
Evaluation of mobile app paradigms

Ngu Phuc Huy
Norwegian University of Science and Technology

Dept. of Telematics, O.S. Bragstads plass 2A, Trondheim,
Norway

Tel: +841265583872
phuchuy86@yahoo.com

Do vanThanh
Telenor & Norwegian University of Science and

Technology – Dept of Telematics
Snarøyveien 30 1331 Fornebu, Norway

Tel: +47 909 77102
thanh-van.do@telenor.com

ABSTRACT
The explosion of mobile applications both in number and variety
raises the need of shedding light on their architecture,
composition and quality. Indeed, it is crucial to understand which
mobile application paradigm fits better to what type of
application and usage. Such understanding has direct
consequences on the user experience, the development cost and
sale revenues of mobile apps. In this paper, we identified four
main mobile application paradigms and evaluated them from the
developer, user and service provider viewpoints. To ensure
objectivity and soundness we start by defining high level criteria
and then breaking down in finer-grained criteria. After a
theoretical evaluation an implementation was carried out as a
practical verification. The selected application is object
recognition app, which is both exciting and challenging to
develop.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services – Web-based services, data sharing. H.3.4
[Information Storage and Retrieval]: System and Software –
Performance evaluation (efficiency and effectiveness). K.6.3
[Management of computing and information system]:
Software Management – Software development.

General Terms
Measurement, Performance, Standardization, Experimentation,
Human Factors.

Keywords
Mobile app, mobile application, HTML5, mobile widget, mobile
Web application, object recognition, evaluation

1. INTRODUCTION
Recently, smart phones with iPhone in the lead experience a huge
popularity and the number of smartphones in the market has
increased considerably. The reason behind this popularity is the
plurality of useful and fancy applications [6], also called Apps.
Although apps may have the same functionality there are many
ways of implementing them such JavaScript, HTML5, applets,

widgets, etc. Seen from the developers, users and service
providers it is both interesting and relevant to understand the
differences in terms of architecture, underlying mechanisms and
functionality. Further, it is crucial in the development and
selection of mobile apps to know which paradigm is more
suitable for a given type of applications or usage. This paper is
aiming at shedding light on the current most popular mobile app
paradigms and providing a fundament for appropriate selection of
mobile app paradigms. The paper starts with reviewing the
related works. Next, the different mobile app paradigms are
explained in a comprehensive way. The core of the paper is the
evaluation of the existing mobile app paradigms. To verify the
evaluation a practical implementation is carried out. A mobile
object recognition/visual search app is chosen and is developed
using the two most promising paradigms, namely native app and
HTML5 mobile app. Evaluation results are also thoroughly
discussed.

Andre Charland and Brian LeRoux in their article discuss the
strengths and weaknesses of mobile Web app and native app
paradigms, with the aim to make a comparison between mobile
Web apps and their native counterparts [1]. Richard Padley
shows how publisher can reduce development cost, improve time
to market and deliver a cross-platform mobile application to end
users [2]. Marie-Claire Forgue and Dominique Hazaël-Massieux
state in their paper that MobiWebApp project aims to enable
European research on Web technologies to shorten the gap
between mobile Web apps and native apps [3]. Tian-gang Xu,
Wei Wang and Xia Jia in their research review the APIs of
several platforms and propose a solution to cross-platform mobile
widget development by using Mobile Widget Portable
Development Library (MWPDL) [4]. Tommi Mikkonen and
Antero Taivalsaari in their paper present the ongoing battle of
mobile native app and HTML5-based Web apps, and describe
two alternative scenarios for the future of the industry based on
the possible outcomes of the battle between the two mobile app
paradigms [5]. Our paper differs from all the explained related
works since it provide both a formal evaluation and practical
verification of the four mobile app paradigms.

In this section, we identify four mobile app paradigms, consisting
of native apps, mobile widgets, mobile Web apps and HTML5
mobile apps.

3.1. Mobile native applications
A mobile native application or native app is an application
specifically developed to execute on a specific device platform

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
 are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
MoMM2012, 3-5 December, 2012, Bali, Indonesia.
Copyright 2012 ACM 978-1-4503-1307-0/12/12...$15.00.

3. THE MOBILE APP PARADIGMS

2. RELATED WORKS

25

[7] and machine firmware, and cannot be used for other device
platform without modifications. For example, apps developed for
the iPhone run only on Apple devices. A native app could be a
stand-alone app running on the mobile phone or consisting of a
main component on the mobile phone communicating with
network servers. To use native apps users must download them
from app store and install them manually on their phones.

3.2. Mobile widgets
Mobile widgets represent lightweight, task-specific apps that
leverage Web content [8]. Mobile widgets exploit web
technologies, including HTML, CSS, JavaScript and XML.
Widgets will be executed within a runtime environment known as
widget engine (e.g. Opera, Nokia WRT, Samsung TouchWiz and
Yahoo!Blueprint). Different types of widgets need different
widgets engines to execute. Like native app, a mobile widget
could be a stand-alone application running on the mobile phone
or consisting of a main component on the mobile phone
communicating with a specific network server.

3.3. Mobile Web applications
Mobile Web application is a good paradigm to deliver
information and service to mobile phone. A mobile Web app
enables information processing functions to be initiated remotely
on Web server. The three-tiered architecture [9] is the most
popular Web app architecture, which consists of thin client layer
(mobile devices), application layer (Web server) and database.

3.4. HTML5 mobile applications
HTML5 is specified by W3C to create a standard consisting of a
set of features that can handle all the tasks that the current
technologies (e.g. Adobe System Flash, Apple Quick Time and
Java Oracle FX) are doing in a mobile Web apps. In the same
way as mobile Web apps, HTML5 web app can have a three-
tiered architecture where demanding processing can be carried
out remotely on the Web servers. Additionally, HTML5 supports
newer mobile technologies, such as Geolocation [10] and
Scalable Vector Graphic [16]. The new features of HTML5 that
benefits mobile Web apps include: Canvas [11], video tags [12],
location-based services [13], working offline [14] and Web
workers [15].

4. EVALUATION CRITERIA
In order to really assert which mobile application paradigms are
better it is necessary to consider the viewpoints of all the
involved players, namely developer, user and service provider.
We deduced the evaluation criteria as follows:

x Developer’s viewpoint

x Ease of developing:
o Programming language: This sub-criterion tells both

about the simplicity and the popularity of the
programming language.

o Software Development Kit (SDK):
� Applicability: This sub-criterion relates the

applicability and accessibility of the SDK.
� Specifications and tips: This sub-criterion is

about the quality of documents accompanied with
the SDK.

� Download installation and configuration: These
sub-criterion shows how straightforward to

download install and configure the SDK on our
development environment.

o Support from community: This sub-criterion is about
how much help developers could receive from
community (e.g. tutorials, development tools and
troubleshooting).

x Ease of coding:
o IDE capability:

� Code editor: This sub- criterion is about the
qualification of the IDE adopted for the app
development. A good code IDE will provide
immediate feedback with error messaged and
warnings, quick fix feature, content assistant and a
good guidance document.

� User interface builder: This sub-criterion shows
how robust the adopted user interface builder is. A
powerful user interface builder will have instantly
viewable and drag-and-drop capabilities, and other
features reducing the workload of developers to
create an attractive user interface.

o User interface: This sub-criterion shows how
straightforward it is to build an attractive and adaptive
user interface.

o Device’s interaction:
� Hardware: This sub-criterion describes how easy

it is to access device’s hardware, such as camera,
storage and WLAN card.

� Built-in apps: This sub-criterion shows how
effective it is to adopt different built-in apps on
devices, such as camera, phonebook and photo
gallery apps

o Web service interaction: This sub-criterion is to
evaluate the ease of using a Web service, such as
Google Map, Facebook and IQEngine.

x Ease of debugging: This sub-criterion tells about how
powerful and applicable the debugging tools are. A robust
debugging tool will help manage break point, trace object
value through the code and identify unexpected bugs.

x Ease of testing:
o Emulator: This sub-criterion show how effective is the

testing of apps on an emulator. A powerful emulator
will run fast and support as many device’s features as
possible, such as GPS, camera, and accelerator.

o Real device: This sub-criterion show how easy is the
testing of apps on a real device.

x Ease of deploying and updating: This criterion relates
how straightforward it is to deploy and update an app
onto a real device.

x Ease of distribution:
o Compatibility: This sub-criterion shows how easy it is

to distribute an app to multiple platforms.
o With app store: This criterion shows how easy it is to

distribute an app via app store.

o Without app store: This criterion relates the
possibility of distributing an app without the app store.

26

x Application types:
o Application using device’s capability: This sub-

criterion evaluates the possibility of apps to use
device’s hardware such as camera, keypad and GPS.

o Application using server’s capability: This sub-
criterion describes the possibility of apps to use
server’s capability such as storage and processing.

x Powerful APIs and libraries: This criterion shows the
robustness and the popularity of the APIs and libraries
that developers can use to build mobile apps.

x Payment possibilities: This criterion relates the
possibility to earn revenues from the sale of app.

x User’s viewpoint

x Ease of use:
o Performance: This sub-criterion presents the response

time of the app in milliseconds. The shorter time we
use the better the app performs.

o User interface: This sub criterion evaluates how
attractive, adaptive and responsive the app is.

o Operation: This sub-criterion shows the ease of use of
app. For example, it evaluates how to start the app and
how to navigate between the functionalities of the app.

x Functionality
o Working offline: This sub-criterion evaluates the

capability of working offline of the app.
o Accessing device’s hardware: This sub-criterion

describes how effectively the app can access device’s
hardware (e.g. camera, GPS and storage).

x Installation and update
o Compatibility: This sub-criterion shows the

compatibility of the app and how easy to install it on
different mobile platforms.

o Downloading, installing and updating: This sub-
criterion shows the simplicity of downloading,
installing and updating the app on mobile phones.

x Service/content provider viewpoint

x Content management
o Content presentation: This sub-criterion shows how

complicated it could be to present the content on a
mobile phone due to the limitation on screen’s size and
computing resource.

o Content delivering: This sub-criterion evaluates the
ease of delivering the content to mobile phones.

x Administration
o Security: This sub-criterion evaluates the effort of

content provider to secure their service (e.g.
authentication, confidentiality and integrity).

o Maintenance: This sub-criterion shows the ease of
hosting, managing, updating and maintaining the app.

x Distribution: This sub-criterion shows how easily
service/provider distributes their apps to end users.

5. EVALUATION AND RESULT
We evaluate the identified paradigms based on the described
criteria in the previous section. Points from 1 to 5 are given for
each criterion in which 1 is the lowest and 5 is the highest. The
points are given according to the information collected from
community of mobile app developers (e.g. Google code forum,
stackoverflow, etc) and several scientific articles (IEEE, ACM,

ScienceDirect, etc).
For developers, native apps and HTML5 are the best selection to
build a mobile app. If developers want to make an app that
requires accelerated graphic processing (e.g. high-end gaming
apps), they should develop a native app. Only in that way can the
app truly tap in processing powers and hardware features of the
device. On the other hand, for more straightforward content
driven service apps, HTML5 is preferred. W3C and other third
parties are developing new APIs and libraries to make HTML5

Table 1: Evaluation on mobile app paradigms

Viewpoints Criteria Native app Web app Widget HTML5

Developer

Ease of developing 4.67 3.67 5 4.67
Ease of coding 4 2 3 5

Ease of debugging 4.33 3 5 3
Ease of testing 4 1.67 3 4.33

Ease of deploying and updating 3 3 3 3
Ease of distribution 3.33 5 4.5 5
Application types 5 3 3.67 4.33

Powerful libraries and APIs 5 3 5 5
Payment possibilities 3 5 3 5

Average points 4.04 3.26 3.91 4.37

User

Ease of use 5 1.33 3.33 3.67
Functionality 4.33 1.67 3.33 3.33

Install and update 2 4.5 3 4
Average points 3.78 2.5 3.22 3.67

Service

provider

Content management 4 2.5 4 3
Administration 3.5 3.5 3.5 3.5

Distribution 2 5 3 5
Average points 3.17 3.67 3.5 3.83

27

more powerful and seamlessly capable of interacting with mobile
devices in the same manner in which native apps do. Widgets are
valuable for developers when they want to make a lightweight,
single functional and portable app on mobile phone. Mobile Web
app paradigm obtains the lowest grading because it is very
complicated to build a functional and powerful mobile Web app.
For mobile users, native apps are very robust, responsive and
usable to create the best user experience. HTML5 mobile apps
are the second choice of mobile users since they are lightweight
and cross-platform. HTML5 mobile apps are also functional and
perform well on mobile phones and they are coming closer to
native apps. Mobile widgets come third because they are
lightweight and quite convenient to use. Users are not interested
in mobile Web apps because they are slow, low functional and
unattractive.
For service/content provider, HTML5 mobile apps are the best
choice. Service providers can build an HTML5 mobile app once
and distribute it everywhere. They can hence seamlessly deliver
their content and service to mobile users. Mobile Web apps work
in the same way and get the second position in the race. Mobile
widgets and native apps have the lowest grading because of
platform fragmentation. Service provider must deploy widgets
and native apps onto every device. It is a complicated process
that considerably increases the cost and effort of service/content
providers.

6. VERIFICATION
In order to verify the evaluation carried out in the previous
section, we will build a mobile object recognition/visual search
app using the two most promising paradigms, namely native app
and HTML5 mobile app. The objective of the practical
verification is to ensure that the performed evaluation is
conformed to the reality and consequently usable. The same app
will be developed using both paradigms and evaluated according
to developer and user’s viewpoints. Comparisons with the former
evaluation will then be carried out.
The object recognition app in itself is a fascinating and useful
app which provide to users information about any requested
objects such as a glass, a car, a person to a building, a monument
or a mountain. The app will make use all capability of devices
and remote functionality provided by a Web service provider.
Figure 1 describes our technology architecture implementation.
The frontend app running on the device is a native app, an
HTML5 app or a PhoneGap app.

Figure 1: Technology architecture

The reason we choose IQEngine for the backend service is that
IQEngine API is very usable, and the object recognition is quite

fast (up to 1 minute per object). Moreover, we receive a lot of
support from IQEngine developer center such as tutorials,
guideline and troubleshooting, and 1000 free visual scans from
the service. We can also create our own training database to
reduce the time of visual search, which is an advantage over the
other online visual discovery engines.
The frontend apps can access the camera and keypad, connect to
the Internet and display the label on device screen. The user can
capture image of unknown objects by using device camera and
send the image and other parameters (e.g. the timestamp of the
image, the API key and the signature created by using HMAC-
SHA1 hashing algorithm) to IQEngine server through the
available APIs. The server subsequently analyzes, compares the
image with the images in its image database, labels the objects in
the image and responds the device. Finally, the frontend app will
display the label on device’s screen. The mobile phones adopted
for the implementation is the Samsung Galaxy GTI-5500 with
Android 2.1, iPhone 4 and HTC Desire HD with Android 2.3.

6.1. Native application
We develop the app using native app paradigm and deploy it onto
Android platform. The IDE to code the app is Eclipse and the
programming language is Java. Figure 2 show the user interface
of the native app when a user capturing an image and receiving
the result after all.

Figure 2: User interface of mobile recognition app

The app’s architecture has five main classes, including
HomeInterface, CameraView, AndroidExplorer, Inquiry and
IQEngine classes. HomeInterface defines the home interface of
the app. CameraView can be considered as the client for the
Camera service, which manages the actual camera hardware.
AndroidExplorer helps users select the available image file to
upload to IQEngine server. Inquiry initiates an API object using
API key and secret, queries the image, retrieves the result in
JSON format and decode JSON object into String object.
IQEngine creates the package, (e.g. the timestamp, image, API
key and API signature) and sends the request to IQEngine server.

6.2. HTML5 application
We create an object recognition app by using HTML5 mobile
app paradigm. Similar to the native app discussed in the previous
section, our HTML5 app can interact with device’s hardware and
IQEngine server. The difference between the two is that users
load the app onto their device and run in on browser. We use
Aptana Studio as the IDE for coding the app and Opera

28

Dragonfly for debugging and testing the code, and 000Webhost
service to host the app.
The architecture of the app hosted on 000WebHost.com includes
HTML5 and JavaScript, PHP script and jQuery Mobile files.
HTML5 provides us with the <video> element and
navigator.getUsermedia() to use device’s camera, and the
<input> element to create the file dialog to access file storage.
We also adopt several interface elements and features of jQuery
Mobile such as of pages within pages, Ajax navigation, page
transition, orientation on change and theming, releasing our
headache to make the app look like a native app.
Unlike the native app, the device will interact with the app on
000WebHost server rather than directly communicating with
IQEngine server. Users will receive the label after all as shown in
Figure 3.

Figure 3: Users retrieve label from IQEngine server

6.3. PhoneGap application
The paradigm we employ in this section to build object
recognition app is still HTML5 mobile app but we name it as
PhoneGap app to distinguish it with HTML5 app. We create the
app by using HTML5, CSS3 and JavaScript but we do not use
<video> and getUserMedia API to access device’s camera.
Instead, we wrap the app with PhoneGap framework to enable
the app to use the built-in apps (e.g. camera and photo gallery)
and deploy the app to multiple platforms (e.g. Android, iOS,
Windows Phone 7 and WebOS). We use Eclipse as the IDE and
PhoneGap as the SDK to develop the PhoneGap app.

The app architecture includes HTML5, CSS3 and JavaScript files
which stay on mobile phone, and PHP script which is hosted on
000WebHost server. The CSS3 will help to design the page with

a range of media types such as orientation, min-width and max-
width to make the app target different mobile devices with
different screen’s size and orientation.
From home interface users can capture an image or select an
available image in their photo gallery. Then they call PHP script
to upload the captured/chosen image onto 000WebHost server
and calling IQEngine API to recognize the object as in Figure 4.

Figure 4: Users receive the result from IQEngine server

6.4. Result
The result in Table 2 is same that from the former evaluation. We
find the grading for HTML5 mobile app paradigm by calculating
the average points of the HTML5 app and PhoneGap app for
every criterion.
Developers prefer HTML5 mobile app to native app paradigm
even though there is sufficient support to hook into device’s
hardware features from both paradigms. The reason is that the
HTML5/ PhoneGap code to access device’s hardware and Web
service is less verbose and complicated than Android Java code.
Building an adaptive user interface on HTML5 mobile apps is
also much more straightforward than on native apps.
Furthermore, the capability of “write once and deploy many” is
an advantage of HTML5/PhoneGap over the native app
paradigm.
For users, it is understandable that native app is more preferable
than the HTML5 mobile app paradigm. The native app is very
robust and convenient to use while the HTML5/PhoneGap app

has several limitations. The usability and the performance of the
HTML5 app are lower than the native app. We perform the tests
to measure the performance of the native app, HTML5 app and

Table 2: Evaluation on native app, HTML5 app and PhoneGap app

Viewpoin
t Criteria Native app HTML5 PhoneGap HTML5

mobile app

Developer

Ease of developing 4.83 4.83 4.83 4.83
Ease of coding 3.21 4.23 4.17 4.2

Ease of debugging 2 3 1.5 2.25
Ease of testing 3 3 2 2.5

Ease of deploying and updating 5 3 3.33 3.17
Ease of distribution 3 3 3.56 3.28
Application types 4.5 5 5 5

Powerful libraries and APIs 5 5 5 5
Payment possibilities 3 5 5 5

Average points 3.73 4.01 3.82 3.91

User

Ease of use 4.67 3 4.67 3.84
Functionality 3.67 3.33 4 3.67

Installation and update 2.5 3 3 3
Average points 3.61 3.11 3.89 3.5

29

PhoneGap app on Samsung Galaxy GTI-5500 phone. Figure 5
shows the time needed to use the apps in comparison.
We create three timers and integrate them into the apps to
measure the time needed to use the apps in milliseconds. The
timer created by using Android Java code is for calculating the
time using the native app and the others are in JavaScript to
measure the HTML5 mobile app and the PhoneGap app. We get
the system time of starting the apps and the system time of
receiving the result from the IQEngine server for each test. The
native app requires the least amount of time to use. Meanwhile, it
takes longer to use the HTML5 app than the native app and the
PhoneGap app. The reason is that we must run Opera browser
and load the app onto the browser before using it. PhoneGap app
takes longer to use than the native app because it takes much
more time to start the camera and capture a picture.

Figure 5: The amount of time to use the native app, HTML5

mobile app and PhoneGap app in comparison

6.5. Key finding and recommendation
W3C announces that HTML5 is a cross-platform solution that
can hook into device’s hardware (e.g. camera) to create a
powerful mobile app. In fact, developers face a fragmentation in
mobile platforms and browsers to build an HTML5 app to access
hardware. For example, HTML media capture is the first API in
2011 to standardize media capture on Web. It works by
overloading the <input type="file"> to capture snapshot with
device’s camera. However, the API is too limited to use and only
works on Android 3.0 browser. Therefore, we adopt the
implementation of getUserMedia API belonging to W3C
WEBRTC (Web Real-Time Communication) working group to
access device’s camera. However, only Google and Opera
currently have developer builds that include this API, and only
Opera Lab on Android supports developers to use it in their apps.
Native apps are well-known for their fast and responsive user
interface, and the seamless capability to access hardware
features. However, creating such apps is complicated and
requires much effort from developers on any platform.
Meanwhile, jQuery Mobile simplifies the code to build an
attractive and adaptive user interface for HTML5 mobile apps.
PhoneGap framework also lets developers make the HTML5 app
access built-in apps and run on multiple platforms effectively.
PhoneGap uses the same native APIs with native apps but
abstract them so that developers can simply write apps in HTML
and JavaScript. Therefore, we claim that the most effective
solution now to build the apps that are capable of using device
hardware (GPS, accelerator and camera) and working cross-
platform is to wrap HTML5, jQuery Mobile and CSS3 with
PhoneGap framework. However, PhoneGap apps cannot replace
native apps because they perform slower than native apps due to
the overhead from an abstraction and HTML render in addition to
the time to execute the native processes.

7. CONCLUSION
The goal of our work is to give some guidelines about which
mobile app paradigms are more suitable than other. After the
analysis and evaluation, we conclude that native apps and
HTML5 mobile apps keep their first places in the race of mobile
paradigms. Mobile widgets are still valuable but their role is no
longer so important on mobile devices. Mobile Web apps will
become a history and they are soon replaced by HTML5 mobile
apps. Although we strived to ensure objectivity it is worth noting
that the results of our work are only indicative because the
ultimate choice of a mobile app paradigm will always relies on
the taste of the developer and the context of the application

8. REFERENCES
[1] A. Charland and B. Loux, “Mobile application development: web

vs. native,” Commun. ACM, vol. 54, no. 5, pp. 49-53, May 2011.
[2] R. Padley, “HTML5-bridging the mobile platform gap: mobile

technologies in scholarly communication," Serials, vol. 24, pp. 32-
39, 2011.

[3] M. Forgue and D. Hazaël-Massieux, “Mobile web applications:
bringing mobile apps and web together,” In Proceedings of the 21st
international conference companion on World Wide Web (WWW
'12 Companion), ACM. Newyork. USA, pp. 255-258, 2012.

[4] B. Zhang, T. Xu, W. Wang and X. Jia, "Research and
implementation of cross-platform development of mobile
widget," Communication Software and Networks (ICCSN), 2011
IEEE conference , vol., no., pp.146-150, 27-29 May 2011.

[5] T. Mikkonen and A. Taivalsaari, “Apps vs. Open Web: The Battle
of the Decade,” In Proceedings of the 2nd Workshop on Software
Engineering for Mobile Application Development (MSE'2011,Santa
Monica, California, USA) , pp. 22-26, October 27, 2011.

[6] S. Tarkoma, and E. Lagerspetz , "Arching over the Mobile
Computing Chasm: Platforms and Runtimes," Computer , vol.44,
no.4, pp.22-28, April 2011.

[7] S. Tarkoma, Ed. Mobile Middleware-Architectures, Patterns, and
Practice, Wiley, pp. 2-3, 2009.

[8] C. Raibulet and D. Cammareri, "Automatic generation of mobile
widgets", International Journal of Pervasive Computing and
Communications, vol. 7, no. 2, pp.132 – 146.

[9] S. Helal, J. Hammer, J. Zhang, A. Khushraj , "A three-tier
architecture for ubiquitous data access," Computer Systems and
Applications, ACS/IEEE International Conference on. 2001 , vol.,
no., pp.177-180, 2001.

[10] B. Pejiü, A. Pejiü and Z. ýoviü , "Uses of W3C's Geolocation
API," Computational Intelligence and Informatics (CINTI), 2010
11th International Symposium on , vol., no., pp.319-322, 18-20
Nov. 2010.

[11] S.J. Vaughan-Nichols, "Will HTML 5 Restandardize the
Web?," Computer , vol.43, no.4, pp.13-15, April 2010.

[12] S. Pfeiffer and C. Parker, ” Accessibility for the HTML5 <video>
element,”. In Proceeding of 6th International Cross-Disciplinary
Conference on Web Accessibililty (W4A '09), ACM. USA, pp. 98-
100, 2009

[13] Y. Liu and E. Wilde, “ Personalized location-based services,”
In Proceedings of the 2011 iConference (iConference '11), ACM.
New York. USA, pp. 496-502, 2011.

[14] P. Lubbers, B. Albers and F. Salim, Pro HTML5 Programming:
Powerful APIs for Richer Internet Application Development, pp.
243-257, Apress, 2010.

[15] F. Reynolds, "Web 2.0–In Your Hand," Pervasive Computing,
IEEE , vol.8, no.1, pp.86-88, Jan-March 2009.

[16] A. Quint, "Scalable vector graphics," Multimedia, IEEE , vol.10,
no.3, pp. 99- 102, July-Sept. 2003.

[17] W3C working draft. getUserMedia: Getting access to local devices
that can generate multimedia stream. [Online] [Cited: May 2012]
http://dev.w3.org/2011/webrtc/editor/getusermedia.html.

30

