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METHODOLOGY

Evaluation of novel precision viticulture tool 
for canopy biomass estimation and missing 
plant detection based on 2.5D and 3D 
approaches using RGB images acquired by UAV 
platform
Salvatore Filippo Di Gennaro*  and Alessandro Matese 

Abstract 

Background: The knowledge of vine vegetative status within a vineyard plays a key role in canopy management in 

order to achieve a correct vine balance and reach the final desired yield/quality. Detailed information about canopy 

architecture and missing plants distribution provides useful support for farmers/winegrowers to optimize canopy 

management practices and the replanting process, respectively. In the last decade, there has been a progressive diffu-

sion of UAV (Unmanned Aerial Vehicles) technologies for Precision Viticulture purposes, as fast and accurate method-

ologies for spatial variability of geometric plant parameters. The aim of this study was to implement an unsupervised 

and integrated procedure of biomass estimation and missing plants detection, using both the 2.5D-surface and 

3D-alphashape methods.

Results: Both methods showed good overall accuracy respect to ground truth biomass measurements with high 

values of  R2 (0.71 and 0.80 for 2.5D and 3D, respectively). The 2.5D method led to an overestimation since it is derived 

by considering the vine as rectangular cuboid form. On the contrary, the 3D method provided more accurate results 

as a consequence of the alphashape algorithm, which is capable to detect each single shoot and holes within the 

canopy. Regarding the missing plants detection, the 3D approach confirmed better performance in cases of hidden 

conditions by shoots of adjacent plants or sparse canopy with some empty spaces along the row, where the 2.5D 

method based on the length of section of the row with lower thickness than the threshold used (0.10 m), tended to 

return false negatives and false positives, respectively.

Conclusions: This paper describes a rapid and objective tool for the farmer to promptly identify canopy manage-

ment strategies and drive replanting decisions. The 3D approach provided results closer to real canopy volume and 

higher performance in missing plant detection. However, the dense cloud based analysis required more processing 

time. In a future perspective, given the continuous technological evolution in terms of computing performance, 

the overcoming of the current limit represented by the pre- and post-processing phases of the large image dataset 

should mainstream this methodology.
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Introduction
Vineyards are highly heterogeneous due to structural 

factors mediated by topography and soil characteristics, 

and non-structural factors, mediated by crop practices. 

Remote sensing technologies have been successfully used 

for vineyard monitoring and could be useful to describe 

vineyard variability. Unmanned Aerial Vehicles (UAV) 

provide high flexibility of use, low operational costs and 

very high spatial resolution Matese et al. [17]. RGB sen-

sors mounted on UAVs are capable of providing high-

resolution images that can be processed to build digital 

surface models (DSMs), using three-dimensional (3D) 

reconstruction software based on stereo vision or struc-

ture from motion (SfM) algorithms Padua et al. [16, 22]. 

Using these methods, a large set of applications can be 

undertaken such as biomass monitoring [4–6], volume 

characterization Ballesteros et  al. [3], Matese et  al. [15], 

Pádua et al. [21] and early-season crop monitoring [10], 

[26]. Many authors reported that the use of SfM from 

UAV-images may produce a 3D point cloud similar 

to one obtained acquiring data with a LiDAR [12, 29]. 

Photogrammetric dense point cloud has a point density 

depending on the image spatial resolution and overlap 

level, but with a consistently lower cost than a LiDAR 

one. �ese advantages have led to an increasing interest 

in this technology and in the last few years, several stud-

ies utilized dense point clouds from SfM in vineyards 

with different applications Ballesteros et al. [3, 14, 30].

Mesas-Carrascosa et al. [19] applied colour vegetation 

indices in point clouds for the automatic detection and 

classification of points representing vegetation and calcu-

lated the height of vines using as a reference the heights 

of points classified as soil.

Anifantis et al. [2] performed a comparison on an adult 

super-high-density olive orchard, using three methods 

for tree row volume (TRV). �e first method (TRV1) 

was based on close-range photogrammetry from UAVs, 

the second (TRV2) was based on manual in  situ meas-

urements, and the third (TRV3) was based on a formula 

from the literature.

Comba et al. [9] proposed an innovative unsupervised 

algorithm for vineyard detection and vine row features 

evaluation, based on 3D point-cloud maps processing. 

�e main results are automatic detection of the vineyards 

and local evaluation of vine row orientation and inter-

row spacing. �e overall point-cloud processing algo-

rithm can be divided into three mains steps: (1) precise 

local terrain surface and height evaluation of each point 

of the cloud, (2) point-cloud scouting and scoring proce-

dure on the basis of a new vineyard likelihood measure 

and lastly, (3) detection of vineyard areas and local fea-

tures evaluation.

Comba et al. [8] used a data fusion approach to achieve 

high consistency of the obtained huge data for vigour 

characterization in vineyards using 2.5D multispectral 

aerial imagery, 3D point cloud crop models and aerial 

thermal imagery.

Missing plants in a vineyard is a critical issue that can 

be managed by new technologies. Different events such 

as disease, winter injury or mechanical damage cause 

missing plants over the years and the initial number of 

vines per hectare decrease. As a consequence, farmers 

lose a significant percentage of potential vineyard pro-

duction. �e simplest approach to identifying missing 

plants would be to detect areas not covered by canopy 

along the row. Unfortunately, vertical aerial photography 

is often unable to identify the actual situation under the 

top of the canopy, and in the case of absence of a plant, 

neighbouring plants can extend their shoots and foliage 

to occupy the adjacent free space. Using a raster surface 

approach, the estimation of height and area from UAV 

measurements does not denote tangible errors because 

the ground-based measurements have been derived by 

applying the conventional geometric equation that con-

siders trees as ellipsoid forms, which can produce inexact 

ground estimations. Torres-Sánchez et al. [27], reported 

that 3-D products derived in their study reconstructed 

the irregular shape of the crown, which hypotheti-

cally allows better estimation of tree volume than those 

derived from ground measurements. A step forward 

could be taken using a methodology typical for forestry 

applications [28], where the 3D dense cloud is recon-

structed as an object shape from a set of unorganized 

points. Using these methods, not only the tree crown 

shape was estimated, but also the entire canopy.

�e aim of this study was to implement an unsuper-

vised and integrated procedure of biomass estimation 

and missing plants detection, using both the 2.5D-surface 

and 3D-alphashape methods.

Results are presented in Sect. “Results” and discussed 

in Sect.  “Discussion”. �e most significant conclusions 

are shown in Sect.  “Methods”. �e last section presents 

the study area and the methods used both for data acqui-

sition and processing.

Results
Model validation

�e model validation was performed by compar-

ing research outputs with independent in-field obser-

vations. �is phase evaluates the quantitative and 

qualitative accuracy and allows the comparison of alter-

native research methodologies. �e ground-measured 

volume per vine was calculated using field data aiming to 

validate UAV 2.5D and 3D methods (Fig. 1).
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Vine height and thickness are among the most used 

agronomic parameters by farmers for in-field vol-

ume measurements, being non-destructive and easy to 

acquire. �ese variables were therefore chosen to validate 

the model. Figure  2 shows the linear regression results 

between canopy volume estimation made by 2.5D (black 

triangle) and 3D (red circle) methods and volume ground 

measurements.

Both methods present a high value of  R2 (0.71 and 0.80 

for 2.5D and 3D, respectively) confirming the good accu-

racy of the models, with values distribution very close to 

the 1:1 line. In some cases, 2.5D method tends to over-

estimate since it is derived by applying the conventional 

geometric equation that considers the vine as rectangular 

cuboid form. On the contrary, the 3D method tends to 

underestimate canopy volume as a consequence of the 

alphashape algorithm, which produces shapes more 

complex than a rectangular cuboid taking in account 

the irregular shapes and detecting each single shoot and 

holes within the canopy.

Biomass estimation and missing plants detection

�e vines volume within each polygon grid (3 plants) of 

the whole vineyard was calculated using the 2.5D and 3D 

method. As a consequence of the high heterogeneity of 

this vineyard in terms of plant age, vine spacing and can-

opy management, the analysis was performed separat-

ing the northern (Fontone) from the southern site (Case 

Basse). First, a comparison between the two methods of 

canopy volume estimation is shown in Fig. 3. �e values 

represent the canopy volume estimation of all polygons 

grid in the two sites. In line with the results of the model 

validation section, both sites show a biomass overesti-

mation of the 2.5D with respect to the 3D method, less 

marked in Case Basse than Fontone, being closer to the 

1:1 line.

�e comparison between the two methods pro-

vided an overall good correlation, with higher correla-

tion coefficient and accuracy in term of values in Case 

Basse  (R2 = 0.68, RMSE = 0.78  m3) with respect to Fon-

tone  (R2 = 0.46, RMSE = 1.28  m3). In detail, in Fontone 

(Fig. 3a) the regular geometry of the rows and the larger 

dimension of the canopy top derived from the shoot 

wrapping management cause a higher estimation of 

the mean canopy volume per polygon grid in the 2.5D 

method (2.03 ± 0.63  m3), which takes into account the 

Fig. 1 Data processing of sampled vines (a, d) using 2.5D (b, e) and 3D (c, f) methods

Fig. 2 Linear regression results between vine canopy volume 

estimation made by 2.5D (black triangle) and 3D (red circle) methods 

with observed volume
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improved canopy thickness. In this case the 3D approach 

presents lower mean values (0.83 ± 0.43  m3), evaluating 

the presence of holes and canopy thickness reduction in 

the middle part of the canopy. Case Basse site, which has 

a diffuse heterogeneity due first of all to the absence of 

canopy management, presents a scattered distribution 

and higher volume values per polygon grid (Fig. 3b). As 

for Fontone, in this site the 2.5D method provides higher 

mean values (1.46 ± 0.84  m3) than the 3D approach 

(0.84 ± 0.60 m3). �e 3D method shows similar mean val-

ues of canopy volume in both sites, with a higher stand-

ard deviation error in the Case Basse site, in line with the 

characteristics described previously.

Table 1 summarizes the results obtained with the two 

methodologies within each site. �e first column reports 

the potential number of plants calculated on the basis of 

vine spacing (Fontone 4444 plant/ha, Case Basse 3333 

plant/ha) and site surface values. �e next three columns 

show the cumulative amount of missing plants estimated 

by the 2.5D and 3D methods, and monitored on the 

ground, followed by the percentage accuracy obtained 

by the two methods with respect to ground truth obser-

vations. Finally, the last two columns present the mean 

canopy volume  (m3/vine) estimated by the two methods, 

calculated from the total canopy volume derived from 

the sum of each row volume, divided by the number of 

plants detected (potential plants minus estimated miss-

ing plants).

Fontone shows a total of 521 missing plants counted 

with ground observations, the 2.5D method underesti-

mates with a total of 446 missing plants (−14.40%), while 

the 3D method overestimates observed value with a total 

of 553 missing plants detected (+6.14%). In the Case 

Basse site with a total of 1931 missing plants monitored 

on the ground, the 2.5D and 3D methods provide an 

overestimation of 16.36% and 11.05%, respectively.

Fontone site has significantly fewer missing plants 

than Case Basse, mainly due to the smaller surface area 

(0.7 ha Fontone and 1.9 ha Case Basse). However, consid-

erable influence derives from the age of the vines, which 

in absolute values led to a percentage of missing plants 

monitored on the ground with respect to the potential 

plants of 16.75% in Fontone and 30.98% in Case Basse, 

planted in 1999 and 1973, respectively.

Taking into consideration the canopy volume estima-

tion, Table 2 shows that in Fontone site the two 2.5D and 

3D methods identified a mean canopy volume value of 

0.79 m3 and 0.34 m3, respectively. In line with the other 

Fig. 3 Linear regression between volume estimation of each polygon grid obtained with 3D and 2.5D methods for both sites a Fontone and b 

Case Basse

Table 1 Results of  missing plants (MP) and  canopy volume per  vine (CVol) estimation for  each site using 2.5D and  3D 

methods

Site Potential plants 2.5D 
estimated 
MP

3D 
estimated 
MP

Ground 
observed 
MP

2.5D accuracy (%) 3D accuracy (%) 2.5D estimated 
CVol  (m3/vine)

3D estimated 
CVol  (m3/
vine)

Fontone 3111 446 553 521 −14.40 + 6.14 0.79 0.34

Case basse 6233 2247 2171 1931 + 16.36 + 11.05 0.72 0.41
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site, in Case Basse the 2.5D estimates higher values than 

3D method, with 0.72 m3 compared to 0.41 m3.

Discussion
Biomass estimation and missing plants detection

�e 2.5D method showed different behaviour for missing 

plants estimation in the two sites. In Fontone the method 

identified an underestimation due to the palissage tech-

nique, which caused frequent cases of missing plants hid-

den by adjacent plant’s shoots wrapped on the top wire of 

the row. In the case of a missing plant covered by vigorous 

shoots, the 2.5D method based on the length of section 

of the row with lower thickness than the threshold used 

(0.10  m), tended to return false negatives (Fig.  4a). On 

the contrary, in Case Basse site the 2.5D approach over-

estimated the number of missing plants with many false 

positives, because different spacing between vines causes 

numerous short non-vegetated sections, while the dis-

persed canopy with many lateral shoots leads to low veg-

etated canopy along the rows, which are frequently below 

the thickness threshold of the method (Fig. 4b). Instead, 

the 3D method, identifying missing plants on the basis of 

mean average canopy volume, managed to recognize the 

entire canopy volume including lateral shoots, and there-

fore provided fewer false positives than 2.5D method in 

the case of short interruptions or sections of reduced 

thickness. �e irregular conditions of Case Basse led to 

a higher error in missing plants estimation than in Fon-

tone site, where the palissage cover didn’t affect the accu-

racy of the 3D methodology, which correctly identifies 

the empty space of a missing plant under the wrapped 

shoots of adjacent plants. However, the 3D method 

showed a general overestimation, which derived from the 

need to set an average volume value of the canopy in the 

phase preliminary to data processing. So, in the case of 

areas with low vigour plants, where the canopy volume 

is much lower than the set threshold value, the method 

Table 2 Experimental vineyard description

Site Fontone Case Basse

Vineyard surface 0.7 ha 1.9 ha

Row orientation NE/SW NE/SW

Year 1999 1973

Rows 19 36

Variety Sangiovese Sangiovese

Rootstock 110R Kober 5BB

Vine training system Cordon spur-pruned Cordon spur-pruned

Vine spacing 2.5 x 0.9 3.0 x 1.0

Canopy management Shoots wrapped along 
the row

Free shoots

Fig. 4 Details of vineyard conditions affecting missing plants detection in Fontone and Case Basse sites: (a-Fontone) false negative and (b-Case 

Basse) false positive with 2.5D method, (c-Fontone) false positive with 3D method due to different canopy thickness within the field and false 

positive with both method due to new replacement vines (d-Fontone and e-Case Basse)
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could return false positives. In fact, if the total volume 

of 3 plants in a polygon grid was lower than the volume 

of two average plants, it would identify the presence of 

a missing plant (Fig. 4c). �is could be considered as the 

main limitation of the 3D methodology in high spatial 

variability conditions, however, this issue could be over-

come by finding representative polygon grids without 

missing plants and calculating the average vine volume 

value. Some new replacement vines within both sites 

provide an additional increase of false positives cases in 

both sites (Fig. 4d Fontone and Fig. 4e Case Basse).

�e different canopy architectures in the two study 

sites caused a volume overestimation applying the 2.5D 

method due to the increasing estimation of vine thickness 

within each polygon grid. In fact, in the Fontone site the 

palissage management caused greater top canopy area 

as a consequence of the huge number of leaves on main 

and lateral shoots, while in Case Basse site the free shoots 

extending in the inter-row zone increased the mean 

thickness value identified. �e 3D method overcame that 

limitation, identifying a volume closer to the real canopy 

geometry in terms of lower thickness under the canopy 

top in Fontone, and considering the free shoots in the 

inter-row for their real volume in Case Basse, while in the 

2.5D method there was a high increase in the rectangu-

lar cuboid formula. Unfortunately, to validate the aver-

age canopy volume estimation identified at whole field 

level, numerous samples of pruned wood within each site 

would be necessary, given the geometric differences in 

the two areas of the vineyard.

General discussion

�e thorough analysis performed on the huge data-

set (around 1000 vines) by the extraction of geometric 

parameters based on polygon grids provides a feasible 

and fast tool for missing plant and biomass evaluation on 

large areas. Furthermore, applying a surface 3D recon-

struction approach, the UAV estimation of canopy 

height, area and volume is an objective tool with respect 

to subjective ground-based measurements derived by 

applying the conventional geometric equation that con-

siders the trees as ellipsoid or cuboid forms, which can 

produce inexact ground estimations. Figure  5 shows a 

graphical output of the 3D method, which represents a 

thematic map of the missing plants detected within each 

polygon grid at whole vineyard level, while overlaid white 

dots are the ground truth observations. It could be a val-

uable support map for the farmer when replacing missing 

plants.

Previous studies have made an effort to calculate 

geometric variables of vines using UAV point clouds. 

Mesas-Carrascosa et al. [19] reported good results com-

paring ground measurements of the heights of individual 

grapevines with the estimated heights from the UAV 

point cloud, showing high determination coefficients 

 (R2 > 0.87) and low root-mean-square error (0.07 m). For 

volume characterization, Anifantis et al. [2] described the 

calculation of tree row volume (TRV) comparing three 

different methodologies that show an average value of 

the difference equal to +13% between the method based 

on UAV and manual in situ measurements. Caruso et al., 

2017 found a good correlation between measured and 

UAV estimated canopy volume, with a constant height 

of 0.9 m  R2 was equal to 0.62, while  R2 increased (0.75) 

when the actual distance of the canopy from the ground 

was used in the calculation, but in this case the estimated 

canopy volume diverged from the 1:1 line.

Regarding missing plant detection, Comba et  al. [9] 

developed maps with the spatial location of classifica-

tion inaccuracies in terms of over, under, extra and miss-

detected areas. �e good detection index was found to be 

always greater than 90.0%, with an overall average value 

on the four point-cloud maps of 94.02. Unfortunately, 

the validation dataset was developed manually using the 

high-resolution images without a robust ground truth 

measurement. Comba et al. [8] reported an index similar 

to that used in this paper, the index I3D related to canopy 

vigour, defined as triangulated mesh by an alphashape 

function, with α radius parameter equal to 0.5, calcu-

lated from the UAV 3D point cloud. �e results are very 

interesting, showing a good classification of vines in dif-

ferent vigour classes using multi source data that give an 

improvement ranging from 67% to 90% with respect to a 

single data source. However, the validation dataset lacked 

Fig. 5 Example of graphical output of the 3D method representing 

a thematic map of the missing plants detected within each polygon 

grid, with overlaid white dots representing ground truth observations
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ground measurements made by expert agronomists who 

classified the vineyard blocks into three classes on the 

basis of vigour and canopy density. De Castro et al. [10] 

used DSM-OBIA model for the detection of the area 

and height of vines, and the existence of gaps. �e cor-

rect classification percentage (true positive) for each field 

and growth stage analyses surprisingly reached 100%. 

False negatives that indicated gaps wrongly classified as 

vines only occurred in one field, with 3.2%. Weiss and 

Baret [30] sampled 20 sites called elementary sampling 

units (ESU) covering a 10 m square area. �e percentage 

of missing segments of rows for each ESU was computed 

and results showed that when the percentage of missing 

row segments and percentage of missing pixels are low 

(ESUs 1 to 4, 13, 16, 17), a very good consistency between 

the two methods and ground measurements is observed. 

[20] found high accuracy in grapevine detection (94.40%) 

and low error in grapevine volume estimation, and in a 

new work [21] this accuracy is higher (99.8%), as well as 

in the individual grapevine identification (mean overall 

accuracy of 97.5%), both works using the same method.

Puletti et  al. [24] used the Red channel for identifica-

tion of grapevine rows achieving acceptable accuracy 

values (lower than 87%), however the inter-row spaces 

were not vegetation-covered. In accordance with Castro 

et al. [10], the use of DSM and a 3D model in vine clas-

sification is shown to be more accurate than a spectral 

approach, especially in the challenging spectral similar-

ity scenario due to cover crops growing in the inter-rows. 

�e methodology presented in this study for geometric 

characteristic evaluation and vine classification was fully 

automatic compared to others that needed a manual 

adjustment in filtering non-vine features [13], manual 

detection [9] or prior training of the classifier Poblete-

Echeverria et al. [23]. Although some of these approaches 

have a high accuracy level, they required user interven-

tion and absence of inter-row grass cover.

However, considering the low flying quote and forward 

speed needed for the methodologies suggested to obtain 

the necessary accuracy dense clouds, the UAV battery 

autonomy is the main limit in terms of surface covered in 

a single survey. Nevertheless, the recent advances in UAV 

technologies provide new commercial products, which 

is a cost-effective solution that can cover a 3 ha vineyard 

in a single survey using the acquisition protocol tested in 

this study. Moreover, with respect to traditional spectral 

monitoring, a strong point of the RGB geometric analysis 

is the relative independence from light conditions. Con-

sequently, the methodology suggested represents a fea-

sible tool to monitor large areas exploiting a wide time 

window during the day. �e main issue remains the large 

amount of data acquired to be processed, because image 

processing requires computers to be equipped with a 

larger working memory to reconstruct dense clouds 

and perform image analysis, especially following 3D 

methodology.

Conclusion
�is study confirmed the feasibility of a rapid assessment 

of biomass volume using different approaches based on 

the SfM algorithm applied to high resolution RGB images 

with large overlap acquired by a UAV platform. A sec-

ondary task was an accurate identification of missing 

plants within the rows, also able to detect a single dead 

vine, where only the cordon is present, partially covered 

by adjacent ones. �ese methods provided thematic maps 

related to biomass and missing plants with the aim of 

supporting the farmer in canopy management in order to 

achieve the desired vine balance. Another potential appli-

cation could be optimization of the re-planting process, 

better quantifying the order of new vines from a nursery 

and allowing fast localization of each re-planting site. 

�is paper describes a rapid and objective tool for the 

farmer to promptly identify canopy management strate-

gies and drive replanting decisions. In the future, given 

the continuous technological evolution in terms of com-

puting performance, this methodology could find wide 

diffusion eliminating the current limit represented by the 

pre- and post-processing phases of the large dataset of 

images necessary for this type of approach. Furthermore, 

it will also be possible to use flights with an angled cam-

era to acquire a double dataset relating to each side of the 

row. �is allows an extremely accurate point cloud to be 

obtained, but currently it is not feasible on large surfaces 

due both to the additional surveys needed for each vine-

yard, and the processing times that would be very lengthy 

or even impossible in the case of intermediate level work-

stations, given the high memory requirement for the 

management of such large datasets.

Methods
Experimental site

�e research was undertaken in 2019 during fruit-set 

phenological stage, in a non-irrigated 2.6  ha vineyard 

(43.00°N, 11.26°E) located in Montalcino Domain (Siena, 

central Italy) on the Agricola Case Basse farm. �e vine-

yard is divided in two parts, the south side planted in 

1973 (Case Basse) and the north planted in 1999 (Fon-

tone) (Table 2).

�is vineyard was chosen to evaluate the methodo-

logical approach under extreme and different conditions. 

In fact, Case Basse presents an irregular structure with 

different plant ages and spacing along the rows due to 

large number of replacements over the years, with sev-

eral cases of bilateral cordon trained to cover an adjacent 

missing plant. On the contrary, Fontone has a regular 
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spacing, fewer missing vines and less presence of new 

replacement plants (Fig. 6).

�e canopy management approach used by Agricola 

Case Basse farm is based on the “palissage” technique, 

which is an alternative tool respect to the widely used 

hedging practice to control vine vigour. According to 

this canopy management, the long shoot tips that would 

normally be hedged are wrapped horizontally along the 

last catch wire on the top of the canopy. As reported 

by France et  al. [7], this approach slowed shoot growth 

earlier during the season and reduced or eliminated the 

need for leaf removal in the fruiting zone, due to fewer 

lateral shoots. Other benefits are the reduction of bot-

rytis incidence and severity because there is a better air 

flow through the cluster, and improved protection from 

hail. At flight time, the palissage technique was used only 

in Fontone, while in Case Basse site the long shoots were 

still extended in the inter-row.

Remote sensing platform and data pre‑processing

�e flight campaign was performed using an open-

source UAV multi-rotor platform consisting of a modi-

fied multi-rotor Mikrokopter (HiSystems GmbH, 

Moomerland, Germany) described in a previous work 

of the authors [16]. A universal camera mount equipped 

with three servomotors allowed accurate image acqui-

sition through compensation of tilt and rolling effects. 

�e RGB camera was a Sony Cyber-shot DSC-QX100 

RGB camera (Sony Corporation, Tokyo, Japan) with a 

20.2 megapixel CMOS Exmor R sensor and a Carl Zeiss 

Vario-Sonnar T lens. �e flight campaign was per-

formed on 20 June 2019 with a single flight survey con-

ducted at 25 m above ground level at midday, yielding 

a ground resolution of 0.005 m/pixel. �e RGB camera 

was set at 2  s automatic trigger frequency with auto-

matic exposure. �e waypoint route was generated to 

obtain more than 75% overlap between photos (forward 

overlap) and flight lines (lateral overlap), in order to 

achieve the highest accuracy in mosaicking elaboration 

step. A dataset of 501 images was used to generate pre-

processed products using Agisoft Metashape Profes-

sional v.1.6.0 (Agisoft LLC, St. Petersburg, Russia). �e 

alignment and dense point cloud elaboration steps were 

realized with “highest accuracy” and “ultra high qual-

ity” respectively, requiring around 10  h of computing 

time with a workstation equipped with two Intel Xeon 

E5-2690 v4 processors, 256 GB RAM and GPU Nvidia 

Quadro M6000 24 GB. �e accurate dense point cloud 

(1345 million points) (Fig.  7a) was then processed to 

generate the digital elevation model (DEM) (Fig.  7b) 

and the orthomosaic (Fig. 7c) taking 40 min computing 

time. Data analysis computational time was 1 and 3  h 

for 2.5D and 3D respectively. �e on-site evaluation for 

biomass volume was limited to sampling vines used for 

validation, while the missing plants ground geolocating 

required about 6 h.

Fig. 6 Experimental vineyard and detailed conditions of Fontone (a) and Case Basse (b) areas
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Ground measurements

Ground-truth measurements were performed for model 

validation. For vine volume assessment, they consisted of 

measuring canopy geometric features of 6 vigorous sam-

ple vines. In detail, canopy mean height above the cordon 

(CH), canopy mean length along the row (CL) and mean 

thickness (CT) recorded at cordon level, 0.8  m above 

the cordon and top of the canopy were measured. As a 

consequence of the heterogeneity of Case Basse site, two 

vines with bilateral cordon were chosen as sample vines.

�e canopy volume of each vine was calculated using 

the following equation: 

�e missing plant validation was performed collect-

ing field data by visually counting and georeferenc-

ing each missing plant with a 0.02  m accuracy D-GPS 

Canopy volume = CH×CT×CL.

(Differential-GPS LeicaGS09, Leica Geosystems, Heer-

brugg, Switzerland).

2.5D approach–surface model method

Starting from the DEM originated by Agisoft, a uniform 

polygon grid was then generated to isolate three plants 

in each vine-row. Case Basse has 3.0 × 1.0  m vine spac-

ing, so each polygon grid was generated starting from 

the middle point between two rows with regular spacing 

of 3.0 × 3.0 m, while in Fontone, with a 2.5 × 0.9 m vine 

spacing, each polygon grid was 2.5 x 2.7  m. Vines and 

soil were also separated with a thresholding approach. 

�e “imopath” function of MATLAB [18] b (Mathworks, 

Natick, MA, USA) was applied to the DEM to mitigate 

the effect of terrain slope. Otsu’s thresholding technique 

was then used to distinguish between soil and vines, 

generating a logical mask of the complete field [6]. Mat-

lab “graythresh” function was used to computes a global 

Fig. 7 Detail of pre-processing products: dense point cloud (a), digital elevation model (b) and orthomosaic (c)
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threshold from grayscale image, using Otsu’s method. 

�is method chooses a threshold that minimizes the 

intraclass variance of the thresholded black and white 

pixels. �e global threshold was then used with “imbina-

rize” to convert a grayscale image to a binary image. At 

this point, the geometric features of vines (vine height dh 

and mean thickness δm ) in each polygon grid were extrap-

olated. �e DEM of a representative region is shown in 

Fig. 8a. White pixels identify soil and black pixels identify 

vine rows.

�e sum of black pixels (logical indexing equal to 0) 

was computed for each column, defining the vine thick-

ness function δ(x) (in pixels) along the region length. �e 

region length corresponded to the vine extent along the 

row. �is sum was then multiplied for the real spacing 

associated with each pixel dp and the cosine of the angle 

θ indicating vine slope with respect to the horizontal axis 

of the original image. �e function 

δp(x) = δ(x) ∗ dp ∗ cos(θ) represents the distribution of 

vine thickness with respect to the central axis of the vine 

row (Fig.  8b). Consequently, the zones where δp(x) = 0 

identifies missing plants. Computationally speaking, 

missing plants are identified considering all points with 

δp(x) < 0.1 m. �e remaining set of points was consid-

ered as vine thickness. �e mean thickness was com-

puted as the mean value of δp(x) avoiding missing plants 

δm =

〈

δp(x)
〉

 considering only values with δp(x) ≥ 0.1 . 

With the same approach, the mean elevation of vines and 

soil was computed for each row of the image. Figure 8c 

shows the vertical distribution of vine and soil elevation. 

�e mean vine-elevation h
(v)
m  was considered as the first 

quartile value of h(v)
(

y
)

 . �e mean soil-height h
(s)
m  was 

extracted as the third quartile value of h(s)
(

y
)

 , obtaining 

vine height as dh = h
(v)
m − h

(s)
m  . 0.8 m was then subtracted 

from dh considering the height of the cordon measured 

on validation vines. At this point, it was possible to esti-

mate the biomass associated with the complete region 

VDEM and a mean plant Vp . �e volume associated with 

the mean plant was: Vp = dh ∗ dL ∗ δm where dL = 0.9 is 

the vine length defined by vine spacing in the vineyard 

for Fontone and 1.0 m for Case Basse. �e volume associ-

ated with the DEM was VDEM = dh ∗ dA , where dA is the 

area of the vines computed by multiplying the total num-

ber of black pixel Npx to the area associated with each 

pixel, i.e., dA = Npx ∗ (dp ∗ cos (θ))
2 . �e number of 

missing plants in the region was identified as: Next =
Lv
ℓp

 

where ℓp is the length of a plant in the vineyard, equal to 

0.9 or 1.0 m according to vine spacing and extension Lv of 

the line with missing plant thickness δp(x) < 0.1 m.

3D approach —alphashape method

Starting from the 3D dense cloud generated by Agisoft, 

an alphashape Edelsbrunner and Mucke [11] or volume 

that envelopes the set of 3D points must be obtained to 

Fig. 8 Digital elevation model of vines within a polygon grid and its geometric features. Vine length (b) and thickness (b) are extrapolated through 

the binarized image (a), mediating the values on the image columns. The soil and vine elevation are obtained mediating respective pixels on 

horizontal rows (c)
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estimate volumes. �e generated dense point clouds 

were loaded with its original point density to Matlab. 

Alphashape allows the reconstruction of an object’s 

shape, namely alphashape, from a set of unorganized 

points. �e parameter α is used to tune the “tightness” of 

the shape around the points. For a very large value of α, 

the shape is equivalent to a convex hull. For a very small 

value of α, the alphashape forms holes and pockets with 

the shape clustering around the original points. Matlab 

“alphashape” function was used to create a bounding vol-

ume that envelops a set of 3-D points. It is then possible 

to manipulate the alphashape object to tighten or loosen 

the fit around the points to create a non-convex region 

and perform geometric queries (Ribeiro et  al. [25]). 

Firstly, the canopy points of the 3D dense cloud were 

extracted for each polygon grid using a “planeModel” 

object to construct a parametric plane model (Fig. 9a, b, 

c). Soil and vines were separated using Matlab function 

“pcfitplane” with the parameters equal to 0.5 and 5 for 

maxDistance and maxAngularDistance, respectively.

�e “alphashape” function was then applied for each 

polygon using an α value of 0.5 (Fig. 9d). �e function 

allowed both calculation of the alphashapes and vol-

ume estimation. Finally, a volume map was obtained 

as the union of the volume maps of all sampled rows. 

To obtain the volume map of a row, the volume value 

of each section was projected onto the segment join-

ing the starting and ending co-ordinates of the row. 

For each polygon grid, missing plants are calculated 

as the total volume within each polygon divided by the 

average vine volume in the field. For the latter value 

the average volume of polygon grids where no miss-

ing plants were found was divided by three (number of 

plants in each polygon grid). �e resulting average vine 

volume was 0.39 and 0.31 for Case Basse and Fontone, 

respectively.
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