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Abstract

Local binary pattern (LBP) operators have become commonly used texture descriptors in recent years. Several new
LBP-based descriptors have been proposed, of which some aim at improving robustness to noise. To do this, the
thresholding and encoding schemes used in the descriptors are modified. In this article, the robustness to noise for
the eight following LBP-based descriptors are evaluated; improved LBP, median binary patterns (MBP), local ternary
patterns (LTP), improved LTP (ILTP), local quinary patterns, robust LBP, and fuzzy LBP (FLBP). To put their performance
into perspective they are compared to three well-known reference descriptors; the classic LBP, Gabor filter banks (GF),
and standard descriptors derived from gray-level co-occurrence matrices. In addition, a roughly five times faster
implementation of the FLBP descriptor is presented, and a new descriptor which we call shift LBP is introduced as an
even faster approximation to the FLBP. The texture descriptors are compared and evaluated on six texture datasets;
Brodatz, KTH-TIPS2b, Kylberg, Mondial Marmi, UIUC, and a Virus texture dataset. After optimizing all parameters for
each dataset the descriptors are evaluated under increasing levels of additive Gaussian white noise. The
discriminating power of the texture descriptors is assessed using tenfolded cross-validation of a nearest neighbor
classifier. The results show that several of the descriptors perform well at low levels of noise while they all suffer, to
different degrees, from higher levels of introduced noise. In our tests, ILTP and FLBP show an overall good
performance on several datasets. The GF are often very noise robust compared to the LBP-family under moderate to
high levels of noise but not necessarily the best descriptor under low levels of added noise. In our tests, MBP is neither
a good texture descriptor nor stable to noise.

1 Introduction
The texture of objects in digital images is an important

property utilized in many computer vision and image

analysis applications such as face recognition, object clas-

sification, and segmentation. Despite its frequent use and

the many attempts to describe it in general terms, texture

lacks a precise definition. This makes the development of

new texture descriptors an ill-posed problem [1,2]. The

recent textbook by Pietikäinen et al. [3] provide a good

description of texture in stating that “A textured area in an

image can be characterized by a non-uniform or varying

spatial distribution of intensity or color”.

Local binary patterns (LBPs) emerged in the mid-1990s.

At first, they were introduced as a local contrast descriptor
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[4] and a further development of the texture spectra intro-

duced in [5]. Shortly thereafter, LBP was shown to be an

interesting texture descriptor [6]. Many extensions to the

classic LBP have since then been proposed. A comprehen-

sive book about the LBP family of texture descriptors was

recently published [3]. While some propositions focus on

different sampling patterns to effectively capture the char-

acteristics of certain textures, others propose descriptors

focusing on improving the robustness to noise by using

different encoding or thresholding schemes. The latter

group is the focus of this article; considering LBP-based

descriptors where the thresholding and encoding schemes

are modified to create more noise robust descriptors.

Although several new LBP-based texture descriptors

have been published, there is a limited number of compar-

ative studies and evaluations. However, the recent study

in [7], and the previous study by the same authors in

[8], together cover six datasets from different applica-

tions, mainly in the biomedical area. They report results
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achieved using different sampling patterns and thresh-

olding schemes as well as combinations of LBP-based

descriptors with integrated ensembles of support vector

machine (SVM) classifiers. The parameter values explored

are limited and the focus is on optimizing combinations

of LBP-based descriptors that work well for several types

of texture datasets. Another recent survey is [9] where a

large number of LBP-based descriptors are compared and

put into a unifying framework called histograms of equiv-

alent patterns (HEP). These descriptors are evaluated on

11 general texture datasets and the descriptors are then

ranked based on pairwise comparisons of the classifica-

tion results in the pursuit for the overall best descriptor in

the HEP framework.

Unlike the previously mentioned surveys the aim of

this article is to evaluate the noise robustness of a num-

ber of LBP-based descriptors. The selected descriptors

are all designed to be noise robust alternatives to the

original LBP by altering the thresholding or encod-

ing scheme. The descriptors are namely improved LBP

(ILBP), median binary patterns (MBP), local ternary pat-

terns (LTP), improved local ternary patterns (ILTP), local

quinary patterns (LQP), robust LBP (RLBP), shift LBP

(SLBP), and fuzzy/soft LBP (FLBP). The SLBP descriptor

is proposed in this article as a fast and simple approxi-

mation to FLBP. The discriminating power of the texture

descriptors are evaluated by applying them to six differ-

ent texture datasets followed by a cross-validated classi-

fication using a first nearest neighbor classifier (1-NN).

Before the noise robustness is assessed all the descriptors

parameters are thoroughly optimized, exploring a search

space larger than a few combinations of parameter values,

which is commonly the case reported in the literature.

When using LBP, it is quite common to exclude the

specificity of the so-called non-uniform patterns and

count their occurrences as simply non-uniform [10]. In

brief, binary codes with more transitions between ‘0’ and

‘1’ than a specific value (typically two) are called non-

uniform. In this way, the number of possible binary codes

decreases but at the same time some important informa-

tion may be lost, see for example [10,11]. This is why both

uniform and non-uniform binary codes are considered in

this article.

To put the performance of the LBP-based descriptors

into perspective they are compared to the classical LBP,

a set of Gabor filters [12] and a set of commonly used

descriptors derived from the gray-level co-occurrence

matrix (GLCM) introduced by Haralick et al. [1].

2 Material
To evaluate the texture descriptors six publicly available

texture image datasets are used. They were chosen to have

different characteristics in terms of number of classes,

number of samples, class homogeneity with regards to

scale, perspective, and illumination. The texture datasets

are Brodatz [13], KTH-TIPS2b [14], Kylberg [15], Mondial

Marmi [16], UIUC [17], and a Virus texture dataset [11].

Figure 1 shows four samples from four classes in each of

the six datasets. The basic properties of the datasets as

well as links to websites where they are accessible are listed

in Table 1.

The Brodatz dataset consists of digitized photographs

of natural and manmade textures. In the form the Bro-

datz photos are used here the dataset has many, 111,

classes but only very few, 9, relatively homogeneous sam-

ples per class. The samples are 213 × 213 pixels in size

and there is a considerable overlap between a few of

the classes making them indistinguishable. Some classes

also include large structures making the nine samples not

equally representative.

The KTH-TIPS2b dataset has 11 classes, some very het-

erogeneous, with 432 samples each. In each class, four

objects have been imaged under varying scale, illumina-

tion, and pose conditions. For example, in the class “wool”

four different fabrics and knitwear are represented which

make this class very heterogeneous not only due to the

varying imaging conditions. Most samples are 200 × 200

pixels in size, but some are smaller due to scale issues. See

the documentation in [19] for details. In contrast to [14]

where the dataset is used to study recognition of mate-

rial categories we will use images from all four material

samples as examples of the same class when training the

classifier.

The Kylberg dataset has 28 classes of 160 samples each

with gray-scale images of different natural and manmade

textured surfaces. The classes are very homogeneous in

terms of perspective, scale, and illumination. The images

in the Kylberg dataset are available in different rotations

θ ∈ {0, 1
6π ,

2
6π , . . . ,

11
6 π}. In this article, one orienta-

tion per image is randomly selected. The 576× 576 pixels

images are here divided into four 288 × 288 pixels, non-

overlapping, sub images resulting in 640 samples of each

class.

The Mondial Marmi dataset is a collection of images

of granite surfaces acquired as JPEG color images (with

noticeable compression artifacts) under controlled illu-

mination conditions. The dataset was used in [21] to

evaluate robustness to rotation for LBP, coordinated clus-

ters representation, and ILBP. While the texture samples

are available in nine orientations (both hardware and soft-

ware rotated) only one orientation (0◦) is used here. The

544 × 544 pixel images in the Mondial Marmi dataset

are divided into four 272 × 272 pixel, non-overlapping,

sub images. The samples are converted to gray scale as

0.2989 R+0.5870 G+0.1140 B, where R, G, and B are the

red, green, and blue intensities, respectively.

The UIUC dataset is based on images of different

textured surfaces. The images are provided as JPEG
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Figure 1 Texture examples. For each dataset four texture samples from four classes are shown. For the Virus dataset a dashed circle shows the
perimeter of the region wherein the texture descriptors are computed.

images and appear to have only very minor compres-

sion artifacts. Each class contains 40 samples (640 ×
480 pixels) of different perspectives and scales of a texture.

The classes are more heterogeneous than in the Bro-

datz, KTH-TIPS2b, Kylberg, andMondialMarmi datasets,

see Figure 1.



Kylberg and Sintorn EURASIP Journal on Image and Video Processing 2013, 2013:17 Page 4 of 20

http://jivp.eurasipjournals.com/content/2013/1/17

Table 1 Properties of the six datasets used; references to the datasets are included

Dataset Number of Number of Total number of Sample Format Ref. Web link

classes samples samples size [px]

per class

Brodatz 111 9 999 213 × 213 GIF [13] [18]

KTH-TIPS2b 11 432 4752 200 × 200b PNG [14] [19]

Kylberga 28 640 17,920 288 × 288 PNG [15] [20]

Mondial Marmia 12 16 192 272 × 272 JPEG [21] [22]

UIUC 25 40 1,000 640 × 480 JPEG [17] [23]

Virus 15 100 1,500 41 × 41 PNG [11] [24]

a Each original sample is divided into four samples.
b Some samples are smaller than 200×200 pixels.

The Virus dataset was first used in [11], and is based

on transmission electron microscopy images of 15 dif-

ferent virus types. The virus types vary both in size

(diameters from 25 to 270 nm) and shape; some are icosa-

hedral while others are elongated. Texture patches are

extracted as disk-shaped regions with the same diame-

ter as the viruses, centered in automatically (not always

correctly) segmented virus particles, see [11] for more

details. The texture samples are then resampled to the

same size (41 × 41 pixels) using a Lanczos kernel with a

sinc window of a = 2. This disk-shaped region is shown in

Figure 1.

3 Methods
In the original description of LBP [6], a window of 3 ×
3 pixels is used. The pixels in the window are compared to

the value of the center pixel. By coding � and < for each

comparison as a binary number the local binary code is

retrieved when reading these binary numbers anticlock-

wise as a sequence, see Figure 2(left). The histogram of

occurring binary codes in a region is the resulting fea-

ture vector for that region. Early on, the definition was

generalized to consider N sample points evenly dis-

tributed on a circle with radius R from the cen-

ter pixel [25], as illustrated in Figure 2(right). To

make the comparison in this article as fair as pos-

sible, the same generalization (using N samples on

a radius R) is introduced for the whole LBP fam-

ily of descriptors. The implementations of all the LBP

family of descriptors are based on the original LBP

implementation by Heikkilä and Ahonen accessible

at [26].

To put the performance of the LBP family of descriptors

into perspective, two other well-known texture descrip-

tors are evaluated on the same datasets. The selected

reference descriptors are Gabor filter banks (GF) and

commonly used descriptors derived from the GLCM, also

known as Haralick features. Table 2 lists all the descriptors

in the comparison.

3.1 LBPs

The generalized LBP definition from [25] is used with N

sample points evenly distributed on a radius R around a

center pixel pc located at (xc, yc). The position, (xp, yp), of

the neighbor point p, where p ∈ {0, . . . ,N − 1} is given by

(xp, yp) = (xc + R cos(2πp/N), yc − R sin(2πp/N)) .

(1)

The local binary code for the position (xc, yc) is defined as:

LBPN ,R(x, y) =
N−1
∑

p=0

s(gp − gc)2
p, (2)

where

s(x) =
{

1, x ≥ 0

0, otherwise
. (3)

If a point p does not coincide with a pixel center, bilinear

interpolation is used to compute the gray value gp. Finally,

the histogram of occurring binary codes in a region is the

feature vector of this region.
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Figure 2 LBP generalization. The eight neighbors in a 3 × 3
neighborhood used in the classic LBP (left). The generalized
neighborhood with N samples at radius R (right). The numbers
indicate the ordering of samples.



Kylberg and Sintorn EURASIP Journal on Image and Video Processing 2013, 2013:17 Page 5 of 20

http://jivp.eurasipjournals.com/content/2013/1/17

Table 2 Evaluated texture descriptors with abbreviations

and references

Method Abbreviation References

Local binary patterns LBP [6]

Improved local binary pattern ILBP [27]

Median binary patterns MBP [28]

Local ternary patterns LTP [29]

Improved local ternary patterns ILTP [30]

Local quinary patterns LQP [8]

Robust local binary patterns RLBP [31]

Fuzzy/soft local binary patterns FLBP [32,33]

Shift local binary patterns SLBP This study

Gabor filter bank responses GF [12]

Properties of gray-level
co-occurrence matrices

GLCM [1]

3.2 ILBPs

ILBP, introduced in [27], is closely related to LBP. The

main difference is that the threshold used is the mean

value of the whole neighborhood including the center

pixel. In addition, pc will also be a part of the binary code

making it N + 1-bits long. Following [27], ILBP is defined

as

ILBPN ,R(x, y) =
N−1
∑

p=0

s(gp − gmean)2
p +s(gc − gmean)2

N ,

(4)

where

gmean = 1

N + 1

⎛

⎝

N−1
∑

p=0

gp + gc

⎞

⎠ , (5)

and the function s is defined as in Equation 3.

3.3 MBPs

MBP was introduced in [28]. In analogy to ILBP, the cen-

ter pixel pc is included in the neighborhood but here the

median gray value of the neighborhood is used instead,

giving the following definition:

MBPN ,R(x, y) =
N−1
∑

p=0

s(gp − gmed)2
p + s(gc − gmed)2

N ,

(6)

where

gmed = median
(

{g0, g1, . . . , gN−1, gc}
)

, (7)

and the function s is defined as in Equation 3.

3.4 LTPs

To deal with the noise sensitivity of the LBP descriptor, the

magnitude of the intensity difference between the center

pixel and neighboring points can be taken into consider-

ation. However, involving the magnitude implies that the

complete invariance to intensity scaling is lost. In [29], the

LTP descriptor is proposed. Here, the difference between

neighboring values gp and the center pixel value gc are

encoded with three values using one threshold t1

LTPN ,R(x, y) =
N−1
∑

p=0

s3(gp, gc, t1)2
p, (8)

where

s3(gp, gc, t1) =

⎧

⎨

⎩

1, gp ≥ gc + t1
0, gc − t1 ≤ gp < gc + t1

−1, otherwise

. (9)

Instead of using a code with base 3 to encode the three

states, LTP uses two binary codes representing the posi-

tive and the negative components of the ternary code, i.e.,

two binary codes coding for the two states {−1, 1}. These
binary codes are collected in two separate histograms and,

as a last step, the histograms are concatenated to form the

LTP feature vector.

3.5 ILTPs

In analogy with the extension of LBP to ILBP, where the

neighborhood mean value is used as the local thresh-

old, LTP can be extended to ILTP. This was done in [30]

arriving at the following definition:

ILTPN ,R(x, y)=
N−1
∑

p=0

s3(gp−gmean)2
p+s3(gc−gmean)2

N,

(10)

where the function s3 is defined as in Equation 9 and gmean

as in Equation 5.

3.6 LQP

In [8], LQP is introduced, extending the encoding of

the local differences to five values corresponding to two

thresholds t1 and t2 resulting in

LQPN ,R(x, y) =
N−1
∑

p=0

s5(gp, gc, t1, t2)2
p, (11)

where the two thresholds are used in the s5-function

according to

s5(gp, gc, t1 t2) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2, gp ≥ gc + t2
1, gc + t1 ≤ gp < gc + t2
0, gc − t1 ≤ gp < gc + t1

−1, gc − t2 ≤ gp < gc − t1
−2, otherwise

. (12)
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In analogy to LTP, the quinary code is split into four binary

codes, coding for the states {−2,−1, 1, 2}. Four histograms

are computed followed by a concatenation.

3.7 RLBP

By changing the expression (gp − gc) in Equation 2 to

(gp − gc − t1) the gray value in point p has to be t1
higher than gc to produce a 1. This modification is called

RLBPs and was introduced in [31]. The RLBP descriptor

is supposed to improve robustness against small changes

in local intensities. Following the description above, RLBP

for a position (x, y) and a threshold value t1 is defined as

RLBPN ,R(x, y, t1) =
N−1
∑

p=0

s(gp − gc − t1)2
p, (13)

where the function s is defined as in Equation 3.

3.8 FLBP

In fuzzy [32]/soft [33] LBP (FLBP) one pixel position may

contribute to several bins in the histogram of possible pat-

terns. A membership function for a neighboring point p

to a ‘0-class’,m0, and the antonym functionm1, expressing

belongingness to a ‘1-class’ is defined as

m0(p, f ) =

⎧

⎪

⎨

⎪

⎩

0, gp ≥ gc + f
f−gp+gc

2·f , gc − f ≤ gp < gc + f

1, otherwise

, (14)

m1(p, f ) = 1 − m0(p), (15)

where f governs the interval of fuzzy belongingness.

Figure 3 shows a plot of function m0 and m1. The con-

tribution from one pixel position (x, y) to a bin i in the

histogram H of occurring binary patterns is

FLBPN ,R(x, y, i) =
N−1
∏

p=0

[

bp(i)m1(gc − gp)

+(1 − bp(i))m0(gc − gp)
]

, (16)

Figure 3Membership functions in FLBP. The two membership
functions used in FLBP. The gray value difference gp − gc on the
x-axis and belongingness on the y-axis.

where bp(i) ∈ {0, 1} is the value of the pth bit of the

binary representation of pattern i. By remembering that all

considered pixel positions may contribute to bin i in the

histogram it follows that

HFLBP(i) =
∑

x,y

FLBPN ,R(x, y, i). (17)

Analogous to the other LBP-based descriptors, the result-

ing histogram constitutes the FLBP feature vector.

3.9 SLBP

In the classical LBP definition, one pixel position gener-

ates one local binary code corresponding to exactly one

bin in the histogram of possible codes. In SLBP, a fixed

number of local binary codes are generated for each pixel

position. In analogy with RLBP the sign of an expression

(gp − gc − k) is considered rather than the sign of (gp − gc)

as in the original LBP (Equation 2). However, in SLBP, k

is varied within an interval defined by an intensity limit l.

Each time k is changed, a new binary code is created and

added to the histogram of occurring binary patterns. SLBP

for a position (x, y) and a shift value k is defined as

SLBPN ,R(x, y, k) =
N−1
∑

p=0

s(gp − gc − k)2p, (18)

where the function s is defined as in Equation 3, and k is

defined as

k ∈ [−l, l]∩ Z. (19)

The number of generated binary patterns, K, for one pixel

position equals the number of different values k assumes.

From this and Equation 19 it follows that

K = 2 · l + 1. (20)

As an example, if l = 3, the parameter k will assume val-

ues {−3,−2, . . . , 3}. K will hence be 7 which means that

each pixel position will contribute with 7 binary codes to

the histogram. For neighborhoods with high local con-

trast, the K binary codes may all be the same, while

neighborhoods with contrast lower than l will generate a

distribution of binary codes picking up some of the fuzzy

nature of that neighborhood. The values in the final his-

togram are divided by K, giving the histogram the sum

equal to the number of pixel positions considered (like the

rest of the LBP-family).

3.10 Rotation invariance of the LBP-family

One straight forward way to make LBP rotation invariant

is to rotate the binary code, i.e., bit-shift it, to its low-

est value [25]. For most LBP-based features, it is trivial

to introduce rotation invariance following this scheme.

Indeed, in [34], rotation invariance was introduced to

FLBP following this approach. ILBP,MBP, RLBP, and SLBP



Kylberg and Sintorn EURASIP Journal on Image and Video Processing 2013, 2013:17 Page 7 of 20

http://jivp.eurasipjournals.com/content/2013/1/17

are made rotation invariant in this way. LTP, ILTP, and

LQP are somewhat different due to the concatenation of

binary codes. The binary codes are therefore made rota-

tion invariant prior to concatenation of the histograms

here.

3.11 Gabor filters

In 1978, Granlund [12] generalized Gabor filters to 2D and

applied them to images. In this article, the definition of the

2D Gabor filter in the spatial domain, ψ , is defined as in

[35]

ψ(x, y, F , θ , γ , η) = F2

πγ η
exp

(

−F2(x′/γ )2 + (y′/η)2
)

× exp
(

i2πFx′) ,

(21)

where

x′ = x cos θ + y sin θ , (22)

y′ = −x sin θ + y cos θ . (23)

F is the frequency of the wave, and θ is the angle between

the direction of the wave and the x-axis. The Gaussian

envelope is defined by the standard deviation parallel to

the wave, γ , and standard deviation perpendicular to the

wave, η.

A set of Gabor filters with different orientations and

frequencies is commonly called a GF. Bianconi and

Fernández [35] show that parameters with a significant

impact on the texture classification using GF are the fre-

quency ratio and the standard deviations for the Gaussian

envelope. They also conclude that a small change of a

reasonable number of orientations, nO, or number of fre-

quencies, nF , in a GF does not significantly influence the

discriminating power for the texture datasets they con-

sider. Based on their findings, a GF with a frequency ratio

equal to
√
2 is used here. The highest central frequency,

FM, is computed according to [35] as

FM = γ

2(γ + (
√

log 2/π))
, (24)

where γ is the standard deviation of the Gaussian enve-

lope parallel to the wave. Figure 4 shows an example of

four Gabor filter kernels of the orientation θ = π/7 using

γ = 4, η = 4 ⇒ FM ≃ 0.53 and a frequency ratio of
√

(2).

When the GF descriptor is applied to a texture sam-

ple the texture is convolved with the complex conjugate

of each one of the constructed filters in the filter bank.

The mean, µ, and standard deviation, σ , are computed

for the magnitude of each filter response and these val-

ues are used as the feature values. This results in a feature

vector with nO × nF × 2 elements on the following form

GF = {µ00, σ00, µ01, σ01, . . . ,µnO−1,nF−1, σnO−1,nF−1}.
(25)

Rotation invariance is achieved through the procedure

proposed in [36]; for each frequency the dominant direc-

tion is computed as the orientation giving the highest

mean filter response among the filters with this frequency

in the filter bank. The elements in the GF feature vector

are then circularly shifted so that µ and σ of the domi-

nant direction can be found on the same positions in the

feature vector. In [36], it is shown that a rotation of an

image in the spatial domain corresponds to a circular shift

of feature vector elements.

3.12 Gray-level co-occurrence matrices

Introduced in 1973 by Haralick et al. [1], descriptors

derived from gray-level co-occurrencematrices still have a

given place among established texture features. A relation

operator is defined describing the distance and direc-

tion between pixels whose intensities are to be pairwise

Figure 4 Examples of Gabor filters used. The real part of the Gabor filter kernels of one specific orientation (θ = π/7) and one Gaussian envelope
(γ = 4, η = 4) are shown. (a) Highest central frequency computed to FM ≃ 0.53. (b–d) The three following lower frequencies with frequency ratio
equal to

√
2.
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compared in the region of interest. A relation operator

can, e.g., be ‘one pixel to the right’ and the following

co-occurrence matrix, M, will then show how often a cer-

tain gray value occurs one pixel to the right of another

gray value. The gray levels of an image are commonly

quantized into a lower number of intensity levels prior

to computing the co-occurrence matrix. Quantization

into q gray levels is used in this article resulting in a

q × q co-occurrence matrix of the gray levels defined as

M =

⎡

⎢

⎢

⎢

⎣

p(1, 1) p(1, 2) · · · p(1, q)
p(2, 1) p(2, 2) · · · p(2, q)

...
...

. . .
...

p(q, 1) p(q, 2) · · · p(q, q)

⎤

⎥

⎥

⎥

⎦

, (26)

where p(i, j) is the probability of the co-occurrence of the

gray levels i and j given a relation operator. In this arti-

cle, the four symmetric relation operators

proposed by Haralick et al. is used. From the co-

occurrence matrices, the contrast, correlation, energy,

and homogeneity descriptors are computed as follows:

contrast =
∑

i,j

|i − j|2p(i, j), (27)

correlation =
∑

i,j

(i − µi)(j − µj)p(i, j)

σiσj
, (28)

energy =
∑

i,j

p(i, j)2, (29)

homogeneity =
∑

i,j

p(i, j)

1 + |i − j| , (30)

where µi and µj are mean values computed along rows

and columns, respectively. In the same way, σi and σj are

standard deviations computed along rows and columns.

For each of the four descriptors, the average and stan-

dard deviation over the four relation operators (direc-

tions) are used as feature values. This results in a GLCM

feature vector with eight elements. To fully describe the

GLCM descriptor, the distance d in the relation operator

also needs to be set.

3.13 Classification method

To get comparable noise robustness results and parameter

optimization for the descriptors, a 1-NN with Euclidean

metric is used. Tenfolded cross-validation is used to min-

imize overfitting and to ensure that the validation is per-

formed on independent test sets and the cross-validation

is done by randomly assigning each sample a number

n ∈ {1, 2, . . . , 10}, creating ten disjoint subsets with equal

(or approximately equal) number of samples. In the first

cross-validation fold, samples with n = 1 will be the test

data and samples with n ∈ {2, 3, . . . , 10}will serve as train-
ing data. In the second fold, samples with n = 2 will be the

test data and the rest is used for training, and so on. This

means that each sample will be included in the test data

once and less biased classification accuracy is obtained

compared to using the apparent error. The ten results

from the folds are combined into a single estimation.

The cross-validation folds are created once for each

dataset and are then kept fixed throughout the compari-

son. The feature values for all descriptors are normalized

to [ 0, 1] prior to the cross-validation.

3.14 Parameter optimization

The parameters for each texture descriptor are optimized

separately for each dataset to make as fair comparison

as possible. The parameters common for all descriptors

in the LBP family are the number of samples N and the

radius R. Besides ILBP andMBP all extensions to the clas-

sic LBP have additional parameters. The parameters are

listed in Table 3 along with the range wherein they are

varied. Since several parameters are common to several

descriptors, the table also shows for which method each

parameter is applicable.

To restrict the parameter search space, an optimization

scheme is designed as follows:

1. Find optimal N and R for LBP using a tenfold

cross-validated 1-NN classifier.

2. Use N and R from step 1 and find optimal:
(a) fuzziness, f, for FLBP,
(b) threshold t1 for LTP, ILTP, and RLBP,

(c) threshold pairs t1 and t2 for LQP, and

(d) interval limit l for SLBP.
3. For all texture descriptors

Perform a new gradient descent parameter

search locally around the previous found best

point in the current descriptor’s full

parameter space. Repeat until stability.

In other words, an exhaustive search for the best

LBP parameters is performed. The LBP parameter val-

ues are then used when optimizing all the method-

specific parameters. They are next used as a starting guess

for an iterative optimization procedure based on gradi-

ent descent where all parameters in the descriptors are

allowed to vary.

The described optimization scheme is applied to each

dataset separately. An exhaustive search for each of the

parameters is not feasible due to the size of the datasets

and total number of parameters across the descriptors.

The parameters of the reference descriptors GF and

GLCM are also optimized for each dataset. Table 3 shows

the explored set of parameter values for both GLCM and

GF. The optimization criterion is the same as for the LBP

family of descriptors.
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Table 3 Descriptor parameters and the intervals searched

during parameter optimization

Parameter Interval/set Applicable
for method

LBP family

Number of sample points N ∈ {2, 3, . . . , 15} All LBP variants

Radius R ∈ {1, 2, . . . , 20} All LBP variants

Fuzziness f ∈ {1, 2, . . . , 6} FLBP

First threshold t1 ∈ {1, 2, . . . , 20} LTP, ILTP,
RLBP, LQP

Second threshold t2 = 2 · t1 LQP

Shift limit l = {1, 2, . . . , 20} SLBP

Other

Gaussian envelope ‖ wave γ ∈ {1, 2, . . . , 5} GF

Gaussian envelope ⊥ wave η ∈ {1, 2, . . . , 5} GF

Quantization q ∈ {3, 4, . . . , 20} GLCM

Distance d ∈ {1, 2, . . . , 20} GLCM

3.15 Introducing noise

When the descriptor parameters have been optimized for

each dataset the influence of noise is investigated. The

noise model used is additive white (uncorrelated) Gaus-

sian noise. That is, a sample from an Gaussian distribution

is added to the intensity of each pixel. This noise model is

well suited formodeling thermal noise in CCD and CMOS

sensors which are the sensors relevant for the microscopy

and photography datasets considered here. The σ for

the Gaussian distribution is gradually increased. Figure 5

shows one texture sample from each dataset under three

different noise levels. The noise is added to the original

datasets, and the noisy datasets are then saved. In this way,

all the descriptors are applied and evaluated on the exact

same noisy texture samples. The 20 noise levels used are σ

from 10−4 to 101 with linearly spaced exponents, i.e., the

20 noise levels are equally spaced in a log10 scale.

4 Results
4.1 Parameter optimization

Table 4 lists the parameter values for each descriptor and

dataset after applying the optimization scheme described

in Section 3.14. The parameter choice does not only influ-

ence the discriminant power of the descriptor but may

also, depending on the descriptor, set the number of ele-

ments in the feature vector. In the LBP family of descrip-

tors, the feature vector length depends on the number of

samples N and whether or not the center pixel is included

in the binary code. Table 5 lists the feature vector lengths

for the descriptors after the parameter optimization.

4.2 Comparison without added noise

The discriminating power of the descriptors are compared

on the datasets without added noise by analyzing the

combined classification accuracy of the tenfolded cross-

validation. The classification accuracy may vary between

datasets and descriptors, but also within a dataset for a

specific descriptor, i.e., all classes may not equally be easy

or difficult to discriminate. To explore this perspective,

Figure 6 shows the distribution of mean accuracy per class

for each descriptor and dataset.

Figure 6 shows that almost all descriptors perform well

on the Kylberg dataset. LTP and ILTP manage to differ-

entiate almost all classes perfectly in the Kylberg dataset

(median very close to 100%, small boxes, and short tails).

Most descriptors also perform well on the KTH-TIPS2b

dataset. Even for the many classes in the Brodatz dataset

all LBP descriptors perform overall well (100% for more

than half the classes and boxes starting at > 88%) but

there are a number of classes no method can discrimi-

nate between (lowest class accuracies are between 22 and

44.4%). This is not surprising since there is a consider-

able overlap between some of the classes in the Brodatz

dataset, as mentioned before.

The other three datasets are more problematic with

more varied results for the LBP descriptors. The overall

low accuracies achieved on the Virus dataset are probably

due to the small sample size (only 41×41 pixels), as well as

the heterogeneous classes originating from the automatic

extraction of patches only partly (or sometimes even not

at all) containing virus. Across these three datasets, ILTP

performs overall well as does FLBP.

GLCM is among the worst performing descriptors

for all datasets, except for the Mondial Marmi dataset.

Note however that only very few measures on the co-

occurrence matrix are extracted.

The GF descriptor performs on the same level

as several LBP-based descriptors for several datasets.

However, on the Kylberg and UIUC dataset GF is

outperformed by most LBP-based descriptors. Compar-

isons of per-class performance for the different descrip-

tors and datasets (data not shown) show that the GF

sometimes produces good results for a few specific

classes where the LBP family of descriptors do not.

This indicates that GF could be a good complemen-

tary texture descriptor and that a combination with, for

example, ILTP might improve the overall classification

accuracy on some of the datasets. However, combining

descriptors to produce the best classification result pos-

sible is not the purpose of this article, and is not further

investigated here.

4.3 Robustness to noise

Figures 7, 8, 9, 10, 11, and 12 show the mean classification

accuracies for the texture descriptors on the six datasets

under increasing levels of added noise. In all figures,

LBP, GF, and GLCM are shown in red, blue, and green,

respectively, and one of the other descriptors at a time
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Figure 5 Examples of noise levels. One texture sample from each one of the six datasets under increasing levels of additive Gaussian white noise.
For the Virus example, a dashed circle marks the region wherein the texture descriptors are computed.
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Table 4 Parameter settings for each descriptor and dataset after applied optimization scheme

Descriptor
Parameters per dataset

Brodatz KTH-TIPS2b Kylberg Mondial Marmi UIUC Virus

LBP N = 8 N = 8 N = 8 N = 9 N = 11 N = 10

R = 2 R = 2 R = 3 R = 4 R = 6 R = 4

ILBP N = 9 N = 8 N = 10 N = 8 N = 9 N = 10

R = 2 R = 2 R = 3 R = 3 R = 3 R = 4

MBP N = 8 N = 8 N = 9 N = 8 N = 8 N = 9

R = 2 R = 2 R = 3 R = 2 R = 3 R = 4

LTP N = 8 N = 8 N = 9 N = 9 N = 11 N = 10

R = 2 R = 2 R = 3 R = 4 R = 9 R = 4

t1 = 9 t1 = 5 t1 = 12 t1 = 4 t1 = 6 t1 = 11

ILTP N = 10 N = 8 N = 10 N = 10 N = 9 N = 11

R = 2 R = 2 R = 3 R = 2 R = 3 R = 4

t1 = 5 t1 = 3 t1 = 11 t1 = 5 t1 = 7 t1 = 5

LQP N = 8 N = 9 N = 8 N = 11 N = 8 N = 8

R = 2 R = 3 R = 2 R = 5 R = 3 R = 2

t1 = 6 t1 = 2 t1 = 6 t1 = 16 t1 = 7 t1 = 4

t2 = 12 t2 = 4 t2 = 12 t2 = 32 t2 = 14 t2 = 8

RLBP N = 8 N = 8 N = 9 N = 8 N = 9 N = 9

R = 1 R = 2 R = 3 R = 3 R = 4 R = 4

t1 = 1 t1 = 5 t1 = 5 t1 = 3 t1 = 3 t1 = 3

FLBP N = 8 N = 8 N = 8 N = 9 N = 9 N = 10

R = 2 R = 2 R = 3 R = 4 R = 3 R = 4

f = 4 f = 8 f = 14 f = 9 f = 6 f = 20

SLBP N = 8 N = 8 N = 8 N = 9 N = 11 N = 10

R = 2 R = 2 R = 3 R = 4 R = 6 R = 4

t1 = 9 t1 = 10 t1 = 9 t1 = 9 t1 = 9 t1 = 9

GF γ = 3 γ = 4 γ = 4 γ = 3 γ = 2 γ = 3

η = 1 η = 1 η = 2 η = 2 η = 1 η = 2

GLCM q = 17 q = 17 q = 18 q = 15 q = 20 q = 16

d = 1 d = 3 d = 3 d = 2 d = 3 d = 3

in black. A horizontal dotted line marks the mean accu-

racy of a random decision. The curves are interpolated

between data points using piecewise cubic interpolation.

For increasing noise levels, it is expected that the perfor-

mance of all descriptors level out to the mean accuracy of

a random classification, i.e., a mean classification accuracy

of 1/number of classes. This is easily seen in, for example,

Figure 9. The same data as Figures 7, 8, 9, 10, 11, and 12

show can be viewed in tabular form in Tables 6, 7, 8, 9,

10, and 11 but limited to every second noise level. In the

tables, the highest mean accuracy for each noise level is

highlighted in bold and the lowest in italics.

For the Brodatz dataset, Figure 7 and Table 6, GF stands

out as themost noise robust texture descriptor but it is not

necessarily the best descriptor for low noise levels where

ILTP followed by LTP, and SLBP show good performance.

These four descriptors are better than LBP for all noise

levels. RLBP, LQP, and especially MBP all perform worse

than LBP, and in addition, the performance for LQP and

MBP drops quickly with increasing levels of noise.

For low levels of noise in the KTH-TIPS2b dataset,

Figure 8, all LBP-based descriptors (except MBP) outper-

form the original LBP and they perform on the same high

level as GF. For medium to high levels of noise all LBP-

based methods are outperformed by GF and the bottom

two LBP-based descriptors are, again, LQP and MBP.

Most LBP-based descriptors show similar performance

on the Kylberg dataset, see Figure 9 and Table 8. ILBP, LTP,
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Table 5 Feature vector length for each descriptor and dataset based on the optimized descriptor parameters

Descriptor
Feature vector length (number of elements)

Brodatz KTH-TIPS Kylberg Mondial Marmi UIUC Virus

LBP 36 36 36 60 188 108

ILBP 108 72 188 60 108 188

MBP 60 60 188 60 632 352

LTP 72 72 120 120 376 216

ILTP 240 144 432 144 240 432

LQP 144 240 144 752 144 144

RLBP 108 36 60 60 60 60

FLBP 36 36 36 60 188 108

SLBP 36 36 36 36 60 108

GF 56 56 56 56 56 56

GLCM 8 8 8 8 8 8

ILTP are generally somewhat better than LBP. LQP drops

in performance faster than the rest. The MBP perfor-

mance drops with increasing but still low levels of noise,

but then increases in performance and is among the bet-

ter descriptors for high levels of noise. A closer look at

the per-class accuracies (data not shown) reveals that it is

mainly the second texture class, see Figure 1, with large

homogeneous intensity patches in the pattern that causes

this dip in the mean accuracy curve for MBP.

For the Mondial Marmi dataset, Figure 8 and Table 9,

the curves look and behave rather differently. A reason

behind this might be the JPEG compression artifacts. This

dataset is the only dataset where GLCM perform well for

low levels of noise. GF is also found to perform well for

Figure 6 Descriptor performance without added noise. Distribution of mean accuracy per class for each descriptor and dataset. Circles with dots
mark median values. The boxes stretch between the 25th and 75th percentiles, and the lines span all the data points.
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Figure 7 Noise tests on Brodatz.Mean classification accuracy for all descriptors on the Brodatz dataset.

Figure 8 Noise tests on KTH-TIPS2.Mean classification accuracy for all descriptors on the KTH-TIPS2 dataset.

Figure 9 Noise tests on Kylberg.Mean classification accuracy for all descriptors on the Kylberg dataset.
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Figure 10 Noise tests on Mondial Marmi.Mean classification accuracy for all descriptors on the Mondial Marmi dataset.

low noise levels and is more stable than the other descrip-

tors for increasing noise levels. ILBP, ILTP, and FLBP are

generally better than LBP. However, for low levels of noise

all the descriptors in the LBP family are similar, MBP and

LBP being the exceptions. MBP is the worst performing

descriptor as soon as low levels of noise are added and

the performance of LQP drops quickly for higher levels of

noise added.

On the UIUC dataset, LTP is the best performing

descriptor for low levels of noise and ILTP and FLBP

are in general better than the LBP, see Figure 11 and

Table 10. GF is not very good for low to moderate noise

levels but robust for high levels of noise. ILBP performs

poorly for low levels of noise. MBP is the by far the

worst performing descriptor followed by GLCM. Again,

LQP drop quickly at moderate levels of noise and is

hence less noise robust then the other LBP family of

descriptors.

On the difficult Virus texture dataset, GF, ILTP, and

FLBP are the best performing descriptors with FLBP hav-

ing a slight upper hand at low levels of noise, see Figure 12

and Table 11. On this dataset, the proposed SLBP descrip-

tor falls between these three best performing descriptors

and the rest while MBP and LQP are the two worst.

4.4 Computation time

One of the benefits of the classic LBP is that it is very

fast to compute. A comparison of computation times for

the more complex LBP descriptors is hence interesting.

Computation time for some of the descriptors depend on

the image content. Therefore, the CPU time required for

the different descriptors is here compared on one sample

from each class in the Kylberg dataset using the optimized

parameters listed in Table 4. Figure 13 shows computa-

tion time relative to the computation time of the classic

LBP. Hence, if a descriptor takes 10 times longer than LBP

Table 6 Mean classification accuracy for descriptors computed on the Brodatz dataset

Brodatz dataset

σ of noise 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000

LBP 92.8 91.2 89.9 87.7 83.5 78.9 64.4 38.2 13.5 4.5 2.9

ILBP 94.2 93.9 92.5 90.7 88.8 80.0 71.8 50.8 27.6 12.5 6.2

MBP 92.5 80.6 69.0 57.9 45.9 28.0 23.6 15.2 12.2 5.2 3.7

LTP 96.6 94.8 94.7 91.8 87.9 81.4 68.1 43.0 20.8 8.7 4.3

ILTP 96.4 96.2 95.2 94.3 91.4 85.7 70.7 50.7 28.5 10.9 4.2

LQP 93.7 91.6 91.1 82.8 62.6 43.7 36.2 21.5 8.6 3.6 3.7

RLBP 89.4 86.6 89.0 82.9 77.9 70.6 51.6 26.8 11.7 4.5 2.6

FLBP 92.6 91.6 91.5 89.5 85.5 79.8 65.5 36.6 12.7 5.0 4.5

SLBP 93.9 93.0 92.4 91.1 88.2 83.4 68.8 39.3 17.2 6.4 3.0

GF 87.2 86.8 87.0 86.7 86.0 85.3 81.2 70.9 34.5 7.7 1.2

GLCM 83.2 81.3 80.6 79.8 75.2 64.7 49.8 34.6 13.8 4.0 0.9

Max value per noise level is in bold and min value in italics.
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Table 7 Mean classification accuracy for descriptors computed on the KTH-TIPS2b dataset

KTH-TIPS2b dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000

LBP 89.3 87.2 86.1 80.4 68.5 53.1 43.7 29.4 23.3 18.9 14.9

ILBP 94.5 94.4 93.6 87.4 74.1 59.2 47.4 38.4 27.7 21.8 17.4

MBP 94.1 84.3 73.6 60.2 48.0 40.4 35.4 28.9 23.2 17.5 14.6

LTP 95.5 94.7 93.2 87.2 71.5 55.4 44.1 32.1 25.3 19.5 16.2

ILTP 96.9 96.4 95.7 90.8 79.4 65.4 50.6 39.2 28.0 22.4 17.6

LQP 94.8 93.6 87.2 70.0 57.2 46.5 38.7 27.9 20.3 18.1 14.7

RLBP 93.8 92.7 90.6 83.7 69.9 53.0 42.4 30.4 23.0 19.3 16.0

FLBP 94.3 94.0 93.1 88.6 74.9 56.9 44.2 29.8 21.9 18.2 15.7

SLBP 94.8 94.5 93.5 89.2 76.6 57.8 44.1 30.1 22.8 18.5 16.2

GF 94.6 94.7 94.1 93.8 90.8 83.9 66.4 41.3 22.3 12.9 10.1

GLCM 76.9 76.2 76.0 73.9 71.7 62.5 54.0 39.5 25.0 18.7 12.7

Max value per noise level is in bold and min value in italics.

to compute the descriptor has the value 10 in the plot in

Figure 13.

Furthermore, two FLBP implementations are compared.

The version directly based on [32,33], called ‘naive’ in

Figure 13, computes the histogram bin contribution of

all bins for every neighborhood (Equation 16). However,

gray value differences outside the fuzzy region [−f , f ]

restrict the possible binary codes that a neighborhood can

contribute to. Utilizing this, a modified implementation

was developed, denoted ‘fast’ in Figure 13. It restricts the

membership computations to the subset of binary codes

possible, given the current local neighborhood. Outside

the fuzzy region, the bin contributions will be as in

the classic LBP. The computed feature vectors from the

‘naive’ and ‘fast’ implementations of FLBP are of course

identical.

Even though the ‘fast’ FLBP implementation is roughly

five times faster than the ‘naive’ implementation, they are

both very slow compared to all other descriptors. FLBP

are 922 times slower than the classic LBP. It should also

be said that the computation time for the ‘fast’ FLBP

not only depends on the fuzziness parameter (which is

the case of the ‘naive’ FLBP), but also depends on the

image content. Figure 13 shows that LQP, RLBP, ILTP, LTP,

ILBP, and GLCM have comparable computation times to

LBP. SLBP is roughly 11 times slower than LBP which is

expected since SLBP in this test generates 11 binary codes

at every position (l = 5 ⇒ K = 11, see Equation 20).

The MBP is relatively slow compared to most of the

LBP descriptors which is also expected since computing

median values in this implementation involves sorting the

intensity values in each neighborhood. In GF, which is 20

Table 8 Mean classification accuracy for descriptors computed on the Kylberg dataset

Kylberg dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000

LBP 97.8 97.5 97.0 95.6 89.2 70.3 44.0 22.4 9.2 5.4 5.1

ILBP 98.9 98.6 98.2 96.4 91.1 76.0 53.8 35.3 16.4 8.2 5.9

MBP 96.8 91.3 84.5 80.9 85.7 80.3 57.0 26.2 7.1 4.1 3.2

LTP 99.7 99.6 99.5 98.5 94.1 80.6 52.5 25.3 9.9 6.3 4.9

ILTP 99.7 99.6 99.4 99.0 97.2 86.1 65.1 41.1 18.0 8.3 5.4

LQP 99.3 98.5 98.1 93.7 72.1 41.3 23.9 13.8 6.3 4.6 4.2

RLBP 98.8 98.6 98.1 96.1 91.0 75.1 46.9 21.1 7.4 5.3 4.3

FLBP 99.2 99.4 99.4 99.0 95.4 76.6 45.2 22.3 8.2 4.8 4.5

SLBP 98.0 98.1 97.7 95.5 87.7 65.7 38.4 19.2 8.2 5.1 4.4

GF 95.2 94.7 94.0 92.8 89.7 78.7 58.5 32.6 11.5 4.3 3.7

GLCM 84.7 84.8 85.1 84.4 79.8 63.1 51.8 31.0 12.2 4.9 3.5

Max value per noise level is in bold and min value in italics.
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Table 9 Mean classification accuracy for descriptors computed on theMondial Marmi dataset

Mondial Marmi dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000

LBP 85.9 80.2 78.1 80.7 60.9 52.1 52.1 33.9 24.0 20.8 22.4

ILBP 95.8 93.2 95.8 83.3 66.7 54.2 67.2 61.5 50.0 55.2 39.6

MBP 90.1 82.8 64.6 40.6 29.2 28.1 17.7 16.7 35.9 32.3 25.0

LTP 94.8 88.5 88.5 79.2 69.8 55.7 57.3 39.6 37.5 27.6 24.0

ILTP 93.8 91.1 88.5 88.0 70.8 62.5 71.4 55.2 40.6 46.9 29.2

LQP 89.6 89.6 88.5 88.0 59.9 31.8 37.0 23.4 28.1 25.5 20.8

RLBP 85.9 86.5 90.1 77.6 65.6 51.6 46.9 41.7 35.9 33.9 22.9

FLBP 95.3 94.3 91.7 81.3 68.8 56.3 61.5 33.9 22.4 22.9 15.6

SLBP 91.1 93.2 90.1 83.3 67.2 45.8 57.3 47.9 33.3 24.0 26.0

GF 94.8 94.8 94.3 93.2 90.1 81.3 75.5 37.0 25.5 10.9 8.9

GLCM 95.8 91.7 90.6 89.1 77.6 61.5 51.0 52.6 26.0 10.9 9.9

Max value per noise level is in bold and min value in italics.

times slower than LBP, each texture sample is convolved

with a number of complex filter kernels. This is a more

time-consuming task than performingmultiple threshold-

ings in a small neighborhood, the operation performed in

most LBP-based descriptors.

5 Conclusions
This article reports on the following:

• The descriptive performance of eight LBP-based

texture descriptors are evaluated and compared on

six different datasets under increasing levels of

additive Gaussian white noise together with the

classic LBP, Haralick descriptors, and GF.
• A new LBP-based descriptor, SLBP, is introduced as a

fast approximation of the computationally heavy

FLBP.

• A roughly five times faster implementation of the

FLBP descriptor is described.

The fast implementation of FLBP as well as an implemen-

tation of SLBP are available as Matlab code at [37].

The main conclusions that can be drawn regarding the

evaluated texture descriptors are

• ILTP followed by FLBP generally perform well among

the LBP-family of descriptors, outperforming the

classic LBP in all tests performed.
• GF is often very robust for moderate to high levels of

noise but is many times outperformed by several

LBP-based descriptors under low noise conditions.
• FLBP is very slow compared to the rest of the

descriptors but the naive implementation can be

Table 10 Mean classification accuracy for descriptors computed on the UIUC dataset

UIUC dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000

LBP 88.1 87.2 87.5 88.6 86.4 75.8 53.8 38.4 22.3 12.5 9.4

ILBP 80.1 80.8 79.6 80.6 74.8 63.5 59.4 53.4 37.9 25.7 17.8

MBP 74.7 63.7 56.9 47.1 39.3 27.1 14.1 15.3 14.3 13.7 13.3

LTP 94.4 94.1 93.8 93.4 88.1 77.9 59.5 44.6 23.8 16.5 13.7

ILTP 91.9 91.5 91.9 90.4 85.1 72.9 64.2 55.6 42.7 24.7 17.9

LQP 88.3 86.5 82.8 75.1 49.4 36.0 38.7 37.7 23.2 15.4 12.3

RLBP 89.4 89.0 90.4 87.7 84.7 72.0 56.3 38.7 26.7 16.8 14.2

FLBP 91.3 91.5 91.1 90.3 87.5 79.2 64.3 43.3 22.4 13.5 12.2

SLBP 87.3 87.2 88.9 91.2 86.7 78.5 65.3 43.3 25.5 16.4 12.8

GF 74.2 74.1 74.2 74.4 74.5 71.4 67.4 58.9 36.5 18.4 9.4

GLCM 62.3 60.8 59.8 57.0 55.2 49.0 48.0 34.2 18.4 11.4 4.4

Max value per noise level is in bold and min value in italics.
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Table 11 Mean classification accuracy for descriptors computed on the Virus dataset

Virus dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000

LBP 40.3 40.1 37.7 34.5 26.9 17.3 13.9 10.0 7.5 7.2 7.7

ILBP 38.1 37.1 35.4 34.1 27.2 22.0 18.4 13.9 11.0 10.7 6.5

MBP 37.3 32.1 30.6 30.9 25.1 21.7 17.9 12.9 9.1 7.1 4.9

LTP 48.2 44.8 42.7 36.8 30.4 22.1 13.9 11.9 8.8 7.0 7.4

ILTP 53.1 51.5 49.2 43.9 36.9 29.0 20.2 14.5 10.5 8.4 6.8

LQP 39.1 36.1 33.3 27.7 19.7 12.1 13.1 11.8 9.5 7.8 7.7

RLBP 40.7 37.1 34.7 31.5 27.8 19.7 14.8 9.3 9.5 8.0 7.5

FLBP 54.5 53.8 50.3 47.7 36.8 24.3 16.4 10.6 7.0 8.3 7.0

SLBP 47.0 46.7 42.7 41.1 30.9 20.0 14.0 9.4 6.7 7.3 7.1

GF 51.6 51.5 49.2 46.9 35.7 27.1 15.0 10.3 7.7 7.6 5.7

GLCM 40.4 38.6 38.7 37.9 31.6 24.9 20.1 12.6 9.9 6.7 6.9

Max value per noise level is in bold and min value in italics.

improved upon by restricting the belongingness

computations to the possible subset of binary codes

given a specific neighborhood.
• MBP is very noise sensitive and has a relatively poor

performance even for low levels of noise.
• LQP suffer more of added noise than the majority of

the LBP-based descriptors.
• It is not possible to know in advance which texture

descriptor is the best performing one for a given

problem. However, a well-performing descriptor can

probably be found among a subset of the tested

descriptors, after optimizing their parameters. Such a

subset of descriptors could be ILBP, LTP, ILTP, and

FLBP. Furthermore, SLBP can sometimes be an

alternative to the computationally heavy FLBP.

In accordance with the survey in [9], ILTP is found to

be superior to LTP, LQP, and ILBP for all the datasets

evaluated. In addition, we show that ILTP retains its dis-

crimination advantage under increasing levels of added

Gaussian white noise. The results presented here also

show that even if MBP and LQP perform relatively well

on noise free data, they both suffer greatly from the intro-

duced noise. Furthermore, we find that FLBP has a good

overall performance, similar to ILTP.

It seems that it is preferable to use the more stable local

mean value of the neighborhood (including the center

pixel) as the local threshold in that ILBP often outper-

forms LBP, and ILTP often outperforms LTP. The two

descriptors using ternary patterns, LTP and ILTP, often

outperform their counterparts using binary codes, the

LBP and ILBP descriptors, suggesting that the use of

ternary patterns has its advantage.

The two descriptors MBP and LQP are often found

among the worst performing descriptors both regarding

overall accuracy and robustness to noise. The reason for

Figure 11 Noise tests on UIUC.Mean classification accuracy for all descriptors on the UIUC dataset.
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Figure 12 Noise tests on Virus.Mean classification accuracy for all descriptors on the Virus dataset.

the poor performance of MBP can be explained by its

definition. Using the median value as the local threshold

results in that half of the gray levels in the neighborhood

will be larger and half smaller. This restricts the possible

binary codes, and as a consequent, restricts the amount

of discriminative information that can be contained in the

MBP descriptor.

GF involves convolution with relatively large (between

13 × 13 and 25 × 25 pixels) complex filter kernels and is

hence slow in comparison to most of the other descrip-

tors, proves to be a very noise robust descriptor for

all datasets but not always among the best performing

descriptors at low noise levels.

Under increasing levels of noise the discriminating

power of the descriptors is expected to drop monoton-

ically, or at least close to monotonically. This holds for

most tests reported on here except for the results for

the Mondial Marmi dataset which are somewhat odd, see

Figure 8. While the mean classification accuracies have a

decreasing trend, the curves are far from monotonically

decreasing. One possible cause may be the JPEG com-

pression artifacts present in this dataset. The blocking

artifacts from the 8 × 8 blocks used in JPEG compression

are at a scale comparable to that of the local neighbor-

hoods used in the LBP family. As expected, GF, with

its larger considered regions, shows a smoother decline

under increasing levels of noise.

A comparison of the per-class performance and confu-

sion matrices for the descriptors at a few noise levels has

been done (data not shown). The LBP family of descrip-

tors tend to have difficulties with mostly the same classes

(MBP and LQP have additional difficulties). The per-class

accuracy for GF and the LBP descriptors is often similar

even though the LBP descriptors are more alike among

themselves (apart fromMBP). This is in line with the find-

ings reported in [38]. The per-class accuracy for GLCM

Figure 13 Computation time relative to classic LBP for descriptors applied to one sample per class in the Kylberg dataset.
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differs from those of the LBP family and GF mainly in

that GLCM has additional difficulties discriminating a

number of classes. FLBP has a high over all accuracy but

with a slightly different pattern in the per-class accuracy

compared to the rest of the LBP-family on the Brodatz,

Kylberg, and Virus datasets. Similarly, GF has a slightly

different distribution of per-class accuracy than the LBP-

family on the Brodatz, KTH-TIPS2b, and Mondial Marmi

datasets.

A different distribution of per-class accuracy indicates

that the descriptors compared detect different charac-

teristics of the textures. On some datasets used here a

combination of ILTP or FLBP andGF could presumably be

beneficial for the task of texture classification. However,

combining texture descriptors to improve classification

accuracy is not within the scope of this article.

In parallel with the 1-NN classifier used in the results

reported in this article, SVMs were also investigated on

the datasets without added noise using both a linear and

a Gaussian kernel with optimized parameters. Similar

descriptor parameter values were suggested by the SVM

classifiers in the optimization procedure for the texture

descriptors. For some dataset–descriptor combinations,

the SVMs reached slightly higher classification accura-

cies. Nevertheless the 1-NN classifier was used in the

tests reported on to make the comparison between the

descriptors on the same and fair basis.
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