij) = 0 and common variance
σ e

2. To find a well-defined solution m is set to zero.
The combined times series according to Method 2 of Häk-

kinen et al. (1995) can also be defined within the framework of
linear models. But it is not considered here because it requires
a long reference time series that is only rarely available.

Method 4 proposed by Häkkinen et al. (1995) formulates
Equation 8 as a two-way crossed linear mixed model of ran-
domized block design:

x m a b eij i j ij= + + + , (10)

where bj is the random block (station) effect, m is a constant
and ai is the fixed (year) effect. The random terms bj and eij are,
by assumption, independent identically distributed with an ex-
pected zero mean. Moreover bj is assumed to have the com-
mon variance σ s

2 and eij has the common variance σ e
2. The

combined time series is defined as yi = m + ai.

Parameter estimation

The error variance σ e
2 is an important measure of both the reli-

ability of the underlying data and the resulting combined time
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series because its magnitude is closely related to the range of
confidence intervals for the estimated parameters that were
also used by Häkkinen et al. (1995) and Linksalo et al. (1996)
to estimate reliability.

Parameters m, ai and bj and variance components σ s
2 and σ e

2

for the mixed model (Equation 10) can be estimated by various
procedures that yield different results when data are missing,
i.e., the data are unbalanced, and they also have different sta-
tistical properties (Searle 1987, Milliken and Johnson 1992).
We explored the differences resulting from use of the Re-
stricted Maximum Likelihood (REML) (Patterson and
Thompson 1971, Corbeil and Searle 1976), Maximum Likeli-
hood (ML) (Hartely and Rao 1967, Hemmerle and Hartley
1973), Minimum Variance Quadratic Unbiased Estimation
(MIVQUE0) (Hartley et al. 1978, Searle 1987) and TYPE I or
Henderson III (T1) (Searle 1971, Milliken and Johnson 1992)
techniques. The REML, ML and MIVQUE0 estimates were
computed with modules available in the SAS procedure
MIXED (SAS Software Release 6.12, Cary, NC). TYPE I was
implemented following Thompson (1969) and Searle (1971)
and the multiple linear least square regression (LS) for the
fixed effect models (Equations 8 and 9) were calculated with
the SAS procedure REG (SAS Software Release 6.12).

Robust estimation

The estimation techniques for linear models all use squared re-
siduals to estimate the parameters and variance components.
These techniques are susceptible to outliers (Dodge 1987,
Rousseeuw and Leroy 1987, Barnett and Lewis 1996, Hubert
1997, Hubert and Rousseeuw 1997) because they emphasize
extreme values. A variety of robust estimators have been pro-
posed to identify and accommodate such outliers (Rousseeuw
and Leroy 1987, Barnett and Lewis 1996). Hubert (1997)
showed that, in the case of binary (dummy) regression vari-
ables, the L1 regression, based on minimizing the sum of abso-
lute residuals (residuals in the L1-norm) S eijij1 = ∑ rather
than squared residuals as S2 in Equation 2, has an optimal
breakdown value, although it is not robust in the presence of
leverage points, i.e., outliers in the regressors (Hubert and
Rousseeuw 1997). In linear models of designed experiments,
however, leverage points do not occur because the regressors
are not measured values but dummy regression variables that
are prescribed by the design of the model. To detect outliers by
robust regression, L1 estimation of the linear model parame-
ters was conducted using the algorithm of Barrodale and Rob-
erts (1973, 1974). The L1 estimation was applied to the sum of
absolute residuals of the two-way linear model with fixed ef-
fects (Equation 8). Calculation of the error variance compo-
nent σ e

2 of the L1 estimation was made with the estimator pro-
posed by McKean and Schrader (1987a, 1987b), where:
σ e n k kn e e z= −− +(~ ~ )/( )( ) ( )1 2 and k n z n= + −( ) / /1 2 4.
Here n is the number of non-zero residuals, ~ei, i = 1,..,n is the
ordered set of non-zero residuals and z is an upper tailed stan-
dard normal critical value, here z = 1.96 after McKean and
Schrader (1987a, 1987b).

Outlier detection

Biological variability of individual plants, differences in mi-
croclimate and observational and protocol errors add to the
natural variability of phenological data that typically amounts
to about 1 to 2 weeks (Baumgartner 1952, Schnelle 1955). One
mistake that can be detected despite the natural variability of
phenological data is the month-mistake (MM) because of its
strong deviation. An MM is a protocol error that occurs when
the observation date is noted in a wrong column or the ob-
server uses the wrong column when transforming the actual
date to the Julian date (day of year) using a conversion table or
when transcribing the phenological information to a database
(Schnelle 1955, Menzel 1997, Vasella 1997). Such events re-
sult in an observation date that is one or several months too
early or too late. Most other mistakes are difficult to detect
without having access to the original observation reports or
knowledge about the customs of the observers because they
vary within the natural variability of phenological observa-
tions. Based on the above considerations and the fact that the
most straightforward method of detecting outliers in linear
models is by considering residuals (Barnett and Lewis 1996),
observations were considered as outliers if the estimated resid-
uals of the linear models were larger than or equal to 30 days,
i.e. where eij ≥ 30. This method of detecting outliers is hereaf-
ter called the 30-day rule.

The 30-day rule was compared with the method proposed
by Dixon (1950) and modified by King (1953). An extreme
value of the ordered observations (x(i,1),…,x(i,n)) of year i ad-
justed for the station effects bj is considered an outlier when its
test statistic Ti exceeds a critical value, where:
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Only critical values for the 1 and 5% significance levels
were considered (Barnett and Lewis 1996).

Monte-Carlo analysis

We used Monte-Carlo simulations to compare the methods
used to combine phenological time series and to determine the
influence of the two outlier detection methods. Observations
xij were randomly generated according to a two-way linear
model (Equations 8 and 10) with prescribed parameters m, ai,
bj, σ s

2 and σ e
2. The general mean m was set to 120, and ai was

prescribed to vary according to a normal distribution with zero
mean and a standard deviation of 7 days to reproduce the typi-
cal range of natural interannual variation of phenological time
series. The other parameters depend on the Monte-Carlo simu-
lation and are described below. Because phenological data are
usually unbalanced, 50% of the generated data were omitted.
This is a representative value as the completeness of the real
data demonstrate (see Table 5). To simulate outliers, 1% of the
resulting observations were made MMs by adding or subtract-
ing 30 days (50/50 chance) from the generated observations.
This is the approximate proportion of outliers that was found
by Linkosalo et al. (1996, 2000).
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Two simulation studies were conducted. In Study 1, which
simulates the case when a combined time series is sought for
several stations around a weather station, we imposed vari-
ances similar to those found in the real data (see Table 5). In
Study 2, which simulates a case where many phenological sta-
tions within a region are combined for trend analysis, the vari-
ance components and the number of stations were doubled
compared with those of Study 1. The main parameters of the
two studies are summarized in Table 1.

For each study, five runs were conducted. In the first run
(Run a) the different estimation methods were applied to the
generated data set without imposing MMs. In the second run
(Run b) MMs were introduced but they were not detected and
corrected. Finally, in the last three simulation runs (Runs c–e),
the generated time series were corrected for the detected MMs
by the 30-day rule and the Dixon test using 5 and 1% signifi-
cance levels. Each of the 10 simulation runs, hereafter referred
to as 1a–e and 2a–e according to study number and run, was
repeated 500 times.

Phenological data

To analyze the effects of discordancy tests on real combined
time series we applied them to data of the German Weather
Service (DWD). Phenological times series recorded within a
radius of 10 km around a weather station on sites that differed
less than 50 m in elevation and had at least five years of obser-
vations were selected from the phenological and climatologi-
cal database of the DWD and combined for each weather sta-

tion. At these stations we used data for bud burst of four decid-
uous tree species, Aesculus hippocastanum L., Fagus
sylvativca L., Quercus robur L. and Betula pubescens Roth.
Based on results from the Monte-Carlo simulation study, the
robust L1 estimation was used for the outlier tests. After the re-
moval of detected outliers, we applied the T1 estimation pro-
cedure to the remaining data for variance component estima-
tion.

Additionally, the effect of the different estimation proce-
dures on the estimated combined time series itself was studied
using one example from the combined time series. Nine
phenological stations around Weather Station 2609 (Giessen,
8.7° N, 50.58° E, altitude 186 m, 1951–1999) were selected.
The distance and altitude of the phenological stations and
some characteristics are presented in Table 2 and the pheno-
logical time series for bud burst of horse chestnut (A. hippo-
castanum) is shown in Figure 1.

Results

Monte-Carlo analysis

For the Monte-Carlo analysis, because all effects, parameters
and variance components were prescribed, it was easy to de-
termine whether the models and estimation methods repro-
duced the values for a large number of simulations. Table 3
presents the mean absolute error (MAE), the mean squared er-
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Table 1. Setup of the Monte-Carlo simulations for comparing methods of estimating effects and variance components of linear models (Equations
8–10) with different estimation and outlier detection techniques. The observations xij, i = 1,…,M, j = 1,...,N are generated according to the model
xij = 120 + ai + bj + eij, where the ai, bj and eij are prescribed to vary according to a normal distribution N(x,y) with mean x and variance y. The
setup and subsequent estimations were repeated 500 times per study.

Study Average Year Station Residual % Month Number of Number of
completeness effects (ai) effect (bj) error (eij) mistakes stations (N ) years (M )

1 50% N(0,49) N(0,15) N(0,30) 1 10 30
2 50% N(0,49) N(0,30) N(0,60) 1 20 30

Table 2. Phenological stations from the DWD phenological database
with a distance of less than 10 km and a difference in elevation of less
than 50 m from the DWD Weather Station 2606 (Giessen, 8.7° N,
50.58° E, altitude 186 m, 1951–1999) that have at least five observa-
tions of bud burst of horse chestnut.

Station Distance Altitude Observational Number of
(km) (m) time span observations

1 2.12 160 1951–1983 31
2 6.04 190 1951–1973 18
3 4.94 160 1958–1991 33
4 7.80 200 1951–1999 44
5 7.15 190 1951–1978 28
6 6.62 200 1987–1998 12
7 9.79 200 1988–1995 7
8 9.99 180 1952–1998 44
9 5.98 180 1962–1980 18

Figure 1. Phenological time series around Weather Station 2609 of
the DWD over a 10-km radius as described in Table 2. Observations
in Julian day of year (DOY).
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ror (MSE), the estimated residual variance (σ e
2) according to

Equations 8–10 and the mean deviation between the estimated
and imposed combined time series (MDTS) for the simulation
runs described in Table 1. The values of MAE, MSE, MDTS
and σ e

2 are the means of over 500 simulation runs. The MDTS
is shown with its standard deviation. Differences among the
methods with respect to σ s

2 were qualitatively similar to those
for σ e

2 and are not shown.
The robust L1 estimation always had the lowest MAE,

whereas the non-robust two-way model estimations per-
formed better with respect to MSE. The one-way model esti-
mation (the average times series) performed poorly with
respect to MAE and MSE. There were only small differences
in simulated values of MAE and MSE between the different
non-robust two-way models. The LS estimation for the fixed
two-way model had slightly lower MSE in all scenarios. How-
ever, the estimation procedures differed in variance compo-
nent estimation. It is noteworthy that the variance components
estimated with the ML method were always lower than those
estimated with the other methods. When no MMs were pre-
scribed (Simulations 1a and 2a), the variances determined
with the ML method were underestimated, whereas results ob-

tained with the other non-robust methods showed estimated
variance components close to the imposed values. The LS,
REML, MIVQUE0 and T1 agreed well in their variance com-
ponent estimates. Among methods, the MIVQUE0 variance
estimates always had a higher variability (results not shown),
indicating that LS, REML and T1 seem to provide the most re-
liable variance component estimates. The error variance of the
L1 estimation calculated by the method of McKean and
Schrader strongly overestimated the imposed variances. The
error variances varied between 15 (16) and 45 (72) in Simula-
tion 1a (1b) and 32 (45) and 74 (93) in Simulation 2a (2b) for
the non-robust two-way model estimations. The models did
not differ much in terms of the estimated combined time series
(MDTS): 99% of the estimates for the combined time series
did not differ by more than about 10 days from the imposed
values. The robust estimation L1 was slightly less accurate
than the other estimation methods. The fixed (Equation 8) and
mixed (Equation 10) two-way models and their respective es-
timation methods all showed similar accuracy.

The strategy for outlier detection had a substantial impact
on the number of outliers detected. The results for the robust
L1 method, LS two-way and T1 estimation are given in Ta-
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Table 3. Summary of the results of the Monte-Carlo simulations described in Table 1. The values are means of 500 runs. Abbreviations: MAE =
mean absolute error; MSE = mean squared error; σ e

2 = estimated error variance according to Equations 8–10; MDTS = mean deviation between
estimated and prescribed combined time series with standard deviation; and MM = number of month-mistakes over all 500 simulation runs.

Run MM Equation Estimation method MAE MSE σ e
2 MDTS ± σ

1a No MMs 8 L1 3.5 26.8 88.3 –0.3 ± 3.6
9 LS one-way 4.8 35.9 44.8 0.1 ± 3.4
8 LS two-way 3.8 22.4 30.0 0.0 ± 3.1

10 ML 3.8 22.6 23.9 0.0 ± 3.1
10 REML 3.8 22.7 30.0 0.0 ± 3.1
10 MIVQUE0 3.8 22.7 30.0 0.0 ± 3.1
10 T1 3.8 22.7 30.0 0.0 ± 3.1

1b 736 MMs 8 L1 3.7 34.4 90.9 –0.2 ± 3.7
Not corrected for MMs 9 LS one-way 5.1 43.9 54.7 0.1 ± 3.7

8 LS two-way 4.1 28.8 38.7 0.1 ± 3.4
10 ML 4.1 29.2 30.8 0.1 ± 3.4
10 REML 4.1 29.4 38.8 0.1 ± 3.4
10 MIVQUE0 4.1 29.3 38.8 0.1 ± 3.4
10 T1 4.1 29.3 38.7 0.1 ± 3.4

2a No MMs 8 L1 5.4 56.0 178.9 –0.2 ± 3.4
9 LS one-way 7.2 80.9 89.8 0.0 ± 3.1
8 LS two-way 5.7 50.4 60.1 0.0 ± 2.9

10 ML 5.7 50.9 53.9 0.0 ± 2.8
10 REML 5.7 51.0 60.1 0.0 ± 2.8
10 MIVQUE0 5.7 51.0 60.2 0.0 ± 2.8
10 T1 5.7 51.0 60.1 0.0 ± 2.8

2b 1535 MMs 8 L1 5.6 64.3 187.2 –0.1 ± 3.5
Not corrected for MMs 9 LS one-way 7.4 89.7 99.6 0.0 ± 3.3

8 LS two-way 5.9 58.1 69.2 0.0 ± 3.1
10 ML 6.0 58.7 62.1 0.0 ± 3.0
10 REML 6.0 58.8 69.2 0.0 ± 3.0
10 MIVQUE0 6.0 58.8 69.1 0.0 ± 3.0
10 T1 6.0 58.8 69.2 0.0 ± 3.0
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ble 4. The results for the LS one-way method are not shown
because the method was inferior in terms of estimation accu-
racy (see above). Because the performance of the mixed
model estimation methods was similar in terms of outlier de-
tection, only the results for the T1 methods are shown. In all
simulation runs, the highest number of outliers was detected
after applying the robust L1 estimation, but the percentage of
detected prescribed MMs was higher for the non-robust meth-
ods LS two-way and T1.

Thirty-day rule (Simulations 1c and 2c) The L1 method fit
detected about 41 and 51% of the imposed MMs in run 1c and
2c, respectively. Of the detected MMs, 99 and 89% were im-
posed MMs. The other estimation procedures detected a sub-
stantially lower number of MMs although the proportion of
true MMs was higher.

Dixon tests (simulation runs 1d, 1e, 2d and 2e) The 1% and
5% Dixon tests detected more outliers than the 30-day rule in
both studies and in combination with any estimation method.
Use of the 5% confidence level resulted in detection of two to
> 10 times more outliers than the 30-day rule. In simulation
run 1d, more outliers were found than the number of prescribed
MMs. Around 50% of the outliers detected by the Dixon test
had not been imposed. The resulting estimate was similar after
removal of 30-day residuals and after removal of outliers de-
tected by the 1% Dixon test in Study 1, although about twice as
many outliers were removed by the latter method. In Study 2,
almost the same number of outliers was found with the non-ro-
bust methods by both the 30-day rule and the 1% Dixon test.
However, the Dixon test detected a substantially lower per-
centage of imposed MMs (63%) than the 30-day rule (98%).
This correlates with the lower estimate ofσ e

2 for the latter test.
The highest total number of imposed MMs and a low per-

centage of non-MMs was found by the combination of the ro-
bust L1-estimation method with the 30-day rule.

Phenological data

Based on the results of the Monte-Carlo simulation, we ap-
plied the L1 estimation to the described data sets to detect out-
liers followed by the T1 method for variance component
estimation. Even with the restriction that a combined time se-
ries was calculated only when there were more than five time
series per weather station available, there were only about
three observations available per year (Table 5). Hence the
Dixon rule, which is only defined for N > 3, could not be ap-
plied in many years. Average completeness was around 50%
resulting in unbalanced designs. The Dixon tests found more
outliers than the 30-day rule for each species. The impact of
the outlier detection procedures on the estimated station vari-
ance σ s

2 was not pronounced and is not considered further.
Mean values of σ s

2 were 17.8, 13.6, 15.1 and 13.3 for horse
chestnut, beech, oak and birch, respectively. The 30-day rule
found 0.2 to 0.6% outliers on average per species and com-
bined time series decreasing the respective error variance σ e

2

by 5 to 20%. The 1% (5%) Dixon test found 0.5% (1.1%) to
0.8% (1.5%) outliers decreasing the respective error variance
σ e

2 by 2% (6%) to 6% (10%). Although more values were de-
leted by the Dixon tests than by the 30-day rule, the resulting
estimated σ e

2 was lower after application of the 30-day rule,
except for birch in combination with the 5% Dixon test. The
Dixon tests did not identify all observations with 30-day resid-
uals as outliers. Removal of these observations in addition to
the outlier detected by the Dixon test led to an additional re-
duction of the average estimated σ e

2. The percentage of outli-
ers found by the 5% Dixon test was comparable with the
percentages reported by Linkosalo et al. (1996, 2000). Varia-
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Table 4. Summary of the results of the Monte-Carlo simulations described in Table 1. The values are means of over 500 runs. Abbreviations and
definitions: σ e

2 = estimated error variance according to Equations 8 and 10; detected outliers = % of imposed month-mistakes (MMs); and MM =
detected imposed MMs in % of detected outliers.

Monte-Carlo simulation Model equation Estimation method σ e
2 Detected outliers MM

(% of imposed) (% of detected)

Run 2c (30 day residuals) 8 L1 90.9 41 99
8 LS two-way 37.0 11 100

10 T1 36.8 12 100
Run 1d (5% Dixon test) 8 L1 86.4 205 22

8 LS two-way 33.3 127 34
10 T1 33.3 127 33

Run 1e (1% Dixon test) 8 L1 88.7 74 26
8 LS two-way 36.8 28 51

10 T1 36.8 30 53

Run 2c (30-day residuals) 8 L1 179.9 51 89
8 LS two-way 64.6 29 98

10 T1 64.4 31 98
Run 2d (5% Dixon test) 8 L1 182.6 107 36

8 LS two-way 63.0 77 46
10 T1 63.0 77 47

Run 2e (1% Dixon test) 8 L1 185.6 44 50
8 LS two-way 66.0 31 64

10 T1 66.0 32 63
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tion of the error variances was higher than in the simulation
study, ranging from 9 to over 120 for horse chestnut before de-
letion of outliers and from 8 to 80 after deletion of outliers (re-
sults not shown).

For an individual combined time series (Table 2), the esti-
mated yearly values differed by up to 10 days among the vari-
ous procedures (results not shown). The one-way model and
the robust fit estimation differed from the two-way models fit-
ted by classical non-robust procedures. This is not surprising
because the one-way model does not correct for station ef-
fects, and the L1 estimation is not as susceptible to extreme ob-
servations as the other methods. A difference of 1.2 days was
observed between the yearly estimates of the combined time
series determined by the two-way mixed effect model (Equa-
tion 10) and the estimates determined by the mixed models
(Equations 8 and 9). This result differs slightly from the
Monte-Carlo study, where the differences between the two-
way models were negligible; however, means over 500 simu-
lation runs were used in the Monte-Carlo simulation. The esti-
mation procedure in the mixed model did not have a signifi-
cant influence on the values of the estimated parameters. All
95% confidence intervals for the year effects contained the es-
timated year effects of all other procedures.

The estimated error variances of the mixed model (esti-
mated by REML, MIVQUE0 and T1) and the fixed two-way
model are all 73.6. Only ML and the fixed one-way model es-
timates differ from this value with 58.5 and 80.5, respectively.
This large error variability was probably caused by the large
variability of the time series at individual stations between
1955 and 1960 where in some years trends in opposite direc-
tions were observed (Figure 1).

The number of values that exceed the 30-day threshold in-

creases from one to four when a robust L1 fit (Figure 2) is used
instead of a T1 fit (Figure 3). Applying the 5% (1%) Dixon test
to the L1 fit, seven (two) outliers are found compared with four
(one) outliers for the T1 fit. The outliers detected by the 5%
Dixon test are marked with an arrow in Figures 2 and 3. The
outliers that were also detected by the 1% Dixon test are addi-
tionally labeled with “1%.” As seen in Table 5, not all residu-
als above the 30-day threshold were identified as outliers by
the Dixon tests, a typical masking effect (Barnett and Lewis
1996). Because of this masking effect, the T1-estimated error
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Table 5. Application of 30-day rule and the Dixon tests after L1 fit with subsequent T1 variance components estimation with data from the German
Weather Service (DWD). The values of the variance components are mean values over all resulting combined time series. Outliers are expressed
as percentage of observations (obs.) in the resulting combined (comb.) time series.

Species Aesculus hippocastanum Fagus sylvatica Quercus robur Betula pendula

Number of original observations 9668 5909 7886 7886
Number of resulting time series (No. used weather stations) 69 47 55 57
Number of values in resulting combined time series 3147 2069 2375 2684
Completeness including outliers (%) 50.9 46.7 46.9 50.4

Mean T1 estimate of σ e
2 including outliers 45.3 36.9 34.7 31.1

Mean estimates of σ s
2 for all outlier procedures 17.8 13.6 15.1 13.3

30-day residuals (% obs. in comb. time series) 0.6 0.4 0.2 0.2
Mean T1 estimate of σ e

2 after removal of 30-day residuals 35.7 31.2 31.2 29.6

5% Dixon-type outliers (% obs. in comb. time series) 1.5 1.3 1.1 1.4
Mean T1 estimate of σ e

2 after removal of 5% Dixon outliers 40.8 34.6 32.4 28.6

1% Dixon-type outliers (% obs. in comb. time series) 0.7 0.5 0.5 0.8
Mean T1 estimate of σ e

2 after removal of 1% Dixon outliers 42.8 36.1 33.7 30.3

Number of 30-day residuals not detected by the 5% Dixon test 17 2 2 1
σ e

2 after removal of 5% Dixon-type and 30-day residuals 33.7 29.6 29.5 27.9

Number of 30-day residuals not detected by the 1% Dixon test 22 4 5 5
σ e

2 after removal of 1% Dixon-type and 30-day residuals 34.7 30.8 30.5 29.0

Figure 2. Residuals of the robust L1 fit for the combined time series at
Weather Station 2609. Residuals marked with an arrow have been de-
termined as outliers by the 5% Dixon test. Arrow labeled 1% shows
outliers that have also been detected by the 1% Dixon test. The sym-
bols are attributed to the same stations as in Figure 1.
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variance of the combined time series was higher after removal
of 5% Dixon outliers of the L1 fit than after removal of 30-day
residuals, namely 61.1 and 51.1, respectively. This corre-
sponds to the reduction in estimated error variance by 17%
through removal of seven Dixon outliers compared with a re-
duction of 21% through removal of four 30-day residuals. Re-
moving the 30-day residual of the L1-fit also decreased the
maximal absolute difference between the robust combined
time series and the T1 time series from 9.3 to 6.2 days. After
removal of 5% Dixon outliers, the maximal absolute differ-
ence between the T1 time series and the robust time series was
7.5 days. Although more outliers were found by the 5% Dixon
test, some extreme observations were missed because of the
masking effect, resulting in an unnecessarily high influence of
extreme observations on the combined time series. The 1%
Dixon test finds outliers with residuals of 3 and 12 days.

Discussion

We showed that the four methods proposed by Häkkinen et al.
(1995) for combining phenological time series can be treated
within the framework of linear models. Method 3 proposed by
Häkkinen et al. (1995) is the same linear model as Method 4,
except that the station effects are considered fixed in Method 3
and random in Method 4. Having defined this difference
within the framework of linear models gives us theoretical ar-
guments for selecting one method or the other. The difference
between the mixed model (Method 4) and the fixed model
(Method 3) is of special interest because the other methods
perform poorly (Method 1) or are of no relevance because of
their restricted applicability (Method 2, see Method section).
It can be argued that within the region where a phenology is to
be estimated, the distribution of phenological stations is ran-
dom. If the study objective was to estimate year effects and
their variance rather than effects at a single station, which are

assumed to be arbitrarily chosen within the region of interest,
the mixed model is more appropriate. If the objective of the
analysis was to find stations that show extreme behavior, or to
check whether station differences are consistent throughout
the years, the station effects would be treated as fixed (Searle
1971). However, in terms of parameter estimation, error vari-
ances and confidence intervals, the differences between the
fixed and mixed models are small when proper estimation
methods are used, e.g., LS, REML, MIVQUE0 or T1.

Because phenological data are often not normally distrib-
uted (Schnelle 1955, Menzel 1997), the robust ANOVA in the
L1 norm might be a more appropriate method, even though L1

estimates are not unequivocal (Bloomfield and Steiger 1983)
and not as accurate as classical methods (Table 3). The L1 esti-
mation is considered to be more appropriate for fatter tailed
distributions (Dodge 1987). However, a better estimator for
the variance component should be found than the one we used.
The influence of different strategies for omitting outliers
should be explored further. Month-mistakes are independent
of other errors. Thus, it can be expected that 50% of the MMs
occur in the opposite direction from errors of other origins and
are therefore partly masked by these errors. This situation is
mimicked in the structure of our Monte-Carlo simulation runs.
Therefore, if it is assumed that only about 50% of the MMs can
be detected, the performance of the 30-day residual rule com-
bined with a robust L1 fit is close to optimal. The non-robust
procedures combined with the 30-day rule do not perform as
well because they decrease large residuals. In the case of nor-
mally distributed errors, the Dixon test detects too many outli-
ers, especially at the 5% level. In general, detection of more
than 50% of the MMs can only occur at the expense of dis-
missing values within the natural variability of the data. Even
the 1% Dixon test, which found a similar number of outliers as
the 30-day rule in Study 2, rejected many false outliers. The
Dixon test implies different variances for each year. Although
this is reasonable because the rate of phenological develop-
ment varies from year to year, it can result in the rejection of
observations that deviate only slightly from the theoretically
estimated value, e.g., the year 1993 in Figure 2, because the
other residuals in this year are even smaller. The mean error
variance of about 30 found in the real data means that 95% of
the residuals do not differ from the theoretical values by more
than 10 days. Even the maximal estimated error variance of
about 100 means that 95% of the estimated variation is within
20 days. These considerations and the experimental findings
of Baumgartner (1952) provide no biological grounds for dis-
carding phenological observations that are less than a week or
even 10 days off the estimated values because this is well
within the natural unpredictable variability. Moreover, some
extreme values can be missed because there might be other
rather large residuals in the particular year that mask the out-
lier, e.g., the year 1952 in Figure 2. Thus, it follows that a dis-
tribution-free rule combined with a robust estimation per-
forms better in the Monte-Carlo study and is also more effec-
tive in removing large error variances caused by extreme ob-
servations when observational data are analyzed. The Dixon

980 SCHABER AND BADECK

TREE PHYSIOLOGY VOLUME 22, 2002

Figure 3. Residuals of the T1 fit for the combined time series at
Weather Station 2906. Residuals marked with an arrow have been de-
termined as outliers by the 5% Dixon test. Arrows labeled as 1% indi-
cate outliers that have also been detected by the 1% Dixon test. The
symbols are attributed to the same stations as in Figure 1.
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rule is not efficient in removing error variance because it
misses some extreme observations that contribute signifi-
cantly to σ e

2 and hence to the unreliability of the combined
time series.

Other types of mistakes have a similar impact as MMs, such
as misprints and transposed numbers. However, MM is a dis-
tinct feature, because it adds an error component of 30 days or
a multiple of 30 days to the deviation of the observed value
from the mean. This deviation is large relative to the variance
attributed to biological variability. Therefore, a cut-off of
30 days from the expected value is an effective way to remove
MMs and all mistakes that induce deviations of more than
30 days. Other observational and protocol errors that cause er-
ror components of less than 30 days cannot be distinguished
from the variance attributable to biological variability. The
Monte-Carlo analysis and inspection of observational time se-
ries demonstrate the danger of removing correct observations
when distribution-based methods are used to detect outliers in
small sample sizes. Improved characterization of the biologi-
cal variability of phenological series is urgently needed to
evaluate the danger of false identification of MMs in cases
where a distinct bimodal distribution of phenophases is pro-
duced by an intermittant occurrence of environmental condi-
tions unfavorable to phenological development, e.g., a cold
spell when the buds in a part of the population have already
broken. In addition, studies on the statistics of observational
and protocol errors are needed. Such studies should help deter-
mine if a cut-off value of less than 30 days can be applied.

We conclude with two recommendations. First, we strongly
recommend outlier detection when research is conducted with
combined phenological data. In our view, one of the few mis-
takes that can be detected is MM because its deviation is much
larger than the range of natural variability, even though the
proportion of MMs to the total number of errors is unknown.
The nonparametric 30-day residual rule in combination with a
robust L1 fit is a stable and adequate procedure to detect MMs
and other extreme values. Second, after outlier removal, fit-
ting a linear two-way mixed model by the TYPE I or REML
estimation method to obtain a reliable continuous time series
for further analysis is recommended.
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