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Compared to other distribution functions, the Weibull distribution has been more widely 

used in describing diameter distributions because of its flexibility and relative simplicity. 

Parameters of the Weibull distribution are generally predicted either by the parameter prediction 

method or by the parameter recovery method. The coefficients of the regression equations for 

predicting Weibull parameters, moments, or percentiles are often estimated by use of different 

approaches such as ordinary least squares (OLS), seemingly unrelated regression (SUR) or 

cumulative distribution function regression (CDFR). However, there is no strong rationale for 

preferring one method over the other. We developed and evaluated different methods of 

predicting parameters of Weibull distribution to characterize diameter distribution using data 

from the Southwide Seed Source Study. 

The SUR and the CDFR approaches were applied to ten different parameter prediction 

and parameter recovery methods. A modified CDFR approach was developed by modifying the 

CDFR technique such that the CDF is computed using information from diameter classes instead 

of individual trees as in the CDFR approach. These methods were evaluated based on four 

goodness;of;fit statistics (Anderson;Darling, Kolmogorov;Smirnov, negative Log;Likelihood, 

and Error Index). The CDFR approach provided better results than the SUR approach for all 

methods. The Modified CDFR approach consistently provided better results than the SUR 

approach, and was superior to the CDFR approach in all evaluation statistics but the Anderson;

Darling statistic.
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Forest management decisions are based on information about both current and future 

resource conditions which require accurate predictions of growth and yield. Because volume, 

value, conversion costs, and product specifications are dependent on diameter of the tree, stand 

properties can be well characterized with diameter distributions (Bailey and Dell 1973). Various 

distribution functions, such as normal, gamma, Johnson’s SB, beta, and Weibull have been used 

in the past in describing diameter distributions of forest stands. 

The Weibull function has been the most widely used distribution function for describing 

diameter distributions because of its flexibility and relative simplicity. Parameters of Weibull 

distribution are generally predicted either by parameter prediction method (PPM) or by 

parameter recovery method (PRM). The parameter prediction method relates the parameters of a 

distribution function with stand variables using regression equations, whereas the parameter 

recovery method predicts diameter percentiles or moments, from which the distribution 

parameters are recovered (Gorgoso et al. 2007). 

The coefficients of the regression equations for predicting Weibull parameters (in the 

parameter prediction method) and moments or percentiles (in the parameter recovery methods) 

are often estimated by use of ordinary least squares or seemingly unrelated regression. Cao 

(2004) obtained the regression coefficients in the PPM by minimizing the sum of squared 

differences between the observed and predicted cumulative probability. He termed this new 

approach the CDF regression (CDFR) method, which produced better goodness;of;fit statistics 

than other methods. 
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A successful diameter;distribution model requires good prediction of its parameters. The 

objective of this study was to develop and evaluate new methods for predicting parameters of the 

Weibull probability density function for characterizing diameter distributions. 
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Growth and yield models are functions of current stand conditions to predict future 

growth and yield. Yield predictions in the United States began with the use normal yield tables 

for natural even;aged stands of a given species (Knoebel et al. 1986). Growth and yield models 

can be classified into three broad categories: whole;stand models, size;class models, and 

individual;tree models. 

����������&%(�� !"���"%&'�

Whole;stand models require few details to simulate growth, but provide rather general 

information about the future stand. They predict future yields as a function of stand;level 

attributes, such as stand age, site index, and stand density. MacKinney et al. (1937) and 

MacKinney and Chaiken (1939) used multiple regression techniques to construct variable;

density yield equations for loblolly pine stands. Since then, a great number of growth and yield 

models have been developed using regression techniques (Burkhart et al. 1972; Beck and Della;

Bianca 1972; Murphy 1983; Pienaar and Rheney 1993; Lenhart 1996; Coble 2009). 

Buckman (1962) and Clutter (1963) obtained compatibility between growth and yield by 

developing models in which yield was obtained through mathematical integration of the growth 

equation over time. Sullivan and Clutter (1972) refined Clutter's (1963) equations to develop a 

simultaneous growth and yield model for loblolly pine that provided not only analytically, but 

also numerically consistent growth and yield predictions. Beck and Della;Bianca (1972) have 

applied this method to yellow;poplar data. 
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Burkhart and Sprinz (1984) fitted both basal area and volume projection functions 

simultaneously by minimizing the squared;error loss functions. A similar approach was used by 

Knoebel et al. (1986) to develop a simultaneous growth and yield model for thinned stands of 

yellow;poplar. Van Deusen (1988) showed that the minimization of the squared error loss 

function is equivalent to using seemingly unrelated regression (SUR). To account for correlation 

across the equations, researchers have used special regression procedures such as three;stage 

least squares (Borders and Bailey 1986, Pienaar and Harrison 1989) and SUR (Coble 2009). 

Ochi and Cao (2003) developed an annual growth and yield model and suggested that 

annual growth models provided better predictions of stand survival, basal area, and volume than 

compatible growth models. The annual growth approach also offered flexibility and path 

invariance property which ensures that projections to a future age remain the same regardless of 

different paths (or intermediate future ages) it takes. 

��������$)%(�& ''���"%&'�

Size;class models are a compromise between whole;stand models and individual;tree 

models because if the class size is infinitely large and only one class exists, the method is the 

whole;stand approach and when the class width is infinitely small, single tree as a class, then the 

method is the individual;tree approach (Vanclay 1991). Similar to whole;stand models, stand;

level attributes, such as age, site index, and stand density are used as inputs to these models, but 

the technique provides detail on stand structure. 

����������� !"(� *&%����+%,�$�!��%���"'�

Stand tables give number of trees per diameter class. Stand;table projection methods 

predict future stand tables based on current stand tables. Ek (1974) introduced a set of nonlinear 
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equation models for three growth components (ingrowth, mortality, and survivor growth) for 

individual diameter classes. Clutter and Jones (1980) gave an algorithm for projecting stand 

tables in old;field slash pine plantations. This projection algorithm differed from conventional 

stand table projection methods in that it did not move trees from one class to another, but instead 

moved the entire class forward in time. Pienaar and Harrison (1988) applied this method for 

unthinned even;aged stands based on long;term remeasurement data from a slash pine stand. 

Borders and Patterson (1990) evaluated a Weibull diameter distribution model, a percentile;

based projection model, and a basal area growth projection model for projecting stand and stock 

tables for loblolly pine. Nepal and Somers (1992) proposed an algorithm to project current stand 

table and then adjust the future stand table to match the estimate of future basal area and 

survival. Corral;Rivas et al. (2009), based on relatively small experimental dataset, found 

satisfactory result of application of this algorithm to ���������	
�����	 in South Africa. Cao 

and Baldwin (1999) modified Nepal and Somers (1992) algorithm by applying the constrained;

least;squares method for constraining future stand tables. An individual;tree model was later 

incorporated by Cao (2007) into the algorithm to predict mortality and diameter growth of each 

diameter class. 

����������$ -%�%�(�$'��$*.�$�!��%���"'�

Stand yields have also been predicted based on the assumption that diameter distribution 

of a stand can be characterized by a probability density function. Clutter and Bennett (1965) 

applied the beta distribution to describe diameter distributions of data from old;field slash pine 

plantations. The beta distribution was then used in yield models for many species, including 

slash pine (Bennett and Clutter 1968, Bennett et al. 1978), loblolly pine (Lenhart and Clutter 
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1971, Lenhart 1972, Burkhart and Strub 1974), birch, and pedunculate oak (Gorgoso;Varela et 

al. 2008). 

Bailey and Dell (1973) introduced the use of the Weibull function for modeling diameter 

distributions. Since then, it has been favored by many others because it can fit a variety of 

shapes. Another advantage is that its cumulative distribution function exists in closed form, 

allowing easy calculation of proportion of trees in each diameter class. The Weibull function has 

been widely used to model diameter distribution of loblolly pine (Smalley and Bailey 1974, 

Feduccia et al. 1979, Matney and Sullivan 1982, Clutter et al. 1984, Baldwin and Feduccia 

1987), longleaf pine (Lohrey and Bailey 1977, Jiang and Brooks 2009), loblolly and slash pine 

(Brooks et al. 1992), Scots pine, Austrian pine, ���	
������	�	 (Palahi et al. 2006), birch 

(Gorgoso;Varela et al. 2007), and black poplar (Andrasev et al. 2009). 

The Johnson’s SB distribution (Johnson 1949a) was found by Hafley and Schreuder 

(1977) to fit diameter and height distributions better than five other distributions. The SB 

distribution has been used by many researchers to fit diameter distribution data (Hafley et al. 

1982, Smith and Hafley 1984, Newberry and Burk 1985, Rennolls and Wang 2005, Fonseca et 

al. 2009). Different methods for estimating the parameters of the SB distribution have been 

analyzed by Zhou and McTague (1996), and Scolforo et al. (2003). Schreuder and Hafley (1977) 

further fitted the bivariate SBB distribution (Johnson 1949b) to tree height and diameter data. The 

bivariate approach has been applied for modeling diameter distribution (Knoebel and Burkhart 

1991, Karlsson and Norell 2005). 

Diameter distributions can also be defined directly from several percentiles, as opposed 

to being approximated by a single statistical function. Number of diameter percentiles vary from 



7 

ten (Alder 1979) to twelve (Borders et al. 1987). Cao and Burkhart (1984) joined different 

functions together to form a segmented CDF using five percentile points for modeling diameter 

frequency data. 

����/���!"$0$". &(��%%���"%&'�

Individual;tree models use a tree as the basic unit, and therefore can provide detailed 

information about stand dynamics. They are divided into two classes, distance;dependent and 

distance;independent, depending on whether or not tree location coordinates are required. 

�$'� !,%($!"%1%!"%!��-�"%&' do not use spatial information to express competition, but 

they usually project tree growth as a function of current tree size and other stand variables. Stage 

(1973) developed PROGNOSIS for mixed species of northern Rocky Mountains. Shifley (1987) 

described individual;tree models which were compatible with the STEMS and TWIGS 

projection system. A similar approach was used by Wykoff (1990) to predict individual;tree 

basal area increment and calibrated for eleven conifer species having diverse ecological 

requirements. Other distance;independent systems include models by Hynynen (1995) and 

Palahi et al. (2003) for Scots pine, Mabvurira and Miina (2002) for ���������	
�����	 (Hill) 

Maiden, Sanchez;Gonzalez et al. (2006) for cork oak, and Adame et al. (2008) for rebollo oak 

coppices. 

�$'� !,%("%1%!"%!��-�"%&', on the other hand, include a spatial competition measure. 

The growth of each tree is obtained as a function of stand variables, tree attributes, and a 

measure of competition from its neighbors. Distance;dependent approach is the most promising 

means of predicting yield because it mimics the actual system with greater details than other 

methods (Mitchell 1975). Stand simulators PTAEDA and PTAEDA2 were distance;dependent 

models developed by Daniels and Burkhart (1975) and Burkhart et al. (1987), respectively, for 
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loblolly pine plantations. Daniels et al. (1979) produced a similar method for modeling seeded 

loblolly pine stands. Distance;dependent models have been developed for Rap poplar (Faber 

1991), Scots pine on a drained peatland site (Miina 1994), even;aged ������
����	�� stands in 

Nepal (Rautiainen 1999), Scots pine and Norway spruce growing in a mixed forest (Vettenranta 

1999), and even;aged ���������	
��������	 in Australia (Fox et al. 2007 a, b). Distance;dependent 

models are suitable for intensively managed stands, but the high cost for suitable data may 

restrict their use to research applications. 

Individual;tree growth models which provide the most detailed information for tree 

prediction may be inaccurate for stand;level prediction because of cumulative error from 

summing up individual tree predictions. To improve whole;stand predictions, individual;tree 

models were constrained by also taking into account attributes at the diameter;class level (Zhang 

et al. 1997). Cao (2006) developed a new approach in which an individual tree model was 

constrained by optimizing for both tree and stand levels to provide a reasonable tree; and stand;

level prediction of survival and growth. 

Annual prediction for tree growth and survival is a method suitable for data with irregular 

growth intervals. Cao (2000) introduced an iterative method in which survival probability and 

diameter of each tree in the plot are predicted and interim values of stand density are updated for 

each year to predict annual diameter growth and survival for individual trees. A similar approach 

was adopted by Nord;Larsen (2006). Cao and Strub (2008) evaluated four different methods to 

simultaneously estimate parameters of an annual tree survival and a diameter growth model. 

����2���$!3$!4���"%&'��5��$55%�%!���%'�&.�$�!'�

Efforts have been made to ensure compatibility in models with different resolutions, 

either by aggregating individual tree or diameter distribution attributes into stand;level 
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predictions or disaggregating stand attributes to individual trees. Strub and Burkhart (1975) 

introduced a class;interval;free method for obtaining expected yield by summing diameter;class 

volumes, thus linking a diameter;distribution model with a whole;stand model. Matney and 

Sullivan (1982) recovered Weibull parameters from whole;stand attributes in such a way that the 

resulting diameter distribution when integrated yielded the same values of basal area and volume 

as derived from a whole;stand model. Hyink and Moser (1983) discussed parameter recovery 

methods to relate the existing mathematical compatibility between the diameter distribution 

models and stand;average models. Subsequently, Lynch and Moser (1986) obtained Weibull 

parameters from stand attributes such as basal area and sum of diameters for stands of mixed 

species. 

Bailey (1980), recognizing that transformations of variables preserve the functional form 

of the distribution, provided a link between diameter distribution models and individual;tree 

growth models. He assumed that either no mortality occurred or mortality was proportionally 

distributed over the diameter distribution. Cao (1997) extended Bailey’s (1980) work by 

including the case when mortality is not proportionally distributed. Qin et al. (2007) discussed 

related approaches to project trees and diameter;distributions through time. Matney and Schultz 

(2008) established a link between individual;tree models and diameter;distribution models by 

presenting a procedure for deriving tree diameter growth and probability of survival equations 

from successive diameter distributions. 

Plenty of work has been done in linking individual;tree models with whole;stand models. 

Daniels and Burkhart (1988) presented an integrated system of forest stand models in which the 

components of detailed overall model are collapsed to provide compatible models at lower 

resolutions. Zhang et al. (1993) used relative size growth function to disaggregate stand volume 
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growth to a list of individual trees. Somers and Nepal (1994) presented an algorithm to adjust the 

results from the individual;tree models to agree with stand;level estimates. Qin and Cao (2006) 

developed a method to adjust coefficients of an individual;tree model to match predicted stand 

attributes. Implications of disaggregation in forest growth and yield modeling have been 

discussed by Ritchie and Hann (1997). The disaggregation approach adjusts individual;tree 

attributes to match stand;level predictions, which are assumed reliable. Yue et al. (2008), on the 

other hand, combined predictions from tree;level and stand;level models and then disaggregated 

the combine estimates to individual trees. 

Nepal and Somers (1992) used an adjustment algorithm to create general stand;table 

projection model that links stand;level estimates to projections of observed stand tables. Cao and 

Baldwin (1999) applied the constrained least squares method to modify Nepal and Somers’ 

(1992) algorithm. The constrained least squares method consistently provided the best results as 

compared to other methods (Cao 2007). Most recently, Cao (2007) incorporated tree;level and 

stand;level equations in a stand;table projection model and, in doing so, successfully linked 

individual;tree, size;class, and whole;stand models together in a working system. 

�������%"$,�$�!��5�� � -%�%�'�$!��$ -%�%���$'��$*.�$�!���"%&'�

Many different probability density functions such as log;normal, exponential, gamma, 

beta, Johnson’s SB and Weibull have been used to describe diameter distributions. Because it can 

fit a variety of shapes and its cumulative distribution function exists in closed form, the Weibull 

distribution has become the predominant function in characterizing diameter distributions. 

Traditionally the Weibull parameters are directly predicted as functions of stand attributes by use 

of regression. Recent methods have been developed to recover the Weibull parameters from 

diameter moments and/or percentiles, which are predicted from regression equations. 
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In the parameter;prediction method, the values of the distribution parameters for 

describing diameter distributions are directly estimated from the stand attributes using regression 

equations. The stand attributes are age, height of the dominant and codominants, and density in 

terms of number of trees per unit area. Clutter and Bennett (1965) introduced this method to 

predict parameters of the beta distributions for old;field slash pine plantations. Smalley and 

Bailey (1974) applied this method to predict parameters of the Weibull function used in a model 

to predict yield and stand structure for loblolly pine plantations. The method was later used to 

predict the Weibull parameters for loblolly pine (Smalley and Bailey 1974, Feduccia et al. 1979), 

slash pine (Schreuder et al. 1979), mixed stand of western conifers (Little 1983), black spruce 

(Newton et al. 2005), ���������	
�����	 (Mabvurira et al. 2002). Siipilehto (1999) used the 

parameter;prediction method to obtain parameters of SB and Weibull distributions. Hyink and 

Moser (1983) discussed the concept of parameter prediction in a generalized framework for 

projecting forest yield and stand structure of even;aged and uneven;aged stands. 

�������� � -%�%�(�%,�0%�6��%���"�

In the parameter;recovery approach, the parameters of the distribution are derived either 

from the diameter moments or from specific percentiles which are predicted from the stand;level 

attributes. Since the diameter frequency distribution characteristics such as mean diameter and 

diameter variance can be projected more precisely than the distribution parameters themselves, 

the parameter recovery method is considered superior to the parameter prediction method 

(Parresol 2003). 
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Moment;based parameter;recovery approach uses diameter moments to estimate the 

parameters of the Weibull distribution. Predicted values of mean diameter, quadratic mean 

diameter, basal area, volume, and variance of diameter can be used to recover these parameters. 

Ek et al. (1975) showed how to obtain a Weibull parameter for a desired quadratic mean 

diameter if the remaining two parameters are known. Both Weibull scale and shape parameters 

were recovered from predicted stand basal area and average diameter (Cao et al. 1982, Hyink 

and Moser 1983, Lynch and Moser 1986), from predicted stand basal area and volume (Matney 

and Sullivan 1982), and from predicted arithmetic and quadratic mean diameters (Knoebel et al. 

1986, Bowling et al. 1989). Burk and Newberry (1984) developed a method to recover all 

Weibull parameters from the first three predicted non;central moments. 

 The parameter;recovery approach has also been applied to predict the parameters of SB 

and beta distributions. Parresol (2003) used the median and the first and second non;central 

moments of the distribution to recover the SB parameters, whereas Fonseca et al. (2009) 

recovered all four SB parameters from the median and the first three non;central moments. 

Gorgoso;Varela et al. (2008) recovered the two shape parameters of the beta distribution from 

the average diameter and variance. 

���������� � -%�%���%,�0%�6�� '%"��!��%�,%!�$&%'�

The percentile;based parameter;recovery approach uses regression to predict certain 

percentiles as functions of stand variables such as age, site index and stand density. The 

predicted percentiles are later used to recover the distribution parameters. The main advantage of 

this procedures is that diameter distribution characteristics, such as minimum diameter or 
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diameter percentiles which are used to recover the parameters can be predicted more precisely 

than the parameters itself (Knowe et al. 2005). 

The parameter;recovery approach based on different diameter percentiles has been 

applied to various forest types. Contrary to moment;based methods that often result in a system 

of nonlinear equations that requires numerical techniques to solve, percentiles;based problems 

can be generally transformed into a linear system that can be easily solved. Lohrey and Bailey 

(1977) used the 24th and 93rd percentiles to recover the shape and scale parameters of the Weibull 

distribution.  

������/��6*�$"��%���"'�

Hybrid methods include those methods that recover distribution parameters from both 

moments and percentiles. McTague and Bailey (1987) developed a technique for recovering the 

Weibull parameters from 10th, 63rd, and 93rd percentiles such that the resulting diameter 

distribution produced basal area that is consistent with the predicted basal area. In another 

percentile;based method, Bailey et al. (1989) computed the Weibull parameters from the 

predicted minimum diameter (���), quadratic mean diameter (���), 25th, 50th, and 95th percentiles. 

Many models have been developed using a similar approach (Brooks et al. 1992, Knowe et al. 

2005, Lee and Coble 2006, Coble and Lee 2008, and Jiang and Brooks 2009). Baldwin and 

Feduccia (1987) developed a hybrid method for managed loblolly pine based on the minimum 

diameter, quadratic mean diameter, and the 93rd diameter percentile. A similar method was used 

by Zarnoch et al. (1991) to predict the Weibull parameters for predicting growth and yield for 

thinned and unthinned slash pine plantations. Bullock and Burkhart (2005) used ��� and the 25th 

and 97th percentiles to characterize the juvenile diameter distributions of loblolly pine by the 

Weibull function. 
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The cumulative;distribution;function regression (CDFR) method, introduced by Cao 

(2004), is similar to the parameter;prediction method in that the Weibull parameters are 

predicted from stand attributes, but the coefficients of these equations are obtained through 

minimization of the squared deviations between the observed and predicted CDF’s. This new 

approach was found superior to all methods evaluated for prediction of diameter distributions of 

loblolly pine plantations by Cao (2004). The CDFR technique was also found by Newton and 

Amponsah (2005) and Cao and McCarty (2006) to yield the best goodness;of;fit statistics among 

the methods tested. Nord;Larsen and Cao (2006) applied this technique to even;aged beech with 

satisfactory results. Jiang and Brooks (2009), however, found that the hybrid method by Bailey 

et al. (1989) provided better results than the CDFR method for young longleaf pine plantations.�
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�������/�������������
�����	���

/����� � �

Data from the Southwide Seed Source Study, which involves 15 loblolly pine (���	


����� L.) seed sources planted at 13 locations across 10 southern states (Wells and Wakeley, 

1966), were used in this study. Seedlings were planted at 1.8 m × 1.8 m spacing. Each plot is of 

size 0.0164 ha, and trees were measured at ages of 10, 15 or 16, 20, and 25 or 27 years. Fifty 

randomly selected plots for each age group (200 plots in total) constituted the fit data set. To be 

included in the sample, a plot had to have at least 15 trees at that age. Another 50 plots were 

randomly selected among the remaining data to form the validation data set. The validation data 

consisted of four measurements for each plot, resulting in 200 plot;age combinations. The fit 

data were used for development of predicting equations, whereas the validation data were used to 

evaluate the methods. Summary statistics boxplots for the stand; and tree;level attributes for fit 

dataset are shown in Figure 1. 
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Figure 1. Box plots show the median, 25th and 75th percentiles (lower and upper extent of box), 
and values outside the 5th and 95th percentiles of the stand variables for four age groups 
in the fit data (50 plots in each age group). 
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(Figure 1 cont’d.) 
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Summary statistics boxplots for validation dataset is shown in following figures. 
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Figure 2. Box plots show the median, 25th and 75th percentiles (lower and upper extent of box), 
and values outside the 5th and 95th percentiles of the stand variables for four age groups 
in the validation data (50 plots in each age group).�
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The Weibull probability density function (PDF) used in this study to characterize 

diameter distribution is of the following form: 

 ���) = 	
�� 	
��
� �


��
��� �−	��� �



� (1) 

where ��
�, and
� are the location, scale, and shape parameters of the Weibull distribution, 

respectively, and � is tree diameter at breast height (dbh). 

The following general form of regression equation, adopted from Cao (2004), was used 

to predict the Weibull parameters or diameter moments or percentiles: 

 � = ���	[�� + ���� + �� � �!) + �" � �#) + �$/&] + (	 (2) 

where 

� = Weibull parameters, diameter percentiles, or moments (mean or variance); 

��
�

)�����/*+,

, �
is the relative spacing (ratio of the average distance between trees to the 

average height of the dominants and codominants); 

� = number of trees per hectare; 

� = dominant height (average height of the dominants and codominants) in meters; 

A = stand age in years; 

ln (.) = natural logarithm; 

��’s = regression coefficients; and 

( = random error. 
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�%���"���7��%$*.&&�1 � -%�%�'�

The three Weibull parameters were obtained from the fit data via maximum likelihood 

estimation. They were then used as dependent variables in equation (2). 

/����������-%!�(* '%"�� � -%�%���%,�0%�6�

In the moment;based parameter;recovery methods, the Weibull location parameter (a) 

was computed from the minimum diameter in the stand, which was predicted from equation (2): 

 - = 0.5���	, (3) 

where the caret symbol (^) above a variable name represents the predicted value of that variable. 

�%���"���7�12 � !"��0 ��

Equation (2) was used to predict average diameter (�2) and diameter variance (����). The 

shape and scale parameters (b and c) were recovered from �2� and ��3�4  as follows: 

 � = 52���
67

 , and (4) 

 ���G� − G��) − ��3�4 = 0. (5) 

where G9 = Γ;1 + = >? @, and Γ(·) is the complete gamma function. 

�%���"�/�7��8� !"��0 ��

Method 3 is similar to method 2, except that the Weibull shape and scale parameters were 

recovered from the predicted quadratic mean diameter (��A) and diameter variance (��3�4) as 

follows: 

 � = −- B� B�⁄ + [�- B�)⁄ � �B�� − B�) + ��A�/B�]�.$ , and (6) 

 ���G� − G��) − ��3�4 = 0. (7) 
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�%���"�2�7��/�� !"��9/�

In this method, the minimum diameter (�0) and the 31st and 63rd percentiles (�31 and �63) 

were predicted from Equation (2). Again, the Weibull location parameter was computed from 

equation (4). The shape and scale parameters were calculated from 

 > =
DE	FG	�7HI.JK)FG	�7HI.K7)�

LM�5�JK��)�LM	�5�K7��)
 , and (8) 

 � = 5�JK��
[�LM	����.N�)]7/O . (9) 

�%���"�:�7��:;� !"��<:�

Method 5 is similar to method 4, except that the Weibull shape and scale parameters were 

recovered from the predicted 50th and 95th percentiles (��$� and ��P$) as follows: 

 > =
DE	FG	�7HI.QR)FG	�7HI.RI)�

LM�5�QR��)�LM	�5�RI��)
 , and (10) 

 � = 5�RI��
[�LM	����.$�)]7/O . (11) 

�%���"�9�7���:=��:;=� !"��<:�

This method is similar to methods 4 and 5, except that the Weibull shape and scale 

parameters were recovered from three predicted percentiles, D��$, D�$�, and D�P$ as follows: 

 > =
DE	FG	�7HI.QR)FG	�7HI.TR)�

LM�5�QR��)�LM	�5�TR��)
 , and (12) 

 � = 5�RI��
[�LM	����.$�)]7/O . (13) 

�%���"�>�7��/�=��:;=� !"��9/�

Method 7 is similar to method 6, except that the Weibull shape and scale parameters were 

recovered from three predicted percentiles, ����, ��$�, and ��N� as follows: 
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 > =
DE	FG	�7HI.JK)FG	�7HI.K7)�

LM�5�JK��)�LM	�5�K7��)
 , and (14) 

 � = 5�RI��
[�LM	����.$�)]7/O . (15) 

/�����2��6*�$"��%���"'�

�%���"�?�7�12 � !"��<:�

Method 8 is similar to method 2, except that the Weibull shape and scale were recovered 

from the predicted average diameter (�2�) and the 95th percentile (��P$) as follows:  

 � = 5�QR��
[�LM	����.P$)]7/O , and (16) 

 - + �Γ 	1 + �

� − �2� = 0. (17) 

�%���"�<�7�8� !"��<:�

Method 9 is similar to method 8, with D�U replacing D2�. The Weibull shape and scale 

parameters are the solution of 

 � = 5�QR��
[�LM	����.P$)]7/O , and (18) 

 ��B� + 2-�B� + -� − ��A� = 0. (19) 

�%���"��;�7��8=���:=��:;=� !"��<:�

Method 10 was from Bailey et al. (1989). The difference between this method and the 

rest of the methods was that the Weibull location parameter was calculated from ���, ��$�, and the 

number of trees in the plot (): 

 - = � �/���� −��$�)/� �/� − 1). (20) 

The scale and shape parameters are computed from: 

 > =
DE	FG	�7HI.QR)FG	�7HI.TR)�

LM�5�QR��)�LM	�5�TR��)
 , and (21) 
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 � = −- B� B�⁄ + [�- B�)⁄ � �B�� − B�) + ��A�/B�]�.$. (22) 

/���������%%��11�� ,�%'�

Equation (2) was a general equation used to predict Weibull parameters as well as 

diameter moments and percentiles. In this study, three approaches were investigated to obtain 

estimates for the regression coefficients, ��’s, in equation (2). 

/����������%������11�� ,��

Because the error terms are correlated among the equations used to predict Weibull 

parameters, moments, or percentiles, the SUR approach was used to simultaneously estimate the 

regression coefficients ��’s in the system of equations with the SAS procedure Model, option 

SUR (SAS Institute, Inc. 1993). In method 1, the system of equations was used to predict the 

three Weibull parameters. In the remaining methods, the diameter moments and/or percentiles 

formed the set of equations. The Weibull location parameter “a” was obtained from equation (3). 

/����������%�������11�� ,��

The CDF Regression approach was originally developed by Cao (2004). In this approach, 

the ��’s were obtained by minimizing the sum of squares of observed and predicted  , where   is 

CDF instead of the dependent variable: 

 minimize	 ∑ ∑ ;]9^ − ]_9^@
�/ 9	E`

^a�
b
9a�  (23) 

where 


 !�" �
#"–$%&'/�
�
observed cumulative probability of the tree " in the �th plot;age 

combination; 


 " = rank of that tree in terms of dbh (from smallest to largest) in the �th plot;age 

combination; 
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 � = number of trees in the �th plot;age combination;  

 ]_9^ = 1 − exp e− �`f��� �


g, value of the Weibull CDF evaluated at
��"; 


 ��" = dbh of tree " in the �th plot;age combination; and 

 � = number of plot;age combinations. 

Note that !�" �
#"–$%&'/�
is a Hazen’s plotting position used for graphing empirical pdf’s 

(Cunnane 1978). This method results in a CDF value less than 1 for the maximum diameter in a 

plot. In contrast, !�" �
"/� as defined by Cao (2004) leads to a maximum CDF value of 1 for each 

plot, which is not theoretically correct because a predicted CDF would approach 1 but never 

attains the value of 1. 

SAS procedure Model (SAS Institute, Inc. 1993) was used to iteratively search for the 

parameters of the CDF regression. Including the Weibull location parameter in the system of 

equations resulted in, for many plots, predicted location parameters that were much lower in 

value than the observed minimum diameters. Consequently, the minimum diameter was 

predicted separately from the system of equations. 

/�����/����%���"$5$%"�������11�� ,��

The Modified CDFR approach is similar to the CDFR approach, except that the diameter 

class information is used to compute the CDF instead of individual trees as in the CDFR 

approach. The modified CDF regression was then fitted with SAS Procedure Model (SAS 

Institute, Inc. 1993). Diameter classes having 2;cm width were used and the ��’s were obtained 

by minimizing the function given in (23), where  

]9^ =
∑ E`hf
hi7
E`

 �
observed cumulative probability of diameter class " in the �th plot;age 

combination; 
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 ��
�
number of trees in the �th

diameter class in the �th plot;age combination; 


 � = total number of trees in the �th plot;age combination;  

 ]_9^ = 1 − exp e− �`fj���� �


g, the value of the Weibull CDF evaluated at the upper bound 

of the "th diameter class; and 


 ��" = midpoint of the "th diameter class in the �th plot;age combination. 

 Table 1 shows a summary of the applications of the SUR, CDFR, and Modified CDFR 

approaches to the ten methods included in the evaluation. 

Table 1. Summary of methods for predicting Weibull parameters included in this study.�

Methods 
Approach a: 

SUR 
Approach b: 

CDF Regression 
Approach c: 

MCDF Regression 

� � -%�%����%"$,�$�! 
Method 1 – Weibull parameters 

 
1a 

 
1b 

 
1c 

��-%!�(* '%"�� � -%�%��

�%,�0%�6�

Method 2 – D2 and Dvar 

Method 3 – Dq and Dvar 

 
 

2a 
3a 

 
 

2b 
3b 

 
 

2c 
3c 

�%�,%!�$&%(* '%"�� � -%�%��

�%,�0%�6�

Method 4 – D31 and D63 
Method 5 – D50 and D95 

Method 6 – D25, D50, and D95 

Method 7 – D31, D50, and D63 

 
 

4a 
5a 
6a 
7a 

 
 

4b 
5b 
6b 
7b 

 
 

4c 
5c 
6c 
7c 

6*�$"��%���"'�

Method 8 – D2 and D95 
Method 9 –Dq and D95 

Method 10 – Dq, D25, D50, and D95 

 
8a 
9a 

10a 

 
8b 
9b 

10b 

 
8c 
9c 

10c 
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The following four goodness;of;fit statistics were computed for each method to evaluate 

the methods. The method producing the lowest values for each of the evaluation statistics is the 

best method. The ���������	
�������	� statistic is calculated with 

 &�9 =	− 9 − ∑ �2k − 1)l� ;m̂ @ + � ;1 − mE`�^j�@n/ 9	
E`
^a� , (24) 

where 

m̂ = ];�̂ @ = 1 − exp e− �f��� �


g; 

� = number of trees in the �th plot;age combination; and 

�" are dbh, sorted in ascending order for each plot;age combination;  

(�� ≤ ��…… .≤ �E`). 

The ���������������������� statistic is calculated with 


 q�9 = r-�	{r-��t9tE`[�k/ 9) − m̂ ],r-��t9tE`[�m̂ − �k − 1)/ 9]}, (25) 

where �
and �" are previously defined in equation (24). 

The ��
��������������������������statistic is calculated as follows: 

()��)
�
∑ �� ��) − � �>) + �1 − >) � 	`f��� � + 	`f��� �


�E`

^a� ,
 (26) 

where �
is previously defined in equation (24) and ��"
is the dbh of the tree " in the �th plot;age 

combination. 

The ���������������� is computed from 

 wx9 = ∑ | 9z −  {9z||`
za� , (27) 

where,  9z and  {9z are the observed and predicted number of trees per hectare in diameter class 

�, and (� is the number diameter classes for the �th plot;age combination. 
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The traditional standard or ordinal ranks for ( methods are 1, 2, …, (. They show the 

order of the method, but not how close they are to one another. In this study, the relative ranks 

were developed to display the relative positions of the methods. The relative rank of method � is 

defined as 

�9 = 1 + �|��)�}`�}~`�)
}~���}~`�

, (28) 

where  

��
�
relative
rank of method �
(�
= 1, 2, …, (); 


��
= goodness;of;fit statistic produced by method
�; 

�(�
= minimum value of the goodness;of;fit statistic; and  

�(�� = maximum value of the goodness;of;fit statistic. 

In this ranking system, the best and the worst methods have relative ranks of 1 and (, 

respectively. Ranks of the remaining methods are expressed as real numbers between 1 and (.  

Because the magnitude, and not only the order, of the ��’s are taken into consideration, the new 

ranking system should provide more information than the traditional ordinal ranks. For example, 

relative ranks of 1, 1.2, 4.7, 4.9, 5 in the case of five methods suggest that the methods fall into 

two groups that were separated by a large gap.  
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Altogether ten methods were used to predict the parameters of Weibull function for 

modeling the diameter distributions. Each method was then carried out by using three different 

approaches (SUR, CDFR, and MCDFR) resulting in a total of thirty methods. The full model 

used to predict the Weibull parameters and diameter moments or percentiles was in the form of 

equation (2). The final models were selected in a backward elimination procedure by manually 

removing insignificant variables (at 5% level of significance). 

2������%������11�� ,��

The parameter estimates for predicting Weibull parameters and diameter moments and 

percentiles based on the SUR approach are presented in Table 2. Four goodness;of;fit statistics 

(AD, KS, mLogL, and EI) were computed to evaluate these methods; their means and standard 

deviations are shown in Table 3. The relative ranks were computed from the means of the 

statistics, based on the method described in section 3.3.5 (Table 4). 

Table 2. Coefficients of regression equations for predicting Weibull parameters, diameter 
moments, and diameter percentiles from the Seemingly Unrelated Regression approach. 

Dependent 
Variable 

�1
 �2
 �3
 �4
 �5


�
 6.08327 ;2.30454 ;0.38324  ;18.0943 
�
 5.58586 ;2.40865 ;0.44199  6.73413 
�
 0.81430    5.50300 
�$
 11.65376 ;5.78286 ;0.87808 ;0.58714 ;6.75389 
�*&
 6.65052 ;2.56361 ;0.48240  ;0.83737 
�+,
 6.76116 ;2.75387 ;0.49326   
�&$
 7.04498 ;2.77660 ;0.51499   
�-+
 7.17042 ;2.76864 ;0.52278   
�.&
 7.81760 ;2.63151 ;0.58401   

�2
 7.02532 ;2.73406 ;0.50965  ;0.50489 
��
 5.58586 ;2.40865 ;0.44199  6.73413 
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Table 3. Means and standard deviations of the goodness;of;fit statistics produced by different 
methods based on the Seemingly Unrelated Regression approach. 

Method 
AD1/  KS2/  mLogL3/  EI4/ 

Mean 
Standard 
deviation 

 
Mean 

Standard 
deviation 

 
Mean 

Standard 
deviation 

 
Mean 

Standard 
deviation 

1 4.676 5.096  0.2642 0.1101  71.612 22.109  2340.71 882.75 
2 3.475 4.101  0.2425 0.0886  71.026 21.939  2271.08 878.77 
3 3.480 4.103  0.2426 0.0890  71.030 21.945  2272.17 878.52 
4 9.222 8.439  0.3966 0.1227  78.116 23.368  2289.87 818.38 
5 16.870 11.208  0.5305 0.1135  86.260 25.876  2449.81 861.18 
6 3.743 4.904  0.2424 0.0896  71.330 23.029  2278.62 904.06 
7 3.734 4.916  0.2424 0.0892  71.349 22.989  2277.90 906.29 
8 4.018 5.442  0.2457 0.0926  71.634 23.709  2292.61 923.90 
9 3.976 5.537  0.2432 0.0925  71.672 23.960  2284.54 917.55 

10 3.867 5.064  0.2435 0.0915  71.211 23.278  2284.38 905.61 
 
1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic, and 
4/    EI = error index. 
 

Table 4. Relative ranks of ten methods based on the Seemingly Unrelated Regression approach.�

Method 
Relative Rank �

Sum of 
Ranks 

 
Overall 
Rank AD1/ KS2/ mLogL3/ EI4/   

1 1.8072 1.6819 1.3462 4.5062  9.3415  2.3342 
2 1.0000 1.0055 1.0000 1.0000  4.0055  1.0000 
3 1.0032 1.0067 1.0021 1.0549  4.0669  1.0154 
4 4.8614 5.8180 5.1883 1.9462  17.8139  4.4526 
5 10.0000 10.0000 10.0000 10.0000  40.0000  10.0000 
6 1.1798 1.0000 1.1791 1.3797  4.7386  1.1833 
7 1.1744 1.0003 1.1905 1.3434  4.7085  1.1758 
8 1.3647 1.1053 1.3589 2.0841  5.9130  1.4769 
9 1.3364 1.0252 1.3815 1.6778  5.4209  1.3539 

10 1.2633 1.0358 1.1092 1.6697  5.0781  1.2682 
 

1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic, and 
4/    EI = error index. 
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A radar chart (Figure 3) shows graphically the relative rankings of the ten methods.  Each 

method is represented by a quadrilateral, whose area is smallest for the best method and largest 

for the worst method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Relative ranks of ten methods based on the Seemingly Unrelated Regression approach. 
Method resulting in the smallest area inside the box represents the best method. 
 
The largest area in Figure 1 belongs to method 5 (�50 and �95), which ranked last in all 

four evaluation statistics. The next largest area are from method 4 (�31 and �63) and method 1 

(Weibull parameters). The areas formed by the remaining methods are almost indistinguishable 

from one another. This group of methods produced lower values of evaluation statistics, with 

method 2 (�2 and ����) having the highest rank in three out of four statistics, and the best overall 

ranking. These visual results are consistent with the overall rankings presented in Table 4. 
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Parameter estimates for the ten methods based on the CDFR approach are presented in 

Table 5. Table 6 shows the means and standard deviations of the goodness;of;fit statistics 

produced by the CDFR approach. The relative ranks of the ten methods are presented in Table 7. 

Table 5. Coefficients of regression equations for predicting Weibull parameters, diameter 
moments, and diameter percentiles from the CDF Regression approach. 

Method 
Dependent 
Variable 

�1
 �2
 �3
 �4
 �5


1 
�
 4.95758 ;1.88134 ;0.38762 0.21365 3.23251 
�
 6.67966 ;5.34300 ;0.40226 ;0.70784 4.37674 

2 
�2
 5.98814 ;2.16514 ;0.44552 0.15114 0.53527 

����
 5.96375 
 

;0.63579 0.55288 
 

3 
��
 5.38139 ;1.69082 ;0.39486 0.22224 0.37597 
����
 ;1.54062 4.92116 

 
1.38324 ;4.30579 

4 
�31
 8.02868 ;4.31979 ;0.60891 ;0.15306 0.77814 
�63
 7.01308 ;3.26449 ;0.52529 

 
0.84566 

5 
�50
 6.98359 ;3.54718 ;0.53793 

 
0.83566 

�95
 6.03076 ;2.30443 ;0.44884 0.14701 0.75331 

6 
�25
 ;23.6158 18.74934 1.75346 3.60340 

 
�50
 7.06889 ;2.95733 ;0.51957 

 
0.61498 

�95
 ;33.704 26.36538 2.56939 4.78983 
 

7 
�31
 9.85415 ;11.4056 ;0.09254 ;1.63660 

 
�50
 6.95752 ;2.80171 ;0.50311 

  
�63
 9.63102 ;11.5747 

 
;1.71161 

 
8 

�2
 3.68454 
 

;0.25071 0.47662 
 

�95
 5.69550 ;1.98785 ;0.42379 0.18930 0.52450 

9 
��
 6.85882 ;1.80606 ;0.45488 

 
;1.19910 

�95
 6.31597 ;2.1821 ;0.45753 0.08693 
 

10 

�0
 8.82900 ;4.91421 ;0.78470 
  

�50
 7.01792 ;2.75970 ;0.51166 
  

��
 5.62421 ;1.85712 ;0.41224 0.18915 0.41041 
�25
 7.56094 ;3.75144 ;0.6378 

 
;5.64058 

�95
 6.03824 
 

;0.44965 
 

;11.1105 



30 

Table 6. Means and standard deviations of the goodness;of;fit statistics produced by different 
methods based on the CDF Regression approach. �

Method 
AD1/  KS2/  mLogL3/  EI4/ 

Mean 
Standard 
Deviation 

 
Mean 

Standard 
Deviation 

 
Mean 

Standard 
Deviation 

 
Mean 

Standard 
Deviation 

1 2.841 2.881  0.2348 0.0803  71.349 21.468  2233.72 826.44 
2 2.850 2.859  0.2350 0.0799  71.421 21.590  2237.63 834.55 
3 2.811 2.762  0.2344 0.0798  71.459 21.543  2235.35 827.78 
4 2.852 2.950  0.2347 0.0807  71.333 21.498  2234.42 830.69 
5 2.849 2.911  0.2347 0.0803  71.356 21.524  2235.35 832.50 
6 2.872 2.814  0.2365 0.0793  71.596 21.660  2242.70 835.87 
7 2.869 2.720  0.2374 0.0806  71.706 21.849  2246.10 839.18 
8 2.834 2.852  0.2345 0.0802  71.396 21.533  2235.48 829.80 
9 2.846 2.799  0.2357 0.0799  71.517 21.525  2236.59 832.04 

10 2.775 2.770  0.2343 0.0788  71.418 21.746  2239.22 837.69 
 

1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic, and 
4/    EI = error index. 
 
 
Table 7. Relative ranks of ten methods based on the CDF Regression approach.�

Method 
Relative Rank �

Sum of 
Ranks 

 
Overall 
Rank AD1/ KS2/ mLogL3/ EI4/   

1 7.1218 2.5913 1.3799 1.0000  12.0930  1.6249 
2 7.9527 3.0275 3.1214 3.8425  17.9441  3.3998 
3 4.3597 1.3709 4.0345 2.1850  11.9500  1.5815 
4 8.1072 2.2959 1.0000 1.5089  12.9120  1.8733 
5 7.8638 2.3274 1.5583 2.1850  13.9345  2.1835 
6 10.0000 7.3540 7.3412 7.5283  32.2234  7.7313 
7 9.7026 10.0000 10.0000 10.0000  39.7026  10.0000 
8 6.4529 1.6347 2.5052 2.2795  12.8723  1.8613 
9 7.5735 5.1944 5.4221 3.0864  21.2765  4.4106 

10 1.0000 1.0000 3.0346 4.9984  10.0330  1.0000 
 

1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic, and 
4/    EI = error index. 
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The radar chart below (Figure 4) shows graphically the relative rankings of the ten 

methods. 

 

 

 

 

 

 

 

 

Figure 4.  Relative ranks of ten methods based on the CDF Regression approach. Method 
resulting in the smallest area inside the box represents the best method. 

Both the overall ranks of the methods (Table 7) and the radar chart (Figure 4) show that 

the ten methods can be grouped into three general groups. The good methods include methods 1, 

3, 4, 8, and 10; the difference in values of goodness;of;fit statistics was small for the methods in 

this group, with method 10 (���
�25,
�&$, and �95) being ranked highest overall. The 

intermediate group consists of methods 2 (�2 and ����), 5 (�50, and �95), and 9 (�� and �95). The 

last group, which produced higher values for goodness;of;fit statistics, consisted of method 7 

(�31, �50, and �63) and method 6 (�25, �50, and �95), with method 7 being ranked last in three 

statistics and next to last in another. 
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The Modified CDFR approach is similar to the CDF regression approach, except that 

information from diameter classes rather than from individual tree is used to compute the CDF. 

The coefficients of different regression equations used in the Modified CDFR approach are 

presented in Table 8. Means and standard deviations for four goodness;of;fit are shown in Table 

9. Table 10 shows the relative ranks of ten methods for the Modified CDFR approach.  

Table 8. Coefficients of regression equations for predicting Weibull parameters, diameter 
moments, and diameter percentiles from the Modified CDFR approach. 

Method 
Dependent 
Variable 

�1
 �2
 �3
 �4
 �5


1 
�
 5.15256 ;1.96590 ;0.40184 0.19179 3.01959 
�
 2.50016 ;1.56311 ;0.35497 

2 
�2
 5.95666 ;2.07355 ;0.43396 0.14015 

����
 4.94930 ;0.64333 0.87043 

3 
��
 5.84880 ;1.95729 ;0.42525 0.15834 
����
 4.77006 ;0.62542 0.88947 

4 
�31
 6.46465 ;2.84150 ;0.46979 ;0.55942 
�63
 6.18670 ;2.45359 ;0.45093 0.08071 

5 
�50
 6.42425 ;2.70680 ;0.46115 ;0.92123 
�95
 6.05735 ;2.16099 ;0.43847 0.12113 

6 
�25
 7.26725 ;0.42708 ;0.50969 ;16.67660 
�50
 5.86451 ;2.01292 ;0.42603 0.14917 
�95
 10.07989 ;0.51252 ;1.12632 ;22.41020 

7 
�31
 3.13363 2.48766 ;0.10052 ;17.63450 
�50
 6.94084 ;2.72662 ;0.50077 
�63
 2.40152 3.64880 ;19.97640 

8 
�2
 5.31485 ;1.66236 ;0.38853 0.22775 
�95
 3.46464 ;0.24781 0.53863 

9 
��
 7.01802 ;2.68187 ;0.50919   
�95
 7.41697 ;2.51196 ;0.52833   

10 

�0
 8.82900 ;4.91421 ;0.78470   
�50
 7.01792 ;2.75970 ;0.51166   
��
 5.89517 ;2.00289 ;0.41768 0.14861  
�25
 2.74741 3.51696   ;18.26170 
�95
 4.54473 4.43843  ;0.45469 ;24.58270 
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Table 9. Means and standard deviations of the goodness;of;fit statistics produced by different 
methods based on the Modified CDFR approach. 

Method 
AD1/  KS2/  mLogL3/  EI4/ 

Mean 
Standard 
Deviation 

 Mean 
Standard 
Deviation 

 Mean 
Standard 
Deviation 

 Mean 
Standard 
Deviation 

1 3.123 3.867  0.2332 0.0840  70.883 22.118  2232.21 843.95 
2 3.069 3.786  0.2327 0.0839  70.758 21.883  2226.69 837.75 
3 3.063 3.767  0.2327 0.0838  70.756 21.865  2226.29 836.86 
4 3.107 3.887  0.2328 0.0837  70.856 22.131  2232.07 844.60 
5 3.143 3.920  0.2337 0.0843  70.900 22.140  2233.83 846.36 
6 3.060 3.559  0.2328 0.0824  70.827 21.716  2227.15 832.18 
7 3.040 3.563  0.2336 0.0822  70.785 21.674  2225.33 825.54 
8 3.079 3.827  0.2324 0.0845  70.778 21.910  2226.78 835.96 
9 3.098 3.828  0.2340 0.0839  70.817 21.939  2228.55 840.53 

10 2.960 3.618  0.2318 0.0816  70.683 21.812  2224.90 831.70 
 

1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic, and 
4/    EI = error index. 

 

Table 10. Relative ranks of ten methods based on the Modified CDFR approach. 

Method 
Relative Rank � Sum of 

Ranks 

 Overall 
Rank AD1/ KS2/ mLogL3/ EI4/   

1 9.0175 6.4587 9.2982 8.3673  33.1417  8.5731 
2 6.3690 4.6915 4.0810 2.8040  17.9454  4.6240 
3 6.0464 4.4430 4.0366 2.4009  16.9269  4.3594 
4 8.2405 4.9461 8.1855 8.2262  29.5982  7.6523 
5 10.0000 8.6323 10.0000 10.0000  38.6323  10.0000 
6 5.9038 5.0367 6.9500 3.2676  21.1581  5.4589 
7 4.9487 8.1288 5.2152 1.4334  19.7260  5.0868 
8 6.8535 3.5829 4.9378 2.8947  18.2689  4.7081 
9 7.7934 10.0000 6.5581 4.6786  29.0301  7.5047 

10 1.0000 1.0000 1.0000 1.0000  4.0000  1.0000 
 

1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic, and 
4/    EI = error index. 
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The radar chart below (Figure 5) shows graphically the relative rankings of the ten 

methods in the Modified CDFR approach. 

 

 

 

 

 

 

 

 
Figure 5.  Relative ranks of ten methods based on the Modified CDFR approach. Method 

resulting in the smallest area inside the box represents the best method. 

The radar chart (Figure 5) also reveals three groups, though not as distinct as those in the 

previous two approaches. The worst group comprises methods 1, 4, 5, and 9, with method 5 

being ranked last overall. Method 10 (��, �25, �50, and �95) is the sole occupant of the best 

group, ranking first in all statistics. The intermediate group includes the remaining methods. 

2�2����-1 �$'�!��5����%%��11�� ,�%'�

Relative ranks for all thirty methods based on goodness;of;fit statistics were also 

computed to find the optimum method (Table 11). Method 10 from the Modified CDFR 

approach ranked as the best method among all thirty methods evaluated in this study, whereas 

method 5 based on the SUR approach was the poorest performer. 
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Table 11. Overall comparison of the thirty methods based on four goodness;of;fit statistics. 

Method 
Relative Rank  

Sum of 
Ranks 

 
Overall 
Rank AD1/ KS2/ mLogL3/ EI4/   

SUR5/ 

1 4.9124 4.1445 2.7294 15.9326  27.7189  6.8536 
2 2.4407 2.0418 1.6386 6.9545  13.0756  3.1807 
3 2.4505 2.0457 1.6452 7.0950  13.2364  3.2210 
4 14.2648 17.0010 14.8371 9.3773  55.4801  13.8168 
5 30.0000 30.0000 30.0000 30.0000  120.0000  30.0000 
6 2.9914 2.0248 2.2031 7.9267  15.1460  3.7000 
7 2.9747 2.0257 2.2388 7.8338  15.0730  3.6817 
8 3.5574 2.3520 2.7695 9.7306  18.4095  4.5186 
9 3.4708 2.1031 2.8409 8.6900  17.1048  4.1913 

10 3.2469 2.1362 1.9829 8.6694  16.0353  3.9231 

CDFR6/ 

1 1.1366 1.2925 2.2393 2.1373  6.8057  1.6081 
2 1.1552 1.3074 2.3737 2.6414  7.4777  1.7766 
3 1.0750 1.2508 2.4441 2.3474  7.1173  1.6862 
4 1.1586 1.2824 2.2100 2.2275  6.8785  1.6263 
5 1.1532 1.2835 2.2530 2.3474  7.0372  1.6661 
6 1.2008 1.4553 2.6993 3.2951  8.6506  2.0708 
7 1.1942 1.5458 2.9045 3.7335  9.3780  2.2533 
8 1.1217 1.2598 2.3261 2.3642  7.0718  1.6748 
9 1.1467 1.3815 2.5512 2.5073  7.5867  1.8040 

10 1.0000 1.2381 2.3670 2.8464  7.4515  1.7700 

Modified 
CDFR 

1 1.7165 1.1299 1.3717 1.9426  6.1607  1.4463 
2 1.6059 1.0878 1.1380 1.2308  5.0625  1.1708 
3 1.5924 1.0819 1.1360 1.1792  4.9896  1.1525 
4 1.6841 1.0939 1.3219 1.9245  6.0244  1.4121 
5 1.7576 1.1816 1.4032 2.1514  6.4938  1.5298 
6 1.5864 1.0960 1.2666 1.2901  5.2391  1.2151 
7 1.5465 1.1696 1.1888 1.0554  4.9604  1.1452 
8 1.6261 1.0615 1.1764 1.2424  5.1064  1.1818 
9 1.6654 1.2141 1.2490 1.4706  5.5992  1.3054 

10 1.3815 1.0000 1.0000 1.0000  4.3815  1.0000 
 

1@    AD = Anderson;Darling statistic, 
2/    KS = Kolmogorov;Smirnov statistic, 
3/    mLogL = negative Log;Likelihood statistic,  
4/    EI = error index, 
5/    SUR = Seemingly Unrelated Regression, and 
6@�����CDFR = Cumulative Distribution Function Regression. 
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The radar plot based on the relative ranks of thirty methods (Figure 6) shows three 

distinct groups. The Modified CDFR approach was best, followed by the CDFR approach.  

 

 

 

 

 

 

 

Figure 6. Overall comparison of the SUR (black), the CDFR (red), and the MCDFR (green) 
approaches for all 30 methods. Method resulting in the smallest area inside the box 
represents the best method. 

The SUR approach was a distant third. The overall ranks ranged from 1.000 to 1.530 for 

the Modified CDFR approach, 1.608 to 2.253 for the CDFR approach, and 3.181 to 30.000 for 

the SUR approach (Table 11). The SUR approach consistently yielded higher AD, KS, and EI 

statistics than did the other two approaches. There was, however, some overlap in the mLogL 

statistic between the SUR and the CDFR approaches. On the other hand, the Modified CDFR 

produced lower values for all four evaluation statistics than did the SUR approach. 

These results indicate that the CDFR and the Modified CDFR approaches were clearly 

superior to the SUR approach. However, the use of more extensive dataset and locally important 
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reference data and considering other explanatory variables could further validate the application 

of the methods for larger areas. The SUR approach did not perform as well as the other two 

approaches because it is based on point estimates: its objective is to minimize the squared 

difference between the observed and predicted Weibull parameters, diameter moments, and/or 

percentiles. The CDFR and Modified CDFR approaches, on the other hand, are based on the 

entire distribution: aiming at minimizing the squared difference between the observed and 

predicted CDF. 

2�2������%������0'����%���"$5$%"�������11�� ,��

Figure 7 is Figure 6 redrawn after removing three worst methods, all of which were from 

the SUR approach, to better show the relative performance of methods based on the CDFR and 

Modified CDFR approaches.  

 

 

 

 

 

 

 

 

Figure 7. Comparison of the SUR (black), the CDFR (red), and the MCDFR (green) approaches 
for the best 27 methods. Method resulting in the smallest area inside the box represents 
the best method. 
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The Modified CDFR approach performed better in terms of the KS, EI, and mLogL 

statistics, but consistently produced higher AD values as compared to the CDFR. The reason for 

increased AD values might be because the CDF in the Modified CDFR approach is calculated 

based on the histogram of the diameter classes, and the AD statistic gives more weight to the 

tails than does the KS statistic (Cirillo and Hüsler 2009). It makes sense that the Modified CDFR 

approach would produce low EI values because both its CDF and the error index are based on 

the histogram of the diameter distribution. 

2�2�/����%��%'�� !"����'���%���"'�

All ten methods from the Modified CDFR approach performed well. Method 10 (��, �25,


�&$, and �95) was clearly the best overall method. This method also ranked best in the CDFR 

approach and performed relatively well in the SUR approach (rank of 1.268 out of 10). 

The worst method belonged to method 5 (�50 and �95), which ranked last in both SUR 

and Modified CDFR approaches.  Method SUR 5 also scored lowest in all four evaluation 

statistics among thirty methods.� �
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Diameter distribution is an effective method for describing stand properties because 

important variables such as volume, value, conversion cost, and product specifications are 

dependent on tree diameter. Because of its flexibility and relative simplicity, the Weibull 

function has been widely used in describing diameter and different methods have been used in 

predicting Weibull parameters. A successful diameter;distribution model requires good 

prediction of its parameters. However, there is no strong rationale to prove one method better 

than another method. In this study, new methods were developed by (1) extending the CDF 

regression technique to various parameter recovery methods, and (2) modifying the CDFR 

approach such that the CDF is based on information from diameter classes rather than from 

individual diameters. All methods were ranked based on their goodness;of;fit statistics to 

determine the optimum method and optimum approach for predicting Weibull parameters. 

The Modified CDFR approach consistently provided better results than did the SUR and 

the CDFR approaches. This approach was superior to the CDFR approach for all evaluation 

statistics, except for the AD;statistic. The CDFR approach also performed better than the SUR 

approach for all methods. The results are consistent with the findings by Cao (2004). The poor 

performance of the SUR approach may be because its objective is to optimize the Weibull 

parameters, diameter percentiles, or moments instead of optimizing the distribution itself as in 

the CDFR and the Modified CDFR approaches. 

 When the SUR approach is used, method 2 (�2 and ����) produced the lowest values for 

three goodness;of;fit statistics (AD, mlogL, and EI) and ranked the best among the ten methods 

evaluated. Method 6 (�25, �50, and �95) for recovering Weibull parameters, produced the best 
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result in terms of KS statistics and similar results as other methods for other evaluation statistics 

was ranked the second to method 2. Method 5 (�50 and �95) was the poorest performer (produced 

highest values for goodness;of;fit statistics) in the SUR approach. 

Method 10 (��, �25,
�&$, and �95) was the best method in the CDFR approach. However, 

this method was unable to produce the best results for all goodness;of;fit statistics. It was ranked 

1st for AD and KS statistics 3rd for mLogL, and 5th for the error index. Method 7 (�31, �50, and 

�63) was the poorest performer in this approach. 

Method 10 (Bailey et al. 1989) provided the best result for every evaluation statistics 

based on the MCDFR approach and ranked the overall best among the methods evaluated. 

Method 5 (�50, and �95) was the poorest performer in the Modified CDFR approach. For any 

given method, its overall ranking from the Modified CDFR approach was better than that from 

the SUR and CDFR approaches. 

If a choice is to be made among these three approaches, we recommend the Modified 

CDFR approach over the SUR and CDFR approaches, based on the findings of this study. On the 

other hand, given a particular approach, method 2 is recommended for SUR, and method 10 is 

recommended for the CDFR, and MCDFR approaches. 

It should be mentioned that the inclusion of multiple diameter percentiles in methods 6, 7, 

and 10 might, for some data sets, result in illogical crossing over of predicted values of these 

percentiles (i.e. ��25 > ��50 or ��50 > ��95). In that case, constraints would have to be placed to 

ensure logical prediction. We also found that use of quadratic mean diameter for recovering 

Weibull parameters to be significant because every method that included �� performed better 

than other methods for our data set. Results from this study might not be representative for all 
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data sets. There are sufficient reasons to believe that the SUR approach is not as effective as the 

other two approaches. However, the performance difference between the CDFR and the 

Modified CDFR might vary with data sets. Future research using other loblolly pine data sets as 

well as data from other species would further verify the findings of this study.
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