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Abstract: Full-atomic molecular dynamics simulations were conducted to investigate the time evolu-
tion of microscopic damage in polyetheretherketone (PEEK) polymers under cyclic loading conditions.
Three characteristics were used to quantify microscopic damage: entropy, distribution of the end-
to-end distance of polymers, and the volume fraction of voids. Our results show that the degree of
disentanglement of polymers and the volume fraction of voids increase with cyclic loading, which
may lead to entropy generation. Uniaxial tensile strength simulations of the polymer system before
and after cyclic loading were performed. The tensile strength after cyclic loading was lower than
that before loading. Furthermore, two systems with the same entropy and different loading histories
showed almost the same strength. These results imply that entropy generation is expressed as the
total microscopic damage and can potentially be employed for effective evaluation of the degradation
of material characteristics.

Keywords: molecular dynamics; thermoplastic resin; cyclic loading; entropy; void

1. Introduction

Thermoplastic polymers are being increasingly used as the matrix materials of compos-
ites instead of thermosetting polymers. (In this paper, composites based on thermoplastic
and thermosetting polymers are referred to as CFRTPs and CFRPs, respectively.) This is
because CFRTPs have been used in the automotive and infrastructure industries due to ex-
cellent impact resistance, moldability, and recyclability [1,2]. Understanding the mechanism
of resin damage is critical for improving resin durability for future applications.

Because of their complex fracture behavior, it has been difficult to quantitatively
predict the durability and residual life of thermoplastic polymers [1,3]. Thermoplastic
resins used in aircraft and automobiles are subjected to mechanical loading, especially
cyclic loading, which causes microscopic damage (cavities called voids) accumulation
inside the resin, leading to sudden macroscopic failure [4,5]. The fracture mechanism of
thermoplastic resins has not yet been revealed because it is difficult to experimentally
measure microscopic damage.

To date, the fatigue and fracture behaviors of CFRTPs have been extensively investi-
gated [6–11]. Koyanagi et al. reported that the mechanical characteristics of the matrix have
a significant impact on those of the composite. Therefore, it is important to understand
the mechanisms of microscopic damage and fracture behavior in thermoplastic resins to
predict the durability and residual life of CFRTPs [12].

A molecular dynamics (MD) simulation is an effective approach for reproducing and
evaluating the microscopic damage of thermoplastic resin. This is because MD simulations
allow us to obtain the morphology of polymers and the thermodynamic properties based
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on each atomic motion, which means that MD simulations have much higher spatial
and temporal resolutions than those of standard experiments with respect to mechanical
properties. In previous research, polymer/carbon fiber interfaces have been investigated
to improve the mechanical properties of CFRPs using MD simulation [13–16]. Various
elongations and cyclic loadings were conducted to study the mechanical properties of
CFRPs by MD simulation [17–22]. These studies demonstrated that MD simulation is
indispensable for predicting the material characteristics and revealing the atomistic-scale
mechanisms that cause these properties. In this study, we apply MD simulations to evaluate
the microscopic damage of polymers under cyclic loading, which is important for the long-
term durability of structural materials in transport. Based on the following previous studies,
this study focuses on the generation of entropy for the quantitative evaluation of damage.

The entropy-based destruction rule has been proposed to represent material damage.
In this rule, material failure is defined by the critical entropy inherent in a material [4,23–25].
The entropy is calculated by dividing the dissipation energy by the absolute temperature,
where the dissipation energy is calculated from the stress–strain diagram [26]. The entropy-
based destruction rule has traditionally been used in metallic materials such as aluminum
and iron [27–30]. Recently, this rule has also been applied to polymer materials under
tensile and cyclic loading. However, most numerical studies applying this rule are based on
continuum models such as the finite element method (FEM), which considers phenomena
only over the millimeter scale [12]. For microscopic damage, Takase et al. evaluated the
entropy generation of polyamide 6 in a tensile test using MD simulations [4]. This paper
reports that polymers with different loading histories have nearly identical entropies at
fracture, which suggests that it is possible to reproduce resin damage through MD and
to evaluate microscopic damage using entropy. This study investigates the relationships
among entropy, voids, and the degree of disentanglement.

The main factors underlying entropy generation are thought to be the disentanglement
of polymers and the formation of voids, as investigated in previous studies [31,32]. Voids
are often regarded as material damage because they can become the starting points of
material failure [5]. Takase et al. found that both the void volume and entropy increase
during the deformation of the polymer material [4]. Thus, the evaluation of the number
of voids and the void volume fraction on a microscopic scale can lead to the estimation
of damage in polymer materials. The end-to-end distance has also been employed to
discuss the mechanical properties of resin under loading conditions [17–20]. This is because
the degree of disentanglement, which degrades the mechanical properties of polymers,
can be quantitatively evaluated using the end-to-end distance. Therefore, the end-to-end
distance distribution of the polymer under loading conditions is important for evaluating
polymer damage.

After the cyclic loading tests, we performed a uniaxial tensile simulation to evaluate
the residual strength, which is an important indicator for determining the remaining life of
a material [23,26]. Sato et al. attempted to predict the residual strength of CFRPs using the
entropy-based destruction rule [23]. By determining the residual strength of the resin, it
would become possible to verify whether the resin is actually damaged, that is, whether
the entropy increase reflects the resin damage in the MD simulation.

The purpose of this study is to reproduce the cyclic loading test for thermoplastic
polymers and to investigate microscopic damage using entropy, voids, and end-to-end
distance in MD simulations. The remainder of this paper is organized as follows. The
next section is devoted to the simulation methods for obtaining the equilibrium structure,
reproducing cyclic loading, and evaluating microscopic damage to polymers. In the third
section, the simulation results and discussion about the material characteristics associated
with microscopic damage, that is, the entropy, end-to-end distance, volume fraction of the
void, and residual strength, are presented. We conclude the paper in the final section.
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2. Method
2.1. Modeling and Relaxation Process

We conducted cyclic loading tests using full-atomic molecular dynamics simulations
for the quantitative evaluation of microscopic damage to PEEK resin. To determine the
molecular structure of PEEK for the MD simulation, Marvin Sketch and PolyPerGen were
successively used [33,34]. Figures 1 and 2 show the chemical structure of polyetherether-
ketone (PEEK) and the corresponding molecular structure after structural optimization
calculations, respectively. The degree of polymerization was set to 10, and the number of
atoms in the system was approximately 50,000.
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Figure 2. Snapshot of PEEK polymer (n = 10).

Before the cyclic loading tests, the system was relaxed to achieve the equilibrium
state at room temperature (300 K) and atmospheric pressure (1 atm) in four steps. First,
all molecular chains were randomly arranged in the simulation cell. Second, relaxation
calculations were conducted under the NPT ensemble at p = 1 atm and T = 650 K, where p
is the pressure and T is the temperature of the system. Third, the system was annealed at
T = 300 K (room temperature), p = 1 atm, and a cooling rate of 70 K/ns. Finally, the equili-
brated system was obtained by relaxation calculations for 2 ns under the NPT ensemble at
T = 300 K and p = 1 atm. Figure 3 shows a snapshot of the equilibrium system. Based on the
equilibrium calculation, the density of the system was 1.19 g/cm3, which is an appropriate
value corresponding to that obtained by experiment (1.3 g/m3) [35,36]. Furthermore, time
evolutions of the total potential energy and the volume fraction of voids confirmed that the
system had fully reached equilibrium.
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All calculation processes in the MD simulation were conducted using the GROMACS
software [37], and an all-atom optimized potential for liquid simulation (OPLS-AA) force
field was employed [38]. For the electrostatic potential charge, density functional calcula-
tions were conducted using B3LYP/6-31G (Hamiltonian/basis set) [39,40].

2.2. Cyclic Loading

Cyclic loading simulations were performed for two different strain rates (±5.0 × 108/s
and ±5.0 × 109/s). The system was deformed in the z-direction while keeping the x and y
lengths constant. The minimum and maximum values of strain in the z-direction were set
to 0.1 and 0.0, respectively. The total simulation time was fixed at 40 ns, corresponding to
100 cycles at a strain rate of 5.0 × 108/s and 1000 cycles at 5.0 × 109/s. The microscopic
damage of PEEK resin was quantitatively evaluated in terms of four material characteristics:
entropy generation, total amount and distribution of voids, end-to-end distance of the
polymer chain, and residual strength. Figure 4 shows the relationship between time and
strain in the z-direction during each cyclic loading for 5.0 × 108/s (a) and 5.0 × 109/s (b).
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2.3. Evaluation of Resin Damage

Previous research has suggested that the entropy of material fracture does not depend
on the loading conditions [41]. Therefore, entropy generation represents the degree of
fracture. To estimate the entropy generation under cyclic loading, we used the “mechanical
method,” where the entropy is calculated using the following equation:

Emechanical =

t∫
0

Wd
T

dt (1)
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where Emechanical , t, Wd, and T are the entropy generation [J/Km3], time for cyclic loading [s],
dissipation strain energy [Pa], and absolute temperature [T], respectively. In our simulation,
Wd was quantitatively measured using the stress–strain relationship, as reported in previous
work [4]. Equation (1) describes the entropy generation in the quasi-static process, which
is much slower than the time scale used in standard MD simulations. To confirm the
quantitative correctness, we have previously compared the entropy generation obtained
by this approach to that obtained by energy balance for various tensile simulations. In
the results, the entropies obtained by these two different approaches were quantitatively
in agreement [4]. Furthermore, we also confirmed that this approach can estimate the
entropy on the same order of magnitude as experimental results by different scanning
calorimetry [24]. Therefore, the approach used in this study is confirmed to be reliable
enough to estimate the entropy generations of polymers, at least for the tensile deformation.

The conformation entropy of a single ideal polymer chain is closely related to its
end-to-end distance, R, defined by

R =

∣∣∣∣∣ n

∑
i=1

bi

∣∣∣∣∣ (2)

where bi is the bond vector between the (i − 1)-th and i-th atoms, and i = 0 and i = n
denote two atoms at the endpoints of the main polymer chain. Basically, R is inversely
related to the conformational entropy of polymers. The R of the isolated polymer chain
statistically takes a Gaussian distribution with a peak position of R = 0, and the free energy
contributed by the conformational entropy is proportional to R2 [42]. This distribution
changes because of the mutual entanglements among the polymer chains. Therefore, the
degree of entanglement was quantitatively evaluated using the distribution of R.

The number of voids and the void volume fraction were calculated using the Open
Visualization Tool (OVITO) and ParaView [43,44]. The alpha shape method was employed
to calculate the void volume fraction [45]. The number of voids and the void volume
fraction were measured at strain 0 at the same volume points. The measurements were
conducted every 10 cycles at low frequency (strain rate 5.0 × 108/s) and every 100 cycles
at high frequency (strain rate 5.0 × 109/s). In this study, we counted only voids with
a volume larger than 60 Å3, which is the smallest volume that can be measured by the
experiment with the positron annihilation method. It should be noted that all systems
under the same strain had the same volume. Considering all voids smaller than 60 Å3, the
total void volume was the same for all systems at the same strain.

3. Results and Discussion
3.1. Stress–Strain Curves

We conducted cyclic loadings at different strain rates to investigate the dependence
of the resin damage on the strain rate. Figure 5 shows the stress–strain curves for strain
rates of (a) 5.0 × 108/s and (b) 5.0 × 109/s. We observed that both stress–strain curves
(Figure 5a,b) shift to the bottom right, and inelastic strain increases with an increase in
the number of cycles. This indicates that the resin was damaged by the cyclic loading. By
comparing Figure 5a,b, we observed that the stress–strain curves for the 10th and 100th
cycles at a strain rate of 5.0 × 108/s were similar to those for the 100th and 1000th cycles
at a strain rate of 5.0 × 109/s. This result suggests that the amount of resin damage is
determined by the simulation time and not the number of cycles. This may be because
the strain rates used in the MD calculations were significantly larger than those used in
standard tensile experiments.
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3.2. Entropy Generation

We obtained the dissipation energy from the stress–strain curves. The entropy genera-
tion, Emechanical , was calculated using Equation (1). The dissipation energy, Wd, in Equation
(1) was equal to the total area enclosed by the stress–strain curve, owing to the stress loading
and unloading. Figure 6 shows the time development of entropy generation under cyclic
loading with different strain rates. The two curves coincide with each other, indicating
that the simulation time is more significant in determining the entropy generation than the
number of cycles, as in the case of the stress–strain curves. It can be observed that entropy
increases rapidly in the first 4000 ps, corresponding to the first 10 cycles at a strain rate
of 5.0 × 108/s and 100 cycles at 5.0 × 109/s. Thereafter, the rate of entropy generation
decreases with time. These results suggest that microscopic damage increases rapidly in
the first 4000 ps and then slows down. To confirm this damage expansion, the end-to-end
distance of each polymer and void was analyzed as follows.
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3.3. End-to-End Distance Distribution

The end-to-end distance of each polymer under cyclic loading was calculated using
Equation (2) to investigate the degree of entanglement. An increase in R corresponds to an
increase in entanglement, and a decrease in R corresponds to a decrease in entanglement.
Statistically, R decreases if the polymers are disentangled. Figure 7a shows the frequency
distribution of R for a strain rate of 5.0 × 108/s. As the cyclic loadings increase, some peaks
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shift from the higher R side to the lower side and their frequency decreases, indicating the
disentanglement of polymers. As is well known statistically, for an ideal polymer chain,
the conformation entropy and the end-to-end distance are closely related to each other; the
entropy increases as R decreases. Therefore, our results suggest that one of the important
factors in entropy generation shown in Figure 6 is the increase in the conformation entropy
of polymers due to disentanglements.
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3.4. Void Analysis

The time evolutions of the number and volume fraction of voids are shown in
Figure 8a,b, respectively. For both of the cyclic loading cases, the number of voids is
almost constant with respect to time. However, the volume fraction of voids increases
monotonically with time. These results indicate that each void grows with time in a
nucleation-like manner, in which newly formed smaller voids are absorbed by larger ones.
Figure 8b also shows that the void volume at a strain rate of 5.0 × 108/s rapidly increases in
the first cycles and then increases slowly. This trend is qualitatively consistent with the time
development of entropy generation, which suggests that the degree of microscopic failure
is closely related to the volume fraction of the void. Note that the simple relaxation case,
seen in Figure 8b, shows that the volume fraction does not change with time, indicating the
system has reached the equilibrium state before cyclic loading.
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For an intuitive understanding of the relationships between the volume fraction of
the void and microscopic failure, Figure 9 represents the time evolution of the spatial
distribution of voids for strain rates of (a) 5.0 × 108/s and (b) 5.0 × 109/s. In these figures,
some large voids are observed in the late stage of cyclic loading. These voids are considered
to be a type of microscopic damage that can be the starting point for macroscopic fractures.
At a strain rate of 5.0 × 108/s, noticeably larger voids were generated at approximately
20 cycles, and their volume increased with time. At a strain rate of 5.0 × 109/s, the
generation of larger voids was observed at approximately 200 cycles, and subsequent
fusions of these voids was observed. The generation and expansion of voids are consistent
with the time-dependent behavior of the volume fraction of voids, as shown in Figure 8b.
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3.5. Residual Strength

Finally, in Figure 10, the stress–strain curves are presented for uniaxial tensile cal-
culations with three different initial structures: the equilibrium structure without cyclic
loading, the structure after 100 cycles at a strain rate of 5.0 × 108/s, and the structure after
1000 cycles at a strain rate of 5.0 × 109/s. It should be noted that the structures after cyclic
loading are not in equilibrium states. In this figure, the strengths of the two cyclic-loaded
structures are approximately 10% lower than that of the structure without cyclic loading.
As we have described, voids and disentanglement in the polymer result in microscopic
damage and reduced strength. Furthermore, both of the initial structures exhibit almost the
same strength after cyclic loading. This may be because these structures have almost the
same entropy, as shown in Figure 6.
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4. Conclusions

The time evolution of the microscopic damage of polymers under cyclic loading is
closely related to the durability of the composites. However, a method for quantitatively
evaluating microscopic damage has not yet been developed. In this study, full-atomic
molecular dynamics simulations were performed to investigate the relationships among the
material characteristics associated with microscopic damage: stress–strain curves, entropy,
end-to-end distance of the polymer, and volume fraction of the voids. The stress–strain
curves show that the polymers behave inelastically with the number of cyclic loadings.
The entropy generation, degree of disentanglement of polymers, and total number of
voids increase with time, which suggests an increase in microscopic damage, causing
inelasticity. Unlike the volume fraction of voids that grow in a nucleation-like manner,
the time evolution of entropies does not depend on the strain rate. Two polymer systems
with almost the same entropy but different loading conditions exhibit similar reductions in
uniaxial tensile strength compared to that of the unloaded polymer system. These results
imply that the degradation of the material characteristics is highly dependent on entropy,
which is expressed as the sum of all damages.
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