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ABSTRACT: 

Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several 
agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is 
not straightforward. Because different images of a SITS data have different levels of information regarding the classification 
problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification 
algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) 
algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS 
data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can 
be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and 
the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop 
mapping. The considered MKL algorithms are:  MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The 
experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy 
was able to provide better performances when compared to the standard classification algorithm. The results also showed that the 
optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.  

* Corresponding author 

1. INTRODUCTION 

Satellite image Time-Series (SITS) data are a collection of 
satellites images acquired from the same geographical area 
over a period of time (Jonsson and Eklundh, 2004). The SITS 
data, due to their ability to capture the dynamic spectral 
behaviour of plants and crops during their growing cycles, have 
been frequently used for different agricultural applications 
(Jamali et al., 2014). Among these applications, identification 
of crop types through classification is one of the most 
important ones (Verhegghen et al., 2014). This is because 
knowledge of crop types is required as the base information for 
several other agricultural studies, such as crop acreage 
estimation, yield forecasting, estimation of water requirements, 
and assessment of food security (Li et al., 2014; Löw et al., 
2015; Simonneaux et al., 2008). 
However, crop mapping through SITS data classification is a 
challenging task, due to particular characteristics of the data. 
The most discriminative characteristic of the SITS data is the 
dimensionality of its images’ feature space. If the SITS images 
have a single feature, it is called as univariate SITS. The SITS 
is called as multivariate SITS if its’ images have more than one 
feature (Adhikari and Agrawal, 2013). SITS data that consist 
of images acquired by multispectral or hyperspectral sensors 
are categorized as the Multivariate SITS (Adhikari and 
Agrawal, 2013). This type of SITS, in its original 
representation, is a four-dimensional data which cannot be 

classified using the conventional classification algorithms 
(Baydogan and Runger, 2015).  
The other SITS characteristic that affects its classification, is 
the fact that different images of SITS data have different 
statistical characteristics and contain different amount of 
information regarding the separability between different 
classes. These differences may happen as a result of changes in 
the sensor and atmospheric conditions between the acquisition 
times, as well as the changes of spectral characteristics of the 
crops (Li et al., 2014; Niazmardi et al., 2014).  
To address issues caused by the four-dimensional 
representation of the data, in some studies the multivariate 
SITS is converted into a univariate SITS by extracting a 
Vegetation Index (VI) such as Normalized Difference 
Vegetation Index (NDVI) from the data. On the one hand, this 
strategy is appealing since the univariate SITS data can be 
classified using all the classification algorithms, but on the 
other hand, it has two main drawbacks.  First, the VIs are 
calculated based on the information of few spectral bands of 
the data at each time, consequently, the univariate SITS 
generally contain less information content in comparison with 
multivariate SITS (Baydogan and Runger, 2015). Second, the 
user should select the best performing VI for the classification 
problem, which there is no method available to assist this 
choice (Gerstmann et al., 2016). Stacking the images of a 
multivariate SITS to create a single image is another common 
practice for multivariate SITS data classification. However, the 
stacked image can be very high dimensional (Keogh and 
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Pazzani, 1998). It should be noted that these two strategies 
cannot address the issues caused by the different statistical 
characteristics of the SITS images.  
In this paper, a classification strategy based on Multiple Kernel 
Learning (MKL) framework is presented for proper 
classification of multivariate SITS data. This classification 
strategy obtains a kernel-bead representation of the data by 
combining the kernels constructed from each time of the SITS 
data. The optimal combination of the kernels is estimated 
using the MKL algorithms. Finally, the composite kernel, 
obtained from this combination, is used for SITS data 
classification. Using this classification strategy, the issues 
associated with different statistical characteristics of the SITS 
data can be addressed. Because different kernels are 
constructed from the images of each time of the SITS. In 
addition, using this strategy, the final representation of the 
multivariate SITS data is a kernel function which can be 
classified using all the kernel-based classification algorithms. 
In this paper, we evaluated this classification strategy using 
several algorithms from different MKL categories. Although 
the MKL algorithms have been widely used for multi-modal 
and multi-feature classification of remote sensing images 
(Gomez-Chova et al., 2015; Niazmardi et al., 2017; Wang et 
al., 2016), they never have been used for multivariate SITS 
data classification.  
 

2. METHODOLOGY 

In this section, initially the MKL algorithms are briefly 
introduced and then the classification of SITS data using the 
MKL algorithms are discussed. Since most of the MKL 
algorithms are proposed based on the Support Vector Machines 
(SVM), the theory of the MKL algorithms are only proposed 
for binary classification problems. 

2.1 Multiple Kernel Learning 

MKL algorithms are a group of algorithms that aim to 
optimally combine a set of predefined kernels (known as basis 
kernel) into a composite kernel (Gönen and Alpaydın, 2011). 
The basis kernels can be constructed using different data 
modalities or from the same data by adopting different kernel 
functions. 
Assume that n binary-labelled samples , 1,...,D

i i n x   are 

available as the training data, from which M basis kernels 
 1 2, ,..., MK K K are constructed. The MKL algorithm 

combines these basis kernels with each other to create a 
composite kernel cK . The composite kernel provides a more 

flexible and more informative representation of the data as 
compared to those provided by each one of the basis kernels. 
The kernel combination is usually modelled as a linear 
weighted summation of the basis kernel as follows (Bucak et 
al., 2014): 
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where ,  1,...,md m M d  are the non-negative weights 

associated with the mth basis kernel, which should be estimated 
by the MKL algorithm.  
Considering the method used by the MKL algorithms to 
estimate the kernel weights, they can be divided into two 

categories: i) fixed rule MKL algorithms and ii) optimization-
based MKL algorithms. The detailed descriptions of these 
categories are given in the following sub-sections. 
 
2.1.1 Fixed-Rule MKL algorithms 
The algorithms of this category assign equally fixed values to 
the kernel weights, without any optimization. The MKL-sum 
algorithm, one of the most used algorithms of this category, 
sets the weights of each basis kernels equally to one 
(i.e., 1,  1,...,md m M  ). The fixed-rule MKL algorithms are 

very fast, but their performances are highly influenced by the 
presence of noisy and weak kernels among the basis kernels 
(Gönen and Alpaydın, 2011). The algorithms of this category 
are the most common algorithms in remote sensing literature 
(Camps-Valls et al., 2008; Camps-Valls et al., 2006; Tuia et 
al., 2010b; Zhou et al., 2015). 
 
2.1.2 Optimization-based MKL algorithms 
Optimization-based MKL algorithms estimate the optimal 
weights of the basis kernels through optimizing a target 
function (Gönen and Alpaydın, 2011). The target function is a 
parametric function of the kernel weights that reaches its 
extremum on the best set of kernel weights. There have been 
various target functions proposed for different algorithms of 
this category (Gönen and Alpaydın, 2011). However, the SVM 
loss function is the most used target function (Niazmardi et al., 
2016).  In the MKL algorithms that adopts this target function, 
both the SVM parameters (i.e., support vector coefficient) and 
kernel weights are estimate by optimizing the following 
optimization problem (Bucak et al., 2014): 
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Where f is the separating hyperplane in the Reproductive 
Kernel Hilbert Space (RKHS) of the composite kernel (

c ).  

iy  and (.)  are binary label of ith sample (
ix ) and loss 

function respectively. Trade-off parameter in this equation is 
shown by C. it can be proved that, this problem in the case of 
employing the Hing loss, can be cast into the following min-
max optimization problem (Bucak et al., 2014):  
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where 1( , , )T

n α  is the vector of Lagrange multipliers, 

 1, ,
T

ny yy  denotes the set labels of land-cover classes 

(where { 1, 1}iy     is the binary class label of the ith sample), 

while symbol   and 1  shows the element-wise product 
between two vectors, and a vector whose all elements are one, 
respectively.   is convex set from which the kernel weights 
are selected. Different MKL algorithms use different strategies 
for solving the optimization problem of Eq.3 (Bucak et al., 
2014; Niazmardi et al., 2016). One of the most successful 
strategies is using the alternative optimization. This two-step 
optimization strategy, after assigning initial values to kernel 
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weights, iterates a two-step procedure until a termination 
criterion is met. In the first step, it solves a classic SVM with 
the composite kernel and estimates the classifier parameters. 
Then in the second step, SVM parameters are fixed to the 
values obtained at the first step and the SVM objective 
function is optimized with respect to the kernel weights 
(Niazmardi et al., 2016).  
Since all the SVM solvers can be used in the first step of this 
optimization, the differences between the MKL algorithms that 
use this strategy, (known as wrapper MKL algorithms), are the 
methods and assumptions used in the second step of their 
optimization (Gönen and Alpaydın, 2011).  
Simple Multiple Kernel Learning (SimpleMKL), as one of the 
best-known wrapper MKL algorithms, uses a simple gradient 
descendant strategy to update the kernel weights on a simplex 
at the second step of this optimization (Rakotomamonjy et al., 
2008). This algorithm, due to its simplicity and having 
acceptable performance, have been used in many studies in 
remote sensing literature (Gu et al., 2014; Gu et al., 2012; Tuia 
et al., 2010a). Generalized multiple kernel learning (GMKL) is 
another wrapper MKL algorithm which adds a regularization 
term to Eq.3 for estimating the kernel weights. GMKL can 
adopt any kind of regularization while it is a differentiable 
function of the kernel weights. This algorithm also uses the 
gradient descendent method for optimizing Eq.3 with respect to 
kernel weights (Varma and Babu, 2009). In remote sensing 
literature, the GMKL algorithm have been only used in 
(Gevaert et al., 2016) for the classification of unmanned aerial 
vehicle data. 
In (Xu et al., 2010), using the group lasso regularization, an 
alternative formulation for the MKL optimization problem was 
proposed. This MKL algorithm, known as group lasso multiple 
kernel learning (GLMKL) uses a closed form solution to 
estimate the kernel weights at each iteration. This algorithm, 
have been recently used in remote sensing literature for 
combining  kernels constructed form spatial and spectral 
features extracted from hyperspectral data (Liu et al., 2016). 
Another alternative formularization of the MKL optimization 
problem was proposed by adding an Lp-norm (p>1) of the 
kernel weights vector as the regularization to the objective 
function of Eq.2. Using the block coordinate descent method 
for optimizing the obtained target function of this MKL 
algorithm, referred to as LPMKL, will lead to a closed-form 
solution for estimation of the kernel weights (Kloft et al., 2009; 
Kloft et al., 2011). 
 
2.2 SITS classification using the MKL algorithms 

SITS data classification using MKL algorithm, contains two 
steps. In the first step, basis kernels are constructed using the 
data acquired at each time of the SITS. Then in the second 
step, these kernels are combined into a composite kernel using 
an MKL algorithm, and the obtained composite kernel is used 
for classification. Figure 1 shows a flowchart for SITS data 
classification using the MKL algorithms. 
The proposed strategy for SITS classification has several 
advantages. First, it is able to properly model the different 
statistical properties of the data acquired at different times. 
This is due to use of different kernels for each time of the data, 
which enable the method to separately model the information 
content of each data.  In addition, using this method, the 
problem caused by the original four-dimensional representation 
of SITS data is addressed. Since, the composite kernel which is 
obtained as the final representation of the data, can be easily 

used for its classification using any kernel-based classification 
algorithms.  
 

 
Figure 1. Flowchart of the SITS data classification using MKL 

algorithms 

 
 

3. DATA AND IMPLEMENTATION 

3.1  SITS data set 

The performance of different MKL algorithms in the 
framework of the proposed strategy, were compared according 
to their ability to classify different crops using two SITS data 
sets. The used data sets are two subsets of a large SITS data 
which were made up 4 multispectral images acquired by SPOT 
sensors during the 2012 growing season over southwest 
Winnipeg, Manitoba in Canada (see Table 1 for acquisition 
dates).  All the images of both SITS data sets, which we 
referred to them as S1 and S2, were made up 1000×1000 
samples with the spatial resolution of 20 m and were 
atmospherically corrected and orthorectified. Four different 
spectral bands of these images were used for the 
implementations, namely, green, red, near infrared and 
shortwave infrared.  The false colour composite of both SITS 
data sets (using infrared, red and green bands) are presented in 
Figure 2 and Figure 3 for S1 and S2 data sets respectively. 
From the available crop maps of each SITS data set, two 
different sets of samples were extracted as training and testing 
samples. The considered crops of each SITS, with the number 
of samples used for training and testing are presented in Table 
2. 
 

Number  Acquisition Date 

1  23 June 2012 

2  28 June 2012 

3  5 July 2012 

4  14 July 2012 

Table 1. Acquisition dates of time-series data 
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(b) (a) 

  
(d) (c) 

Figure 2. False colour composite of the images of S1 time-

series, a) 23 June; b) 28 June; c) 5 July; and d) 14 July.  

  
(b) (a) 

  
(d) (c) 

Figure 3. False colour composite of the images of S2 time-

series, a) 23 June; b) 28 June; c) 5 July; and d) 14 July. 

 
 

Crop name 
 S1  S2 
 Training Testing  Training Testing 

Corn  108 1420  166 1132 
Canola  180 2456  173 3607 
Wheat  156 2054  153 3675 

Soy  127 1987  162 4713 
Oat  181 1978  148 1642 

Sun flower  94 1453  - - 
Barley  115 1128  - - 
Forage  - -  67 184 
Total  961 12476  869 14953 

Table 2. Number of samples per each crop used as training and 
testing samples for classification of each SITS data set. 

3.2 Experimental Setup 

In the experimental carried out in this paper, the basis kernels 
constructed from different images of the SITS data, have been 
combined into a composite kernel, using different MKL 
algorithms. The classification accuracy of an SVM algorithm 
trained with this composite kernel obtained from different 
MKL algorithms was used as the criterion for their 
comparison. MKL-sum (from the category of fixed-rule MKL 
algorithms) and SimpleMKL, GMKL (with L1 norm), LPMKL 
(with L2 norm), and GLMKL from optimization-based wrapper 
MKL algorithms, are considered for comparison in this paper. 
In order to construct the basis kernels, the Radial Basis 
Function (RBF) was used as the kernel function, due to its 
excellent learning capabilities (Kim et al., 2005). The 
parameter of RBF kernel was selected from the values in the 
range of [0.01-10] with a step-size increment of 0.5 by using a 
5-fold cross-validation technique. 
The trade-off parameter of the SVM algorithm was tuned using 
a 5-fold cross-validation from the range of [0.01-2000] with a 
step-size of 50. 
The trade-off parameters of the optimization-based MKL 
algorithms is another important parameter which should be 
tuned. However, there is no method available in the literature 
to estimate this parameter. Accordingly, in our experiments, all 
the MKL algorithms were run with different values in range of 

 4 3 310 ,10 , ,10   , and then the value associated to the 

highest classification accuracy was used. 
The optimization-based wrapper MKL algorithms use an 
iterative optimization procedure. In the experiments carried out 
in this paper, the iteration of these algorithms terminated when 
the number of iterations reached to 50 or in the case that the 
difference between the kernel weight vectors between two 
successive iterations was less than 0.001. 
For comparison, the performances of the MKL algorithms were 
compared with the results obtained from an SVM algorithm 
applied to the data cube obtained by stacking the images of 
different times of both SITS data sets. This method was called 
as standard SVM in this paper. 
All the experiments were implemented in MATLAB on a 
standard Laptop PC with Intel Corei7 CPU 2.4 GHz, 12 GB 
RAM. The LibSVM library was used to implement the SVM 
algorithm (Chang and Lin, 2011). 

4. RESULTS AND DISCUSSION 

Obtained results from the classification of both SITS data sets, 
using composite kernels obtained from different MKL 
algorithms are presented in Table 3 and Table 4 for S1 and S2 
data sets respectively. In these tables, the class accuracies and 
average class accuracies (ACA) are reported using the 
conditional kappa. In addition Overall Accuracy (OA) of the 
classification, kappa coefficient and the computational time of 
the MKL algorithms (in seconds) are also reported. 
As it can be seen from these results, using the MKL algorithms 
provided much higher accuracies for SITS classification as 
compared to the standard method. As an example, for S1 SITS 
data set, the standard method yielded the accuracy of 68.59%, 
while the SimpleMKL provided the accuracy of 74.88%. The 
higher performances of the MKL algorithms for SITS 
classification is due to their ability to correctly model the 
different information level of the images acquired at different 
times.  
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Corn  0.86 0.87 0.86 0.86 0.86 0.88 
Canola  0.68 0.78 0.85 0.85 0.79 0.79 
Wheat  0.66 0.70 0.75 0.75 0.70 0.68 

Soy  0.55 0.62 0.65 0.65 0.63 0.63 
Oat  0.71 0.70 0.67 0.67 0.69 0.69 

Sun flower  0.96 0.97 0.97 0.67 0.97 0.97 
Barley  0.37 0.40 0.39 0.39 0.39 0.39 

ACA  0.68 0.72 0.74 0.74 0.72 0.72 
OA (%)  68.59 72.63 74.88 74.82 72.81 72.78 
Kappa  0.63 0.68 0.70 0.70 0.68 0.68 

Time (S)  - 0 26.0 13.9 3.1 2.5 

Table 3. Obtained Results from classification of S1 using 
different algorithms. 
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Corn  0.76 0.77 0.78 0.78 0.77 0.77 
Canola  0.97 0.94 0.94 0.94 0.94 0.94 
Wheat  0.68 0.70 0.73 0.72 0.70 0.70 

Soy  0.78 0.86 0.87 0.87 0.86 0.86 
Oat  0.71 0.73 0.72 0.73 0.73 0.73 

Forage  0.06 0.12 0.06 0.06 0.06 0.1 
ACA  0.66 0.68 0.68 0.68 0.68 0.68 

OA (%)  78.31 80.82 82.16 81.95 81.23 81.05 
Kappa  0.72 0.75 0.77 0.76 0.76 0.75 

Time (S)  - 0 25.5 10.3 4.0 2.3 

Table 4. Obtained Results from classification of S2 using 
different algorithms. 

 
Comparing the performance of the MKL algorithms showed 
that the optimization-based MKL algorithms (such as GMKL, 
LPMKL, …), were able to provide better performances than 
the fixed-rule MKL algorithm (such as  the MKL-sum). This is 
because the optimization-based algorithms optimize the kernel 
weights, thus the influence of less informative kernels on the 
composite kernel will be decreased. 
Among different optimization-based algorithms, the GMKL 
and the SimpleMKL provided better classification 
performances than the LPMKL and the GLMKL algorithms. 
For example for the S2 data set, these algorithms yielded the 
accuracies of 82.16%, 81.23%, 81.23%, and 81.05% 
respectively. However, since the objective functions of 
different optimization-based MKL algorithm are very similar to 
each other, these algorithms yielded similar performances. 
The obtained results also showed that the class-specific 
accuracies obtained from most crops, particularly for soy and 
wheat, were dramatically increased in the case of using the 
MKL algorithms. 
For a visual comparison the obtained classification maps of S1 
data sets, using the standard method and MKL-sum, 

SimpleMKL and GMKL are presented in Figure 4 and Figure 
5.  
 

  
(a) (b) 

  
(c) (d) 

 
(e) 

  

 Corn   Canola   Sun flower 

 Soy   Oat   unclassified 

 Barley   Wheat    
 

 
Figure 4. Classification maps of S1 data set obtained from a) 
Standard method; b) MKL-sum; c) SimpleMKL; d) GMKL; 

and e) ground truth. 
 
Regarding the computational time, as mentioned before, the 
fixed-rule algorithms do not consider any optimization for 
estimating the kernel weights, thus the required computational 
time of the MKL-sum is zero in the tables. However, the 
computational times of different optimization-based algorithms 
vary as a result of using different optimization techniques. The 
SimpleMKL and the GMKL adopts a gradient descendent 
method for their optimization. This optimization method 
requires to estimate the gradient of MKL objective function at 
each iteration, which can be very time-consuming. The 
LPMKL and the GLMKL algorithms, due to using a closed-
form solution for estimation of their kernel weights require less 
computational times than the other algorithms.  
 

5. CONCLUSION 

Crop mapping is among the most important application of SITS 
data. In this paper, the performance of different MKL 
algorithms for crop mapping using SITS data were evaluated. 
The theoretical and experimental comparison of the MKL 
algorithms led us to the following conclusions: 
 MKL algorithms, due to their ability to model the 

different statistical characteristic of images of SITS data 
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set, can provide much better classification accuracy than 
other methods.  

 The optimization-based wrapper MKL algorithms showed 
better classification performances than the fixed-rule 
MKL algorithms. The difference between the 
performances of these algorithms is higher if there are less 
informative kernels (e.g., kernel constructed from noisy or 
irrelevant to classification features) among the basis 
kernels. This is because in such cases, unlike the fixed-
rule algorithms, the optimization-based algorithms can 
decrease the influence of these kernels on the composite 
kernels through optimization of the kernel weights.  

 The SimpleMKL and the GMKL provided the best 
classification performances for both data sets. However, 
their optimization can be very time-consuming. The 
LPMKL and the GLMKL algorithms showed acceptable 
performances in term of both computational time and 
classification accuracy.  

Although, the presented MKL algorithms in this paper 
provided acceptable performances, however, the other MKL 
algorithms for SITS data classification, should be studied. In 
addition, the effects of the parameters on the performances of 
the MKL algorithms needs to be studied further.  
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