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This paper explores the feasibility of using optimization methods to search for the minimum factor of safety in slope stability 
analysis. The routine procedure includes comparing a number of admissible surfaces that are basically selected by random 
searches. .Low efficiency and unreliability are the problems commonly encountered. 

Optimization methods allow a mathematically rigorous and reliable search for the minimum factor of safety and its 
associated "critical slip surfaces." This paper employs simplex, steepest descent, and Davidon-Fletcher-Powell (DFP) 
methods. The results of a number of test problems, in conjunction with closed-form and grid search solutions, showed that all 
the above-mentioned methods can provide reasonable results. Case history analyses supported the feasibility of the methods. 
Modifications to the DFP method were found to be essential for successful implementation of the minimization procedure. 

Key words: slope stability, landslide, analysis, limit equilibrium, interslice forces, factor of safety, spline function, 
optimization methods, case history. 

Cet article Ctudie la faisabilitk de l'utilisation des mCthodes d'optimisation pour la recherche du coefficient de sCcuritC 
minimum dans l'analyse de stabilitC des talus. La procedure habituelle compare un nombre de surfaces admissibles qui sont 
sClectionnCes essentiellement par recherches alCatoires. Le faible rendement et le manque de fiabilitC sont les problbmes 
gCnCralement rencontrks. 

Les mCthodes d'optimisation permettent une recherche mathematiquement rigoureuse et fiable du coefficient de sCcuritC 
minimum et des surfaces de glissement critiques correspondantes. Cet article utilise les mCthodes simplex, de pente maximale 
et de Davidson-Fletcher-Powell (DFP). Les resultats d'un certain nombre de problbmes CtudiCs de concert avec les solutions 
de recherche le long de mailles et avec cheminement dirigC, ont dCmontrC que toutes les mCthodes mentionies ci-haut peuvent 
foumir des rCsultats raisonnables. Les analyses de cas ont dCmontrC la faisabilitC des m6thodCs. Les modifications 5 la mCthode 
DFP se sont avCrCes essentielles pour utiliser avec succks la procedure de minimisation. 

Mots clLs : Ctude de stabilitC, glissement, analyse, Cquilibre limite, forces intertranches, coefficient de sCcuritC, mCthodes 
d'optimisation, histoire de cas. 

[Traduit par la revue] 
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Introduction 
The calculation of slope stability safety factors is a routine 

practice. In general it involves two steps: 
First, calculate the factor of safety for a specified slip surface 

using the method of slices. Extensive studies have been under- 
taken in this area, and a variety of these methods are available 
for generalized slip surfaces. 

Second, find, among many potential slip surfaces, the "criti- 
cal" surface that is associated with the minimum factor of 
safety. One approach to this issue can be elaborated from the 
calculus of variations (Baker and Garber 1977; Revilla and 
Castillo 1977). However, its extension to even the simplest 
geometrically and geologically realistic situation will lead to 
analytically intractable problems. 

With the advent of computers, numerical approaches have 
become competent in dealing with geotechnical problems that 
involve heterogeneous and nonlinear physical behaviors as 
well as complicated boundary conditions. Since the 1950's, the 
theory of optimization, which acquires extrema by numerical 
approaches, has been successfully developed and applied in 
various fields including the minimization of safety factors for 
slope stability analysis. Boutrup and Love11 (1980) presented a 
strategy that included random generation of slip surfaces and 
repeated comparisons of calculated factors of safety. This 
method is most primitive in the area of optimization. Baker's 
approach (1980) employed dynamic programming, which, as 
he stated, is applicable only to "additive functions." To 
render Spencer's method tractable, Baker had to introduce 
sophisticated treatments. In each iteration dynamic program- 

ming was involved for solving the force and moment equilib- 
rium equations. Coupling the calculation and minimization of 
safety factors increased the complexity of the algorithm and 
complicated its extension to other methods of slices, as dis- 
cussed by Li and White (1987). Celestino and Duncan (1981) 
adapted an alternative variable method. Their work was 
extended by Li and White (1987), who introduced a number of 
techniques, notably the rational approximation method for 
one-dimensional search and the compound iterative procedure 
devoted to enhancing the efficiency of the generalized proce- 
dure of slices of Fredlund and Krahn (1976). Simplex and 
complex methods were employed by Nguyen (1985) and Sun 
(1984) respectively. Sun's successful results seem to contradict 
Nguyen's argument that "application of the Box method to the 
search for the critical slip surface may not be relevant." 

All these approaches seem to be practical and feasible. The 
results of practical experience will reveal their merits and pro- 
mote their application. However, in contrast to the extensive 
study on the methods of determining safety factors and the 
methods of optimization, the combination of the two is still 
being developed. To expedite the implementation of this auto- 
matic searching technique as an engineering routine, the 
authors wish to share the following highlights of their exper- 
ience: (1) some simple and effective patterns for discretizing 
slip surfaces; (2) applications of optimization methods that 
require the evaluation of derivatives, such as the Davidon- 
Fletcher-Powell method, which are widely acknowledged to 
be more efficient, especially when the degrees of freedom 
increase; (3) modifications to Davidon - Fletcher- Powell 
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FIG. 2. Combined pattern of discretization. 
FIG. 1. Discretization patterns. 

methods; (4) validation of the optimized results by closed-form 
and grid search solutions; (5) the influence of different 
assumptions of interslice forces upon the optimized results; 
(6) the analysis of a case history by use of the approaches intro- 
duced herein. 

The objective function and discretization patterns 

Slip sugace discretization patterns 
The factor of safety F of a specified slip surface, represented 

by a curve y = y(x) (Fig. I), can be calculated by conventional 
methods of slices. Finding the "critical slip surface" related to 
the minimum safety factor F, involves a mathematical proce- 
dure for minimizing the functional 

The typical unconstrained optimization technique solves for 
the minimum of a given objective function 

with respect to variables z , ,  z z ,  . . . , z,, which are represented 
by a vector 

where n is the degree of freedom " 
Therefore, the slip surface y = y(x) should be approximated 

by the use of certain patterns of discretization: 
Pattern 1. The simplest approximation divides a slip surface 

by a number of nodal points A,, A?, . . . , A, along the curve 
y = y(x) and connects each pair of contiguous points by a 
straight line, as shown in Fig. 1. The variables of Z in [3] are 
then the coordinates of the individual points xl ,yl, x2,y2, . . . , 
x,,y,, that is, 

The limitations of this approximation can be eliminated by 
increasing the number of nodal points. 

Pattern 2. Pattern 1 is modified to connect several successive 
nodal points by a smooth curve, usually constructed by splines 
as shown in Fig. 1. Fewer nodal points are needed to generate 
simulations that are just as rational as those generated by the 
"straight line" pattern. A decrease in degrees of freedom is 
especially advantageous for numerical convergence of the 
problem. The present approaches adopt cubic splines with 
first-kind boundary conditions (Ahiberg et al. 1967). 

It is possible, and in many cases desirable, to combine the 
two patterns and construct an approximation consisting of both 

straight and curved lines. This need appears, for instance, in 
the case of a fairly homogeneous embankment overlying a 
weak bedding plane, as shown in Fig. 2. 

Degree of freedom 
The degree of freedom is the number of variables involved in 

Z. During the minimization of the safety factors, the nodal 
points move both vertically and horizontally towards their opti- 
mal locations. In general, there are 2m degrees of freedom for 
m nodal points. However, it may be reduced to n and the 
remainder, 2m - n,  may not be included in [4] for the follow- 
ing reasons: (1) In some cases, the left and (or) right ends of 
the slip surface are well defined. Their coordinates are fixed 
and will not be variables. (2) A nodal point on a structural dis- 
continuity may sometimes be specified as moving exclusively 
along that geological bedding plane. Only one of its coordi- 
nates is then independent, and the other can be readily deter- 
mined by the geometry of the discontinuity. The degree of 
freedom of that point thus falls to 1, with an accompanying 
specified direction of movement. 

During optimization, the points A, and A,, which are origi- 
nally located at the slope surface, may move inside or outside 
of the slope to new locations Bi and Bk, as shown in Fig. 2. 
Unlike Li and White's approach (1987), which defines these 
kinds of points as a separate category, the present work finds 
the upper and lower points of interception Bl and B,, and 
adjusts the slip surface information accordingly. Therefore, 
these points need no special treatment. 

For a problem with n degrees of freedom, the expression of 
Z in [4] is thus replaced by [3]. 

Evaluation of the objective function 
Various methods of slices can be used to calculate the factor 

of safety (Bishop 1955; Janbu 1973; Spencer 1967; Morgen- 
stem and Price 1965; Sarma 1973). A comprehensive study 
was made by Fredlund (1984). Some of the researchers (Baker 
1980; Li and White 1987) extended the method of slices they 
used to meet relatively stringent numerical effectiveness 
requirements of the optimization algorithm. Extensions to the 
generalized method of slices (Chen and Morgenstem 1983) 
were used in this paper to meet the following demands: 

(I) The evaluation of safety factors should be reasonably 
rigorous, capable of providing accurate results consistent with 
those obtained by closed-form solutions and therefore furnish- 
ing convincing evidence of the validity of the optimized 
results. In the Appendix, a classical problem of the plasticity is 
solved by the method of slices, using Chen and Morgenstem's 
extensions with satisfactory results. This problem is subse- 
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CHEN AND SHAO 737 

t a n  p 

tan p = f o ( x )  + h f ( x )  f ( x )  
,,' 

t a n  fi 

t a n p  = fo (x )+hE(x )  f ( x )  

f ( x )  = s i n [ ( = ) " ]  
b-a 

the principle of complementary shear stresses. This argument 
(Chen and Morgenstern 1983) requires that the interslice forces 
of the first and last slices be parallel to the slope surfaces at 
their relevant end points if their widths are sufficiently small, 
that is (Fig. 3), 

[61 6, = ya; P b  = yb 

where /3 and y are the inclinations of the interslice forces and 
the slope surface, respectively, while the subscripts a and b 
refer respectively to the right and left ends of the sliding mass. 

(2) The iteration process involved in various methods of 
slices should be effective enough to provide rapid convergence 
within a minimum allowable error limit of at least and 
preferably lop5 or even less. Although engineering practice by 
no means requires this level of numerical effectiveness and 
accuracy, it is required in the optimization algorithm because 
(1) the process involves hundreds of evaluations of F; there- 
fore, the guaranteed convergence of each of these evaluations 
is essential for smooth execution of the computer program; 
(2) some of the methods of optimization involve the evaluation 
of the gradient vector G ,  which is 

and is essentially close to zero when the optimum is being 
approached. Consequently, sufficient significant figures in the 
values of F are needed during differencing. Li and White 
(1987) also pointed out that without adequate accuracy of 
objective functions, the quadratic fitting technique involved in 
some optimization methods can be "a risky business." 

Table 1 shows iteration details that demonstrate the numer- 
ical effectiveness of Chen and Morgenstern's approach. This is 
an example of its many successful implementations where the 
converged solution is approached steadily and rapidly. 

(c) Methods of optimization employed 

FIG. 3. Assumed functionsf,(x) and f (x) of the interslice force incli- The process of minimization starts from an initially esti- 
nation: (a) geometry of the slope; (b) assumption 1, &(x) = 0, mated slip surface Z0  = (zy,z!, . . . ,z:)~ with a safety factor Fo 
f (4 = 1; (4 assumption 2,f,(x) = (tan 71, - tan y,)(x - a)@ - a) + and terminates at a neighboring location Zm = (ZO + 
tan -yay f(x) = sin [ ~ ( x  - a)l(b - a)]. AZ) = (zy + Az,,z! + Az,,. . . , z t  + Az,,) associated with 

F,. Different choices of Z0  will not affect the solution unless 
th i  problem exhibits multiminimum behavior. In that case, 

quently employed in the section Test problems and results. several ZO's from different domains of the slope profile are 
The assumptions concerning the interslice forces affect the needed. Each solution is then regarded as a local minimum. 

results calculated by the method of slices. Chen and Morgen- A variety of optimization methods are available. The present 
stern that these be made as approach employs three of them, which are briefly described 
(Fig. 3): below. For details the reader should refer to textbooks (see 

where p is the inclination of the interslice forces with respect to 
the horizontal; X is a coefficient to be determined; f(x) is an 
assumed function that is zero at both ends, and fo(x) ia another 
assumed function that has the required values of tan 0 at both 
ends when more rigorous analysis is performed. 

At the present stage of study, two assumptions, which permit 
easy access for practitioners, are used and their influence on 
the optimized results is investigated. 

Assumption 1. fo(x) = 0; f (x) = 1 (Fig. 36). This is the 
simplest and most commonly used assumption, generally 
referred to as Spencer's method (1967). 

Assumption 2. The values of&(x) and f (x) are schematically 
shown in Fig. 3c. This is a more rational assumption, which 
presents no inconsistency, at the ends of the sliding mass, with 

e.g., Walsh 1975). 

Nelder and Mead's simplex method (1965) 
For a given initial estimate ZO, a simplex consisting of n + 1 

vertices Ri (i = 1, 2 , .  . . , n + 1) is established according to 
some suggested pattern. By reflections, expansions, and con- 
tractions, the simplex is renewed and moves towards the extre- 
mum until the convergence criterion is met, that is, until 

where 

In the present approach E = 
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738 CAN. GEOTECH. J.  VOL. 25,  1988 

TABLE 1. Iteration details of the calculation of the factor of safety for slip surface A4B4C4D4 
in Fig. 10 

Unbalanced force Unbalanced moment 
Iteration G,, M,, 

time (kN . m) F X 

NOTE: The unbalanced force G,, and moment M,, are defined in eqs. [40] and [41] found in Chen and 
Morgenstern (1983). They are both expected to be zero when accurate F and X are obtained. 

The method of steepest descent 
For the current step of iteration v, with the slip surface vector 

Zv ,  ZL'+ l is obtained by a linear search in a certain direction 
S ,  that is, Zv+' is a vector that minimizes Z v  + a s v  with 
respect to a,  

A quadratic fitting technique is used to perform the linear 
search. 

The steepest descent method defines S as the negative gra- 
dient vector, that is, 

The iteration terminates when 

[12] 1 F(ZV+')  - F(ZV)  I < 6 

where E is taken as 1.5 X l o p 5 .  

Davidon - Fletcher - Powell method and its modi$cation 
This method was first suggested by Davidon (1959) and 

modified by Fletcher and Powell (1963). It is sometimes 
referred to as the DFP method, and enjoys a reputation for high 
numerical efficiency. 

The computation procedure is similar to that of the method 
of steepest descent, except that the direction of linear search at 
step v is taken as 

[13] S v = - A v G v  

where A at step v + 1 is obtained by 

[14] A v + ' = A v + C v - D V  

in which v = 0, 1 ,  2 ,  . . . and 

. . . . . . . . . .  

symmetry 
L 

A0 can therefore be regarded as an assumed approximation to 
H -  l and is generally taken as the unit matrix I .  A ' ,  A2, . . . are 
obtained by [14] until the mth iteration, at which A,, is close 
enough to H-l ,  and the convergence criterion is met. 

However, our experience showed that implementation of the 
conventional algorithm for minimizing safety factors was not 
as efficient as anticipated. Investigations revealed that this is 
attributable to the very large values of the individual elements 
of H-' .  For problems concerned with slope stability, the 
values of a2F/aziazj ( i ,  j = 1, . . . n)  are generally of the order 
of lo-' - l o p 5 ,  provided that SI units are employed. It is evi- 
dent that the first assumed matrix AO, which is taken as the 
unity matrix in the conventional algorithm, is too far from H-I 
to ever reach it. Therefore, the functioning of the algorithm for 
some problems became less efficient. 

A modification was subsequently tested, taking A0 as 

[20] A O = Z x  10p 

where p is a rough estimation of the order of magnitude of the 
average value of the elements of H-I.  In the present work, the 
estimation takes place after the first linear search is completed 
and the values of a2F/aziazj ( i ,  j = 1 ,  . . . n)  in the domain con- 
cerned can be estimated. The value of p is determined by the 
inequality 

The modification was successful. This argument will be fur- 
ther elucidated in test problem 2 in the next section. 

Both the steepest descent and DFP methods require evalua- 

[ I S ]  AZv=ZV+'  -2" tion of the gradient vector G,  whose variables are Gery small in 
magnitude when the minimum is being approached. The modi- 

The basic concept of the method involves successively fication recommended by Stewart (1967) was adapted. This 
approaching the inverse of the Hessian matrix, H- ' ,  at the approach allows a reasonable estimation of the step size during 
extremum, via a series of matrices AO, A', . . . ,An. The Hessian differencing, based on an approximate balance of the effects of 
matrix is defined as truncation error and cancellation error. 
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CHEN AND SHAO 

I I I 

0 2 4 6 m 
scale 

FIG. 4. Slip surfaces of test problem 1 (both ends fixed): I, initially estimated, Fo = 1.043; 11, critical F,,, = 0.993; 111, theoretical. 

Test problems and results TABLE 2. Results calculated using different assump- 

To verify the feasibility of the approaches, a number of test 
problems were designed and solved. 

Test, problem 1 
Figure 4 shows a slope that has a closed-form solution. The 

tions of interslice forces for test problem 1 (Fig. 6) 

Slip surface 

Initially estimated Critical 

appendix gives detaileddiscussions on the location of the theo- fo(x) and f ( 4  No. Fo No. F,,, 
retical failure surface and its associated factor of safety. 

The calculation began with an initial estimate that connected Assumption 1 I 1.265 I1 0.966 
the points 1-6 with straight lines. Functions fo(x) and f ( x )  Assumption 2 I 1.183 111 0.991 

were set analogous to the theoretical distribution of tan P ,  
which is shownin Fig. A3b of the Appendix. Points 1 and 6 
were specified as fixed points; the others were allowed to 
move both vertically and horizontally. The results obtained by 
the DFP method showed that the optimized locations of points 
2' -5' fell exactly onto the theoretical slip surface ABCD with 
a minimum safety factor of 0.993, as shown in Fig. 4. Figure 5 
shows another trial, which permitted free movement of the left 
end along the slope surface. Splines were used. The initial esti- 
mate in Fig. 5a was designed to have an irregular shape, while 
that in Fig. 5b was a straight line connecting five equally 
spaced points and was purposely designed to be far from the 
expected theoretical failure surface. Both of the optimized 
critical slip surfaces agreed closely with the theoretical failure 
surface. 

In the above cases, the assumptions fo(x) and f ( x )  were 
designed to simulate the theoretical distribution of tan 0, which 
is generally undeterminable in practical problems. The next 
investigation compares the results obtained by the two conven- 
tional selections of fo(x) and f ( x ) ,  previously defined as 
assumptions 1 and 2. The problem was recalculated using the 
DFP method and the results in Fig. 6 and Table 2 show that 
both the locations of critical slip surfaces and the value of Fm 
are fairly close to the theoretical solution. Assumption 2 
yielded more accurate results than assumption 1 .  

Table 3 compares the numerical effectiveness of different 
methods. For the same problem, the unmodified DFP method 
required 15 linear searches, whereas the modified method 

needed only 6. In this case, the method of steepest descent was 
the least efficient. 

Test problem 2 
Figure 7 shows a simple example with two degrees of free- 

dom, which made it possible to compare the optimized results 
with those obtained from the grid search. Assumption 1 was 
used for this problem. The slip surface ABC consisted of a 
horizontal part of BC along a weak layer and an inclined 
straight line AB. Point C was fixed, while A and B were speci- 
fied as moving horizontally. The variables of Z in [3] include 
the abscissas of points A and B, represented by x ,  and x2 
respectively. The grid search gave the contours of equal F with 
respect to x ,  and x2 shown in Figs. 8 and 9,  from which F,,, can 
be found to be 1.257 at Z m  = (92.00,143.00)T. 

The first, second and third trials using the steepest descent 
method began at (84.000, 160.000)T, (70.000, 145.000)T, and 
(112.00,150.00)T and converged at virtually the same loca- 
tion, as indicated by the arrows l ,  2 ,  and 3 in Fig. 8. Note that 
each linear search proceeded normal to the contour of equal F 
and converged at the "valley" in that transect. This confirmed 
that the search followed the line of steepest descent, and that 
the quadratic fitting technique for linear search ( [ l o ] )  was 
working. 

The fourth calculation, using the simplex method, started 
from Z0 = (63.00,125.00)T and also converged at the same 
optimized results obtained above, as shown in Fig. 9. 
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q = 149.30 kPa 

scale 

q = 149.30 kPa 

I I I 

0 2 4 6 nl 
scale 

FIG. 5. Slip surfaces of test problem 1 (left end moving along the slope surface, two trials with different initial estimates): (a) I, initially 
estimated, Fo = 1.101; 11, critical, Fm = 1.009; method of steepest descent employed; III, theoretical; (b) I, initially estimated, Fo = 1.328; II, 
critical, Fm = 1.007, simplex method employed; 111, theoretical. 
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q = 149.30 kPa 

I I I I 

0 2 4 6 ni 
scale 

FIG. 6. Test problem 1 analysed using assumptions 1 and 2. For calculated results, see Table 2. 

/\ resistance c'= 9.8 kpa 

FIG. 7. Slip surfaces of test problem 2: 1, 2, 3, 4, initially estimated; 5, critical. Dimensions in metres: 

However, calculations using the DFP method without the 
modifications for these trials, except for the second one, were 
unsuccessful. Take the fourth trial as an example. Starting at 
point A in Fig. 8 where Z0  = (63.00,125 .OO)T, the first linear 
search proceeded in the direction So  = (0.812, -0.088)T, and 
converged at point B where Z' = (79.259,123.229)T. From 
[14], it can be found that 

0.5917 -0.492 2003.8 -217.7 

- [ - 0 . 4  0 . 4 0  = [-27.7 2 4 . i  

It can be seen that C0 accounted for a great majority of A', 

TABLE 3. Comparisons of numerical effectiveness 
using different methods (for the problem with initial 

estimate I in Fig. 6) 

No. of CPU time on 
Method linear searches Hitachi M-160 

Steepest descent 3 8 2 min 46 s 
DFP 15 1 min 02 s 
Modified DFP 6 0 min 30 s 

while the contributions of (A0 - Do) to A' were negligible. 
The direction of the second linear search, determined by [13] 

as S 1  = (19.3,-1.7)T, is shown as BC, in Fig. 8,  along which 
the linear search was fruitless. No further progress in minimi- 
zation was made after that. Comparing BCI with BC,, the 
direction of negative gradient at point B, one can find that the 
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Contours of e q u a l  s a f e t y  factors 

X I  , t h e  abscissa of point A ,  

FIG. 8. Process of optimization of the four trials shown in Fig. 7. The directions of the second linear search are (1) BC,, the DFP method 
without modifications; (2) BC, the DFP method with modifications; (3) BC2, method of steepest descent. 

method of steepest descent was even superior to the DFP 
method in this case. 

The modification for the DFP method suggested by the 
authors was then introduced. The value of p in [20] was esti- 
mated by [21] to be 3. A' was recalculated as 

It is clear that the contributions of (A0 - Do) to A' were no 
longer negligible and the direction of the second linear search 
was calculated to be S' = (3.07,3.45)T, which is shown as BC 
in Fig. 8. A great advance was made, eventually giving a final 
solution of Zm = (92.24, 143.26)T and F,, = 1.257. 

Test problem 3 
In this problem, shown in Fig. 10 and Table 4, the four ini- 

tial estimated slip surfaces were defined by four sets of points 
A,B,C,D having subscripts 1,2,3,4 respectively. Points A and 
D moved both vertically and horizontally, while C and B were 
specified as moving along the weak seam. A and D may be 
located inside or outside of the slope during optimization. The 

TABLE 4. Geotechnical parameters for test 
problem 3 (Fig. 10) 

Shear strength 
Density parameters 

P 
Soil layer (g/cm3) 4' (deg) C (kPa) 

information about the slip surface was adjusted accordingly. 
Assumption 1 was used first. The minimized results of the 
modified DFP method are shown in Fig. 11 and Table 5, from 
which the differences in the critical slip surface locations and 
the minimum safety factors derived from the four initial esti- 
mates are found to be insignificant. Admittedly, the fourth 
case yielded F, of 1.025, which was slightly greater than that 
of the other three cases. This is because the fourth initial esti- 
mate differs appreciably from the other three in both location 
and shape. 

The results gained from the DFP method without modifica- 
tions are also shown in Table 5. The values of F,!,, were 
generally greater and the critical slip surface location of the 
fourth case, shown in Fig. 12, indicated even greater devia- 
tions. Figure 12 also compares the results obtained by using 
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Contourj of equal safety factors 

r 

initial 

X I ,  the abscissa of point A, m 

FIG. 9. Process of optimization of the fourth trial shown in Fig. 7 using the simplex method. 

S e a m  with low shear 
resistance . c =9 .8  kPa, 2 '  = 16" 

FIG. 10. Four initial estimates of the test problem 3. The respective locations of A, and A,; B,, B,, and B3; C, ,  C,, and C3; Dl .  D2, and D, are 
identical. 

other methods of optimization. Except for the unmodified DFP 
method, they agree with each other closely. 

Figure 13 and Table 6 show the influence of different 
assumptions of the interslice forces upon the optimized results. 
The minimum safety factors gained from assumptions 1 and 2 
were 1.025 and 1.010 respectively, and the two critical slip 
surfaces were close together. This implies that different 
assumptions of interslice forces do not significantly affect the 
optimized results. 

Test problem 4 
This problem reevaluates the December 24, 1985, disaster at 

the Tianshenqiao Hydroelectric Power Project in Guangxi 
Province, China, in which a landslide killed 48 people. 

The slide area is on the right bank of the Nanpanjiang River 
where the sluice channel of the dam was being constructed. 
The slope consisted mainly of Quaternary alluvium and talus 
covered by road fill and underlain by middle Tertiary bedrock, 
composed of shales and sandstones. There was evidence of 
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FIG. 11. Critical slip surfaces obtained from the four initial estimates shown in Fig. 10 by the modified DFP method. For calculated results see 
Table 5. The respective locations of B3 and B,; C, and C3; D, and D3 are basically the same. 

scale 

FIG. 12. Critical slip surfaces obtained by different optimization methods based on the initial estimate A,,B,,C,D, in Fig. 10: 1, modified 
DFP, Fm = 1.025; 2,  steepest descent, Fm = 1.025; 3, simplex, Fm = 1.025; 4 ,  DFP without modifications, F& = 1.035. The respective 
locations of A, and A,; B,, B,, and B,; and C,, CZ, C,, and C; are basically the same. 

I I 

0 10 20 30 m 

scale 

FIG. 13. Test problem 3 analysed using assumptions 1 and 2. For calculated results, see Table 6. 
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FIG. 14. Test problem 4. Geological profiles before and after failure. Descriptions and geotechnical parameters of layers 1-7 are listed in 
Table 7. 

TABLE 5. Results calculated for test problem 3 

Minimized solution, Fig. 11 

Modified DFP method DFP method 
Initial estimate, Fig. 10 

No. of No. of 
No. Slip surface Fo Slip surface F,,, linear searches F linear searches 

1 A,B,C,D, 1.191 A,B,C,D, 1.01 1 8 1.014 9 
2 A2B2C2D2 1.12 1 A2B2C2D2 1.009 10 1.011 6 
3 A3B3C3D3 1.120 A3B3C3D3 1.009 9 1.012 5 
4 A,B,C,D, 1.1 17 A,B,C,D, 1.025 7 1.035 9 

NOTE: FA,, minimum factor of safety obtained by the DFP method without modifications; F,,,, minimum factor of safety 
obtained by the DFP method with modifications. 

groundwater mainly coming from surface r~lnoff of the No. 6 the construction of the retaining wall of the sluice channel. The 
gully and the fissures in the bedrock. 71 15 m3 elliptical sliding mass was 63 m long and 36 m wide. 

The landslide was triggered by the exposure of the dark grey It slumped 20 m down and was 50 m across. 
silty clay layer, caused by the removal of the toe material for The geological profiles shown in Fig. 14 suggest that the 
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FIG. 15. Test problem 4. Slip surfaces and calculated results. 

TABLE 6. Results calculated using different assump- 
tions of interslice forces for test problem 3 (Fig. 13) 

Slip surface 

Initially estimated Critical 

h ( x )  and f (4 No. F, No. Fill 

Assumption 1 1 1.117 2 1.025 
Assumption 2 1 1.112 3 1.010 

failure surface partly followed the interface between soil and 
the masonry wall near the crown, and partly that between soil 
and bedrock near the toe. 

Stability analysis used the parameters provided by the pro- 
ject designers, as shown in Table 7. 

The critical slip surface calculated by the simplex method 
was fairly close to the measured failure surface as shown in 
Fig. 15. The optimized location also suggested that the lower 
part of the critical slip surface followed the soil-bedrock 
interface. The large values of the shear resistance parameters 
for the rock layer behaved somewhat like a penalty function of 

I the constrained optimization method, and successfully pre- 
vented the slip surface from penetrating that rock layer. The 

I low value of F,, was probably caused by the low shear strength 
I parameters assigned by the designers. 

Summary and concluding remarks 

The objective of this study is to develop a numerical tech- 
nique for determining the minimum safety factors in slope sta- 
bility analysis. The four test problems presented provide 
convincing evidence that this objective can be met by applying 
various methods of optimization. 

TABLE 7. Geotechnical parameters used in the slope stability analysis 
of test problem 4 (refer to Fig. 14) 

Shear strength 
Density parameters 

P 
Soil layer Description (g/&n3) C$ (deg) C (kPa) 

1 New fill, clay and 1.85 21.8 19.6 
debris mixture 

2 Old fill, sand, clay, 1.85 21.8 19.6 
and debris mixture 

3 Quaternary talus, 1.85 21.8 0.0 
clay with rock 
fragments 

4 Quaternary alluvium, 1.85 20.8 29.4 
fine sand and 
medium sand 

5 Quaternary alluvium, 1.8 1 10.2 34.3 
grey and dark silty 
clay 

6 Quaternary alluvium, 1.90 24.2 0.0 
gravels and sands 

7 Tertiary bedrock, 2.40 45.0 39.2 
shales, sandstones 
with limestone 
intercalations 

(1) The objective function to be optimized, that is, the factor 
of safety, is calculated by the conventional method of slices, 
which involves numerical iterations. The extensions to the 
generalized method of slices (Chen and Morgenstern 1983) 
were employed to calculate the objective function because of 
their ability to obtain guaranteed convergent values of safety 
factor with adequate accuracy. This is required for the success- 
ful implementation of the optimization algorithm. 
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(2) The validity and feasibility of the optimization methods 
have been proven by the successful solution of the four test 
problems. 

(3)While various optimization methods are all applicable, 
the modifications to the Davidon-Fletcher-Powell method 
suggested by the authors were found to be  essential because of 
the peculiarities involved in slope stability analysis. 

(4) The use of different assumptions of the interslice forces 
has no significant effect upon the optimized results. 

Recent work on transferring the computer program to an 
IBM-PC-XT microprocessor has made it possible to provide 
engineers access to the present approaches. 
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a vertical load. This is a classical problem in the theory of  plas- 
ticity first solved by Prandtl(1921). The critical vertical load is 
determined by 

where C is cohesion and $ is the inclination of the slope. The 
derivation of [A I ]  can be  found in Van Iterson (1947). 

I 

FIG. A2. Prantdl solution to bearing capacity of foundations. 
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FIG. A3. The analysis of the problem shown in Fig. A l :  (a) geometry of the slope; (b) theoretical distribution of tan P ;  (c) f,(x), f(x) being 
analogous to the distribution of tan 0 shown in (b); (d) assumption 1 shown in Fig. 3b; (e) assumption 2 shown in Fig. 3c. 

When the inclination of the slope becomes horizontal (see 
Fig. A2), the problem reduces to the well-known Prandtl solu- 
tion of bearing capacity (Terzaghi 1943), that is, 

Using Hencky's theorem of slip line field, the following 
points can be made regarding the critical state of the slope: 

(1) The slope is divided into two regions. Zone 1 is an area 
of plastic yielding in which every point is at limit equilibrium. 
Accordingly, the values of tan /3 can be identified with the 
curve defined by 1234 in Fig. A3b. Notice that the value of /3 
at the end point D is 60°, which agrees with the value deter- 
mined by [6]. In zone 11, the elastic state prevails. 

(2) The slip line ABCD, which separates the plastic and elas- 
tic zones, is composed of straight lines AB and CD and the cir- 
cular arc BC. They are schematically identified in Fig. A l .  

(3) If the method of slices is performed for the slip line 
ABCD, the lower bound of safety factors should be unity. 

The generalized method of slices was then performed, 
adopting various assumed functionsfo(x) and f (x), which are 
schematically illustrated in Fig. A3. In this case, $ = 60" = 
7~13 and C = 49.0 kPa. Using [Al.], the critical vertical load 
is calculated to be 149.30 kPa. Noting the results shown in 
Fig. A3: 

(1) If the value of fo(x) was taken to be zero and that off (x) 
was purposely made analogous to the theoretical distribution of 
tan /3 shown as 1234 in Fig. A3b, the calculated F was 1.002 
and Pb was 60.05', which agreed with the expected theoretical 
values of 60" determined by [5]. 

(2) Assumption 1 gave a safety factor of 1.050. 
(3) Assumption 2, which is mechanically more reasonable, 

gave a better result-a safety factor of 1.036. 
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