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Abstract

Background: Rapid computational and technological developments made large amounts of omics data available in

different biological levels. It is becoming clear that simultaneous data analysis methods are needed for better

interpretation and understanding of the underlying systems biology. Different methods have been proposed for this

task, among them Partial Least Squares (PLS) related methods. To also deal with orthogonal variation, systematic

variation in the data unrelated to one another, we consider the Two-way Orthogonal PLS (O2PLS): an integrative data

analysis method which is capable of modeling systematic variation, while providing more parsimonious models

aiding interpretation.

Results: A simulation study to assess the performance of O2PLS showed positive results in both low and higher

dimensions. More noise (50 % of the data) only affected the systematic part estimates. A data analysis was conducted

using data on metabolomics and transcriptomics from a large Finnish cohort (DILGOM). A previous sequential study,

using the same data, showed significant correlations between the Lipo-Leukocyte (LL) module and lipoprotein

metabolites. The O2PLS results were in agreement with these findings, identifying almost the same set of co-varying

variables. Moreover, our integrative approach identified other associative genes and metabolites, while taking into

account systematic variation in the data. Including orthogonal components enhanced overall fit, but the orthogonal

variation was difficult to interpret.

Conclusions: Simulations showed that the O2PLS estimates were close to the true parameters in both low and

higher dimensions. In the presence of more noise (50 %), the orthogonal part estimates could not distinguish well

between joint and unique variation. The joint estimates were not systematically affected. Simultaneous analysis with

O2PLS on metabolome and transcriptome data showed that the LL module, together with VLDL and HDL

metabolites, were important for the metabolomic and transcriptomic relation. This is in agreement with an earlier

study. In addition more gene expression and metabolites are identified being important for the joint covariation.
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Background

With rapid and continuous technological improvements

large amounts of omics data from different levels

(genome, transcriptome, proteome and metabolome) are

now available. In an integrative systems biology approach,

it is becoming increasingly clear that the integration of
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omics data will provide a better understanding of biolog-

ical systems. Towards this end, the simultaneous analysis

of two data sets is an important task to better understand

the relationships between different biological functional

levels.

Statistically, integrative approaches face theoretical and

computational issues: the typical “large p, small n” prob-

lem as in high dimensional data. Some statistical methods

require the inverse of matrices; often they are singular, this

can be dealt with by penalization or dimension reduction.
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Interpretation of the results of the analysis is yet another

major challenge. In terms of integrating two data sets the

following questions need to be answered: (i) which vari-

ables in one data set are related to those in another data

set, (ii) which variables are not related, but still impor-

tant, in each of the data sets, and (iii) which variables

are relevant, i.e. provide more insight into the biological

systems?

A statistical solution is to perform variable selection

while combining the two types of variables in the modeled

integration process: for example, a regularized version of

canonical correlation analysis (CCA) [1], and a variant of

partial least squares (PLS) regression [2] called sparse PLS

[3] to simultaneously integrate and select variables using

lasso penalization [4].

The integration and the variable selection of two dif-

ferent types of omics data sets is nowadays an active

research subject. For example, Inouye et al. [5] assessed

metabonomic, transcriptomic, and genomic variation for

a large population-based cohort from the capital region

of Finland. For an overview of the data integration and

the different analyses in the study we refer to Figure 1 of

their paper [5]. In this work we focus on the first part

of data integration of the paper: ‘metabolite associations

of gene modules’. First they identified the sets of highly

correlated genes, such as the lipid-leukocyte (LL) mod-

ule, using network analysis of the transcriptomic data.

Next a Spearman’s rank correlation was used to identify

fine-scale detail of potentially causative/reactive effects

between the LL module expression profile (defined by its

first principal component) and the individual metabolites.

The motivation of the present paper lies in this sequential

analysis procedure. In other areas of biostatistics, simul-

taneous joint modeling of the variables is known to be

more efficient than analyzing data sequentially: network

construction, identifying the latent variable or module,

and correlating this identified module with the individual

metabolites.

Model estimates for integrative parts in the data are

often not representing the true underlying biological rela-

tion when systematic variation unrelated to the outcome

is present, the estimates are biased due to this variation.

It has been demonstrated that PLS suffers from this [6].

To deal with this, extensions of PLS have been devel-

oped. The asymmetric Orthogonal PLS (OPLS) [7], tries

to correct for systematic variation in the design matrix

before presenting the data to PLS. The main advantage

is an easier interpretation of the model: the model esti-

mates focus more on the predictive variation in the design

matrix. In order to integrate two data sets, we need a

symmetric approach of OPLS. The Two-way Orthogonal

PLS (O2PLS) model [6] is a symmetric method, model-

ing both predictive and systematic variation. The model

decomposes the variation present in two data matrices,

for example two omics data matrices X and Y, into three

parts. In the first joint part, underlying latent variables in

both data matrices are assumed to induce the relation-

ship between X and Y. This joint part can be seen as

a representation of the integration of the two data sets.

The second part is called the orthogonal part. Underlying

latent variables, independent from those in the joint part,

are assumed to be responsible for the unique systematic

variation in X (Y ), which does not contribute to the pre-

diction of Y (X). The third part indicates the noise part,

and captures the unsystematic variation in the data.

The aim of this paper is twofold. Our first aim is to

jointly model metabolomics and transcriptomics data, in

the light of previous study by Inouye et al. [5], to gain a

better insight in the interplay between the two omics by

decomposing the data in three parts. We extract latent

variables for the joint and orthogonal part, and summarize

relevant information by looking at the amount of varia-

tion captured by these latent variables. Our second aim

is to investigate the performance of the O2PLS estimates,

in terms of accuracy, with a simulation study under dif-

ferent conditions. We will look at the accuracy in terms

of bias, using settings similar to those present in real

metabolomics and transcriptomics data.

Integrating metabolomics and transcriptomics using

O2PLS is not new. A small scale integration, on 12 aspen

grown in a controlled environment, of 453 metabolomic

variables and 27,648 transcriptomic data has been per-

formed in [8]. Our analysis is in a larger scale, namely

human epidemiological study, consisting of 466 partic-

ipants. In the metabolomics data set (containing 137

metabolites) we have a classical situation of more partic-

ipants than variables; the transcriptomics data contains

more variables (35419) than participants.

This paper is organized as follows: the “Methods”

Section discusses the symmetric integration method

O2PLS. A simulation study is set up to assess its per-

formance. In the “Results” Section the simulation results

are discussed, furthermore metabolomics and transcrip-

tomics data are analyzed with O2PLS. The “Discussion”

Section gives an interpretation of the results from the sim-

ulations and data analysis, as well as commenting on the

O2PLS model and arguing for a probabilistic approach.

Methods

Previous methods

The Partial Least Squares (PLS) method was introduced

by Wold [2] to project a centered design matrix X to a

lower dimensional latent variable space:

X = TPT + E. (1)

Here T contains the lower dimensional data. Thematrix

P contains the directions in the X space which optimizes

the covariance TTY (where Y has zero mean). The matrix



Bouhaddani et al. BMC Bioinformatics 2016, 17(Suppl 2):11 Page 119 of 202

TPT is to be seen as a ‘best’ approximation of X based on

the covariance with Y. The proof for this is deferred to a

separate paragraph later on in this section. The matrix E

contains the residuals.

The PLS method is a popular method in chemometrics,

and from this area an extension was proposed to deal with

orthogonal variation: variation important for X but unre-

lated to X. This method was named Orthogonal PLS [7]:

X = T̃P̃T + T⊥P
T
⊥ + Ẽ. (2)

Again T̃P̃T represents a best approximation based on

the covariance with Y, but the direction vectors in P̃ are

corrected for (i.e. do not contain directions of) orthogonal

variation. The orthogonal variation in X is approximated

with T⊥P
T
⊥.

Both PLS and OPLS deal with outcome vectors. While

generalizations can be made to make them suitable for

an outcome matrix, they focus on regressing Y on X, but

not simultaneously the other way around. This symmet-

ric approach is appropriate for integrating multiple omics

data, while also prediction in both ways can be done.

The O2PLS model

The Two-way Orthogonal PLS (O2PLS) model [6] is a

symmetric method capable of dealing with systematic

variation. It is a generalization of PLS, correcting for

orthogonal variation in both data matrices X and Y. The

model decomposes the variation in the two data matri-

ces into a joint, orthogonal and noise part. The model

assumes that some underlying unobservable latent vari-

ables are responsible for the variation in the joint and

orthogonal part. Define the number of joint latent vari-

ables as a. The number of X-components that are orthog-

onal to Y is denoted by nx. The number of Y -components

that are orthogonal to X is denoted by ny. Let X be N × p

and Y be N × q. The O2PLS model can be seen as a factor

analysis model:

X = TWT + TY⊥P
T
Y⊥ + E

Y = UCT + UX⊥P
T
X⊥ + F

(3)

The inner relations for approximating Y with X and vice

versa are

U = TBT + H

T = UBU + H̃
(4)

In this model the scores are

T(N × a),TY⊥(N × nx),U(N × a),UX⊥(N × ny). (5)

They represent a projection of the observed data X and

Y to a lower dimensional ‘optimal’ subspace. The loadings

are

W (p × a),C(p × a),PY⊥(p × nx),PX⊥(p × ny), (6)

and they assign ‘importance’ to each X and Y variable to

the corresponding subspace. The noise matrices are

E(N × p), F(N × q),H(N × a),H ′(N × a). (7)

They capture all ‘left over’ variation not captured by the

scores.

To approximate Y with X (or X with Y ), we need the

corresponding inner relation defined via BT (or BU ) in (4).

A description of the O2PLS algorithm can be found in

Trygg’s paper [6]. The inner relation can be recognized as

being an ordinary linear model.

The optimal number of latent variables (a, nX , nY ) are

in the ideal situation known a priori. In practice this is

rare, and a cross-validation (CV) procedure is often used.

However, given the large number of variables in the tran-

scriptome and the three dimensional space in which opti-

mization takes place, the CV procedure quickly becomes

cumbersome. Hence an alternative method is proposed:

we base our cross validation criterion partially on the

mean squared error prediction, andmoreover on the coef-

ficients of determination (R2) of the inner relation fit (4),

since correcting for orthogonal variation usually improves

the fit of the inner relation regression (4) up to a certain

number of orthogonal components. The procedure can be

summarized as follows:

1. We choose a vector of values for the number of joint

components a.
2. For fixed a we choose the number of orthogonal

components nX and nY that maximize the sum of the

two coefficients of determination (R2) of the inner

relation regression (4). Mathematically: we search in

a two dimensional grid the integers nX and nY that

maximize

(nX , nY ) �→ 1−

∑

(HUT )2i,j
∑

U2
i,j

+1−

∑

(HTU)2i,j
∑

T2
i,j

. (8)

We also consider the value zero for the number of

orthogonal parts.

3. Two Mean Squared Errors (MSE) of Prediction

-concerning
∑

(Ŷ − Y )2 and
∑

(X̂ − X)2 - are

calculated with 10-fold cross-validation to determine

a with the previously obtained nX and nY fixed.

4. We go back to step 2 using for a the next element in

the vector of values as chosen in step 1.

The quality of the O2PLS estimates depends on the

accuracy of the estimated covariance matrix S = XTY .

Suppose X = E and Y = F , so X and Y are only noise.

The covariance matrix S can be decomposed with SVD:

S = WDCT, where W and C are unit norm. It may be

that we will observe a ‘large’ positive loading value, since

the norm of the loading vectors are forced to be one, and
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may mistakenly conclude that X and Y are related. How-

ever since X and Y are independent the projected data T

and U are little correlated (due to noisy variation), thus

the inner relation parameters BT and BU will have a small

magnitude.

Orthogonal correction captures variation unrelated to

the joint part. The residual data is hoped to correlate

stronger, thus providing a better inner relation fit. Espe-

cially with a high number of variables, this may improve

the fit (and thus interpretability of the obtained load-

ings) substantially. Estimation accuracy will not likely be

improved by correcting for orthogonal variation, since we

do not add information concerning the relation between

X and Y. However the exact statistical implications of

orthogonality correction on the joint part estimators is

still an unclear matter.

Proof of optimality

To make clear why the singular value decomposition

is important for O2PLS, some optimality properties are

proven.

The joint part maximizes the covariance between the

joint scores u = Yc and t = Xw:

uTt = cTYTXw. (9)

The maximization is over the set {w ∈ R
p, c ∈ R

q :

wTw = cTc = 1}. Suppose CYDW
T
X is a singular value

decomposition of YTX, where CY is q × q, D is q × p and

WX is p × p. Then the objective function becomes

(c,w) �→ cTCYDW
T
Xw. (10)

Since CY has orthonormal columns, it is a basis for Rq.

This implies that c is a linear combination of the columns

of CY . We can thus write for α = (α1, . . . ,αq)
T

c = CYα, αTα = 1, (11)

where the latter identity holds since we require cTc = 1.

The same holds for w = WXβ , with β = (β1, . . . ,βp) and

βTβ = 1. Now, using the orthogonality of CY andWX , we

can see that

cTCYDW
T
Xw = αTDβ =

p
∑

j=1

αjβjdj,j, (12)

since di,j = 0 for all i �= j, where i = 1, . . . , q and j =

1, . . . , p. Suppose without loss of generality that p ≤ q. We

can increase the dimensionality of β from p to q, by adding

q − p zeros without changing the unit norm property:

β̃ =
[

βT, 0, . . . , 0
]T

. (13)

Note that if q were to be smaller than p then we can use

the same argument for α. Cauchy-Schwartz tells us that

p
∑

j=1

αjβj =

q
∑

i=1

αiβ̃i

= αTβ̃

≤ ||α|| ||β̃||

= 1

(14)

The maximum of the covariance (9) is attained only if

α1 = β1 = ±1. In that case all summands in (12) are

zero except when i = 1, yielding the maximum to be the

first (and largest) singular value. The first singular vec-

tors c = CY ;1 and w = WX;1 are the maximizers. Note

that c = −CY ;1 and w = −WX;1 would also yield equiva-

lently themaximum, this is a minor identifiability problem

which does not alter the O2PLS model fit. To get the sec-

ond direction vectors, we optimize the objective function

(9) over the unit norm vectors c andw; we require also that

cTCY ;1 = wTWX;1 = 0. This last restriction, the orthog-

onality constraint, on c and w imply that α1 = β1 = 0

in (12). The maximal covariance is then attained only if

|α2| = |β2| = 1, yielding c and w to be the second singu-

lar vectors CY ;2 and WX;2. Continuing this argument we

find the singular vectors in CY and WX to be the maxi-

mizers of (9) satisfying the unit norm and orthogonality

constraint. If we have a set of indices I for which di,i = dj,j
for all i, j ∈ I, we choose c = CY ;min(I) and w = WX;min(I)

as maximizer. If we have more of those sets, we choose the

maximizer in each set in the same fashion.

The orthogonal components are obtained by finding

maximal ‘overlap’ between the uncorrected scores T and

the residuals E = X−TWT. An orthogonal score vector is

defined as tY⊥ := EwY⊥ where wT
Y⊥wY⊥ = 1. We want to

maximize the norm of the covariance between T and tY⊥:

max
tY⊥

||TTtY⊥||2. (15)

This can be rewritten as

max
wY⊥

wT
Y⊥E

TTTTEwY⊥. (16)

To incorporate the constraints wT
Y⊥wY⊥ = 1, we intro-

duce a Lagrange multiplier λ we and take the derivative

with respect to wY⊥. We get

ETTTTEwY⊥ = λwY⊥. (17)

The maximum is obtained if wY⊥ is the eigenvector of

ETTTTE corresponding to the largest eigenvalue. This is

the first left-singular vector of ETT . Together with the

constraint that WY⊥ should have orthonormal columns,

we find WY⊥ to be the matrix with left-singular vectors
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of ETT . The orthogonal scores can be constructed via

TY⊥ = EWY⊥. The same derivation can be used to find

that the maximal covariance between UX⊥ := FPX⊥ and

U, where F = Y−UCT, is obtained ifCX⊥ is the collection

of left-singular vectors of FTU .

Simulation study

A simulation study was performed to investigate the per-

formance of the O2PLS loading estimates,W, C, PY⊥ and

PX⊥. Although Trygg et al. included a simulation study in

their paper [6], the exact simulation study design was not

clearly presented. Therefore we could not reproduce their

simulation results, and the parameters for our simulation

study were arbitrarily chosen.

The loading values were chosen from a normal proba-

bility density function, this reflected the desired property

that some variables are important and some not. We

designed two dimensionality conditions for the data: the

“low” dimensional design stands for p = 100 variables in

X and q = 50 variables in Y. In the “high” dimensional set-

ting X contains p = 500 variables and Y contains q = 250

variables. The scores and noise components were ran-

domly drawn from a normal distribution with zero mean.

The variances of the scores and noise were chosen so that

they would satisfy a noise level condition: the noise level

α, the relative amount of noisy variation in the data, could

take two values; the value α = 0.05 corresponds to “little”

noise setting, noisy variation accounted for 5 % of the total

variation. The value α = 0.5 mimics “much” noise setting,

in this case noise accounted for 50 % of the total variation.

More precise, the variances σ 2
E , σ

2
F and σ 2

H are defined as

follows:

σ 2
E =

α

1 − α

aσ 2
T + nXσ 2

TY⊥

p
, (18)

σ 2
H =

α

1 − α
B2
Tσ 2

T , (19)

σ 2
F =

α

1 − α

a
(

B2
Tσ 2

T + σ 2
H

)

+ nYσ 2
UX⊥

q
. (20)

The number of samples were N = 500. As a large num-

ber of components is not often seen in practice, we chose

the number of joint components to be a = 1. The same

holds for the number of orthogonal components: nX = 1,

nY = 1. Table 1 shows the chosen parameter values in

each case. The number of simulation replicates was 1000.

We corrected the ‘sign’ of all estimated loading vectors by

multiplying the estimated loading vectors with the sign of

the crossproduct with the corresponding true loading vec-

tors, for example:W simul
·,j = sign

(

WT
·,jŴ·,j

)

Ŵ·,j for all joint

components j = 1, . . . , a.

Implementation of the O2PLS algorithm, calculations

and analyses were conducted in R [9].

Table 1 Simulation parameter choices. The loading value for

variable i is the density value of a normal distribution with mean

µ and standard deviation σ , denoted as N(i;µ, σ). The noise

terms were drawn from a normal distribution with zero mean.

The scores were drawn from a standard normal distribution. The

variances of the noise terms are such that the expected sum of

squares of the noise account for 100α % (equal to 5 or 50 %) of

the total sum of squares

Parameter ‘Low’-dimensional case ‘higher’-dimensional case

N 500 500

p, q [ 100, 50] [ 500, 250]

W [N(i; 60, 10)]i=1,...,100 [N(i; 300, 50)]i=1,...,500

C [N(i; 70, 5)]i=1,...,50 [N(i; 175, 25)]i=1,...,250

PY⊥ [N(i; 20, 20)]i=1,...,100 [N(i; 100, 100)]i=1,...,500

PX⊥ [N(i; 15, 10)]i=1,...,50 [N(i; 75, 50)]i=1,...,250

BT 2 2

σ 2
T , σ

2
TY⊥

, σ 2
UX⊥

[ 1, 1, 1] [ 1, 1, 1]

σ 2
E , σ

2
F , σ

2
H

α
(1−α)

[ 0.02, 0.104, 4] α
(1−α)

[ 0.004, 0.021, 4]

Availability of supporting data

The metabonomic measures are available as Supple-

mentary Table 4 in [5]. The raw and normalized gene

expression intensities have been deposited in Array-

Express which can be found at: http://www.ebi.ac.uk/

arrayexpress/ under the accession number E-TABM-1036.

ArrayExpress is hosted by the European Bioinformatics

Institute.

Results

Results of simulation study

For each loading parameter we obtained 1000 estimates.

Boxplots for the joint (left column) and orthogonal (right

column) part estimates in X (upper row) and Y (lower

row) in the “little” noise case (α = 0.05) are shown in

Figs. 1 and 2.

Firstly in both “low”(p = 100, q = 50) and “higher”(p =

500, q = 250) dimensions, the accuracy of the estimates

were very similar, as can be seen from the location and

range of the boxplots. Secondly at the variables with a

high joint loading value but low orthogonal loading value,

the orthogonal part estimates followed the true orthogo-

nal loading profiles. The joint part estimates also followed

the true joint loading profiles regardless of the value of the

orthogonal loadings at those variables. Thirdly, the differ-

ence between the estimates for the Xand Y components

was minor. There was slightly more variation present in

the X data at variables with a low loading value.

Boxplots of the 1000 simulations for the “much” noise

case (α = 0.5) are shown in Figs. 3 and 4. In both

“low”(p = 100, q = 50) and “higher”(p = 500, q =

250) dimensions the estimates performed similar. The

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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Fig. 1 Simulation: low dimensions little noise. Boxplots of 1000 simulations in which X (upper row) contains 500 samples and 100 variables, Y (lower

row) contains 500 samples and 50 variables. Noise contributed for 5 % of the total variation. The first column corresponds to the joint part, the

second column depicts the orthogonal part. The red line denotes the true loading profile

joint part estimates still followed the true loading pro-

file, although the boxplots showed more variation across

the 1000 estimates. The orthogonal part estimates were

less accurate than the orthogonal part estimates in the

“low” noise case. Especially at the variables with a high

joint loading value, the orthogonal part estimates showed

a high variation. The orthogonal part estimates in Y were

visibly higher in at least 75 % of the simulation replicates.

When simulating similar sizes as in our data example (we

took p = 6000 and q = 140 and considered α = 0.5), the

O2PLS method showed the same behavior (not shown).

Application to DILGOM data

Samples on metabolome (137 variables) and transcrip-

tome (35,419 variables) were collected as part of the

‘Dietary, Lifestyle, and Genetic determinants of Obesity

andMetabolic syndrome’ (DILGOM) study [5]. Study par-

ticipants were aged 25–74 years, median age was 53, and

were sampled from the region of Helsinki, Finland. A

total of 506 participants were present in both studies,

of which 232 male and 274 female. In this analysis, we

excluded participants whenever they had a missing value

for one ormoremeasurements in either themetabolomics

or transcriptomics data. This resulted in 40 omitted

participants, the used data thus finally consisted of

N = 466 participants.

Themetabolomics data were derived from nuclear mag-

netic resonance (1H NMR), providing absolute quan-

titative measurements on the serum metabolome. The

transcriptomics data were derived from averaged gene

expression counts on technical replicates. The raw counts

were quantile normalized at strip level. For more detailed

info, see [5, 10]. In transcriptomics filters are proposed

to reduce the amount of uninformative (low variance and

expression level) variables, which are often interpreted

as containing noise. The original study [5] used a filter

retaining only the 10 % highest expression levels, and

considered 3520 gene expression variables for analysis.

To model the orthogonal noise components we were less

stringent and extracted the top 25 % of the absolute val-

ues of the gene expressions, and we intersected this set of

expressions with the set containing the 25 % expressions

with the largest inter-quantile range conform [11]. The

reduced transcriptomics data contained 6272 variables.

Results of the analysis with all 35,419 variables were very

similar (not shown).
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Fig. 2 Simulation: high dimensions little noise. Boxplots of 1000 simulations in which X (upper row) contains 500 samples and 500 variables, Y (lower

row) contains 500 samples and 250 variables. Noise contributed for 5 % of the total variation. The first column corresponds to the joint part, the

second column depicts the orthogonal part. The red line denotes the true loading profile

A Box-Cox transformation [12] with parameter 1
4 was

performed for themetabolomics data, to reduce skewness.

The ‘best’ choice for the Box-Cox parameter has been

investigated by many, we observed from the first four cen-

tral moments that 1
4 was sufficient to continue the data

analysis. Inouye et al. [5] also applied a Box-Cox transfor-

mation per variable, but the powers of the transformations

were not stated. A scaling here would amplify the effect

of noise on the estimates, so the data were only mean

centered.

To give an overall impression, the pairwise Pearson cor-

relation coefficients between the metabolite variables are

depicted in a heatmap in Fig. 5. There was a cluster

of positively correlated variables present within the var-

ious lipoproteins (VLDL, LDL, IDL, HDL) subgroups.

The VLDL subgroup and the HDL subgroup had nega-

tive correlation. Due to the large number of variables in

the transcriptome data, a heatmap of the correlations the

variables is omitted.

We continued our data analysis with the integra-

tion of metabolomics (X) and transcriptomics (Y ), using

O2PLS. To determine the optimal number of components,

we utilized the proposed alternative cross-validation

procedure as discussed in Section “Methods”, initializing

with a = 1, 2, . . . , 10. The optimal number of model com-

ponents were found a = 1, nX = 1, nY = 8. The

modeled variations per component is shown in Table 2.

In terms of explained variances (R2) we observed the

following:

• The variation in X and Y explained by the model was

58 and 51 % respectively. The rest of the variation

was estimated as noise.
• The joint correlated part in X explained 46 % of the

variation in X. Further 1 % of the total variation in Y
was explained by the joint correlated part in Y. This
means that 46 % of X and 1 % of Y could be

explained with one another.
• Of the 46 %, Y explained 27 % of X. This could be

seen relatively as 57 % of the joint variation in X.
Furthermore 0.8 % of Y was explained by X, which
was 58 % of the explainable variation in Y.

The sum of squares of all scores in the fitted model are

given in Table 3. The orthogonal part in Y explains about

half of the variation in Y, while half of the variation in



Bouhaddani et al. BMC Bioinformatics 2016, 17(Suppl 2):11 Page 124 of 202

Fig. 3 Simulation: low dimensions high noise. Boxplots of 1000 simulations in which X contains 500 samples and 100 variables, Y contains 500

samples and 50 variables. Noise contributed for 50 % of the total variation. The first column corresponds to the joint part, the second column

depicts the orthogonal part. The red line denotes the true loading profile

X is explained by the joint part. This is due to the larger

number of components in the orthogonal part in Y. About

50 % of the total variation is due to noise.

Next in order to evaluate the quality of predictions of Y

with X, a scatter plot of U versus T is given in Fig. 6. The

slope of the regression line equaled BT = 0.84. The R2 of

the regression of U on T was 0.47.

In the light of Inouye’s results [5], the role of the

LL module (a cluster of tightly correlated co-expressed

genes) in metabolic variation was analyzed with O2PLS.

The gene expression labels and corresponding genes are

shown in Table 4. Figure 7 shows the estimated joint load-

ing values for each metabolite (overall mean 0.0363). The

VLDL subgroup together with MOBCH2-MOBCH3 had

large estimated loadings (mean 0.116, max 0.314). The

HDL subgroup was estimated to have moderate loading

values (mean –0.0439, min –0.121), note that the loading

values were negative. This coincides with the negative cor-

relation between VLDL and HDL. The magnitude of the

loading values for the other lipoprotein subgroups were

small, and approximately proportional to their size (mean

0.0171, max 0.0763). In Fig. 8 the estimated joint load-

ings for the gene expression variables are shown (overall

mean –0.000350). There are some variables noticeable for

their estimated loading size: For the top 10 gene expres-

sions the ID label was shown next to their estimates in

black. The LL module gene expressions were labeled in

the plot using a red color. For LL module gene expressions

in the top 10, the color green was used. The labels and

corresponding genes are shown in Table 5. The two gene

expressions with the highest absolute loading values were

also in the LL module (loading values −0.180 and −0.150

respectively).

One orthogonal component was identified in the

metabolomic data. The loading vector, which is normed

to one, is shown in Fig. 9. The metabolomic orthogonal

loading values are less diverse than the joint loading

values. The HDL subgroup and amino acids got small

absolute loading values, the other metabolites had an

equal share in the orthogonal variation. There were eight

orthogonal components identified in the transcriptomics

data. For comparison purposes, the loading vectors were

orthonormalized. The eight loading vectors, together with

the variation per component, are plotted in Fig. 10. Note

that different loading values across components cannot

directly be compared, since the variations are not equal.
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Fig. 4 Simulation: high dimensions high noise. Boxplots of 1000 simulations in which X contains 500 samples and 500 variables, Y contains 500

samples and 250 variables. Noise contributed for 50 % of the total variation. The first column corresponds to the joint part, the second column

depicts the orthogonal part. The red line denotes the true loading profile

The first loading vectors show little structure. In the last

plot we can see few large peaks, indicating that only some

variables are of importance in that component. The varia-

tion in the first component is approximately eleven times

larger than the variation in the last component.

Discussion

The integrative systems biology approach is becoming

increasingly popular and integration of omics data will

provide more insight into the biological systems. The

PLS method is widely known in chemometrics and pro-

vides data integration and simultaneous modeling, but

as shown in [6] the estimates are sensitive to struc-

tural noise. While OPLS [7] provides correction for such

orthogonal variation, it is oriented towards predicting

an outcome and thus lacks symmetry. We considered

here the O2PLS method [6]; it is a symmetric data inte-

gration method, accounting for structural noise in both

matrices. We particularly aimed to integrate two omics

data sets for embedding a high dimensional data set in

terms low dimensional ‘latent’ variables. To extract rele-

vant information in the data sets, we decompose the two

data sets into three parts: joint part in which variables

in one data set are related to those in another data set;

orthogonal part in which variables are not related, but

still important, in each of the data sets; and noise. Simul-

taneously we searched for the relevant variables in each

part.

Several approaches similar to O2PLS are available. To

handle more than two data sets, a generalization of O2PLS

has been proposed in [13], called OnPLS. Methods to deal

with the general idea of decomposing data sets in a joint

and systematic part have been proposed. They differ in

methodology and estimation. For example, DISCO-SCA

[14] can handle multiple data sets and may perform better

when prior information about the configuration of the

joint and orthogonal components is available. An essen-

tial assumption in this model is that the components

scores or loadings in each data set are exactly the same.

Another method providing data decomposition in a joint

and orthogonal part is JIVE [15], which can also handle

more than two data sets. JIVE may be used if the common

source underlying all data sets are similar/homogeneous.

One should note that that JIVE restricts the joint part

to be orthogonal to the systematic parts. Though it may

be argued that the joint and systematic loadings in the
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Fig. 5 Pearson correlation heatmap of metabolites. Red indicates high positive correlation, green is little correlation and blue is high negative

correlation. The variables are in the original order. A histogram of correlations is added in the top left corner

Table 2 Absolute and relative variations in O2PLS

a R2X R2Y R2Xcorr R2Xcorr R2Xhat R2Yhat R2Xhat/R
2
Xcorr R2Yhat/R

2
Ycorr

1 57.97 50.81 46.31 1.37 26.74 0.80 57.74 58.55

2 67.94 53.40 60.80 4.24 29.52 1.45 48.55 34.25

3 74.08 54.79 68.99 7.35 26.70 2.00 38.69 27.23

4 78.06 55.62 72.94 9.63 29.23 2.40 40.07 24.87

5 80.93 56.69 76.51 11.30 29.81 3.32 38.97 29.43

1 −

∑

E2i,j
∑

X2i,j
1 −

∑

F2i,j
∑

Y2i,j

∑
(

TWT
)2

i,j
∑

X2i,j

∑
(

UCT
)2

i,j
∑

Y2i,j

∑
(

UBUW
T
)2

i,j
∑

X2i,j

∑
(

TBTC
T
)2

i,j
∑

Y2i,j

The amount of variation per model statistic with respect to the total amount of variation, from an O2PLS fit using Metabolomics (X) and Transcriptomics (Y). The R2 (definition

given in last row) in percentages (with respect to the total variation in X and Y respectively) for each model statistic. The numbers of orthogonal components are

nX = 1, nY = 8. The number of joint components varies from 1–5. The first rowwas found best according to the proposed alternative cross-validation (as in Section “Methods”)
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Table 3 Absolute and relative variations of the scores and noise

in O2PLS

T TY⊥ E U UX⊥ F H

Absolute 2551 642 2316 3852 138502 137837 2061

Relative 46.3 % 11.7 % 42.0 % 1.4 % 49.4 % 49.2 % 53.5 %

The sum of squares per model part in an O2PLS fit using Metabolomics (X) and

Transcriptomics (Y). Absolute quantities as well as percentages with respect to the

total variation in X (first three), Y (second three) and U (last one) are shown

population are orthogonal, when obtaining a sample from

this population the joint and systematic loadings will

typically not be orthogonal. This orthogonality of the

joint and systematic loadings is not essential in O2PLS.

More research is needed to assess the impact of these

methods.

A simulation study is conducted to assess the accu-

racy of the O2PLS estimates, see Figs. 1, 2, 3 and 4.

The estimates were accurate if “little” noise was present

(proportion of noise in the data is α = 0.05). The model

can distinguish well between joint and orthogonal varia-

tion. This is the case in both “low”(p = 100, q = 50)

and “higher”(p = 500, q = 250) dimensional simulated

data. The presence of “much” noise (α = 0.5) did not

cause a substantial decrease in accuracy of the joint part

estimates. They followed the true underlying loading pro-

file well. The orthogonal part estimates were affected by

more noise in a negative way. Especially in the “higher”

dimensional case, the orthogonal part estimates concern-

ing Y (q = 250) are biased upwards. The model cannot

distinguish well joint and orthogonal variation, it mixes up

both loading profiles. It may be argued that the estimation

method of the joint loadings is borrowing accuracy from

both two data sets, while the orthogonal loadings estima-

tion method is less precise since it uses noisy remaining

(total minus joint) variation. Similar to any method, under

noisy circumstances it will be difficult to estimate the true

orthogonal loadings. This effect was less in the orthogonal

Fig. 6 Scatterplot joint score vectors. The first joint score vectors (T, U) obtained from an O2PLS fit using Metabolomics (represented by T ) and

Transcriptomics (represented by U) are plotted against each other. The slope of the fitted line is 0.84, the intercept is zero due to the mean centering

of the data. The coefficient of determination R2 was 0.47
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Table 4 Gene composition of the LL module identified by

Inouye et al.

Gene annotation Ilumina ID

C1ORF186 ILMN_1690209

CPA3 ILMN_1766551

ENPP3 ILMN_1749131

FCER1A ILMN_1688423

GATA2 ILMN_2102670

HDC ILMN_1792323

HS.132563 ILMN_1899034

MS4A2 ILMN_1806721

SLC45A3 ILMN_1726114

SPRYD5 ILMN_1753648

CACNG6 ILMN_1779043

part in X (p = 500), which has higher dimensions. It is not

clear why the orthogonal part estimates with less param-

eters (the orthogonal part in Y ) degrade more than those

with more parameters (the orthogonal part in X) in the

presence of noise.

We integrate data on the metabolome and transcrip-

tome, extracting both the joint and the orthogonal part,

provided in the O2PLS fit, in both data sets. Finding

the optimal number of components is a computationally

expensive task. A balance between computation time

and accuracy is sought by maximizing the explained

variance in the inner relation to determine the number

of orthogonal parts, and then minimizing the prediction

error for determining the number of joint parts. Investing

more time in this particular subject will aid in choos-

ing a more accurate method, without compromising

computational efficiency. We find four of the eleven LL

module gene expressions among the top ten, in terms

of importance for the joint variation (Fig. 8). Moreover,

the two gene expressions with the highest absolute

loading values are in the LL module. Furthermore in the

metabolomics data we find the VLDL subgroup together

with the HDL subgroup to be important for the joint

variation in the metabolomics data (Fig. 7). This shows

a contribution of the LL module to the joint variation,

partially induced by the VLDL and HDL subgroups.

This result can be found back in [5]. The simultaneous

data analysis approach identifies more expressed genes

important for the joint variation, the ID’s are in Table 5. All

genes except SNORD13 are involved in immune/defence

system pathways, but information for SNORD13 is at the

time of writing unavailable. Also there is large contribu-

tion from the mobile lipids MOBCH2 and MOBCH3 to

the joint metabolite variation. The orthogonal variation

in this data is difficult to interpret, no noticeable trends

or clusters were found in the loading values (Figs. 9 and

10). Including orthogonal components in the model

Fig. 7 Labeled joint metabolomic loading plot. Four groups of interest are grouped: very-low-density-lipoproteins, high-density-lipoproteins,

mobile lipids and amino acids
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Fig. 8 O2PLS transcriptomic joint loadings. Joint part O2PLS loadings per gene expression. The top ten gene expressions are in black and green. The

LL module gene expressions are in red and green. Four of the eleven gene expressions in the LL module are in the top ten, indicated in green. The

loadings for five other gene expressions in the top ten and the loadings for the LL module gene expressions have opposite sign

Table 5 LL module and top 10 gene expressions. Identified gene

expressions in the top 10 most important variables for the joint

variation in the transcriptome. The corresponding genes are

shown. Four gene expressions fall into the earlier identifies

Lipid-Leukocyte module

Gene annotation Ilumina ID Module

CPA3 ILMN_1766551 LL and top 10

FCER1A ILMN_1688423 LL and top 10

GATA2 ILMN_2102670 LL and top 10

HDC ILMN_1792323 LL and top 10

DEFA1B ILMN_1725661 top 10

DEFA1B ILMN_1679357 top 10

DEFA1B ILMN_2102721 top 10

SNORD13 ILMN_1892403 top 10

DEFA3 ILMN_2165289 top 10

IFIT1 ILMN_1707695 top 10

does improve the cross-validated prediction error (which

depends on the joint components), which makes it still

useful to include in the model. As we saw from the simula-

tion results in the “higher” noise (50 %) case (the estimated

amount of noise in the metabolomics and transcriptomics

data is also around 50 %), the joint loading estimates still

follow the profile of the true loadings. The orthogonal

loading estimates are performing worse, indicating a loss

of accuracy and thus interpretation in the orthogonal

components.

To meet the challenge of interpretation of the results

and to infer the relative importance of the variables

a structured and tractable probabilistic framework is

required. It is beyond the scope of this paper to propose

a new method; nevertheless, we argue for the neces-

sity and the feasibility of such a framework. Due to

a lack of an explicit probabilistic model in O2PLS, it
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Fig. 9 O2PLS metabolomic orthogonal loadings. Orthogonal part loadings obtained from an O2PLS fit with Metabolomics and Transcriptomics. One

orthogonal component in metabolomics was identified

is not straightforward how to perform statistical tests

on the loadings. For PLS, a bootstrap approach is pro-

posed in [16]. In the O2PLS model we must take into

account the orthogonal loadings, which are correlated

with the joint loadings due to the nature of the esti-

mation algorithm. This may invalidate the bootstrap

results. Furthermore a potential problem of multiple test-

ing may exist, which needs to be correctly addressed.

The assumptions made in the model imply that the

orthogonal scores TY⊥ and UX⊥ cannot be seen as

realisations of random variables, which is a fundamen-

tal property in statistical inference. Furthermore with-

out additional assumptions on the orthogonal part load-

ings PY⊥ and PX⊥ the model is unidentifiable. Also,

the probabilistic approach gives insight in hidden flaws

of the estimators, which are very difficult to discover

with the current O2PLS algorithm. These potential prob-

lems may invalidate statistical inference on the whole

population.

Providing a probabilistic framework to non-probabilistic

methods was done earlier. Probabilistic PCA has been

developed in [17], and for the factor analysis model there

is a well written probabilistic approach in [18]. A novel

probabilistic approach for the O2PLS method, which

puts the O2PLS method in a statistical framework, is cur-

rently being developed. The optimization criterion will

be maximum likelihood. The use of a parametric model

and a likelihood are indeed restricting the researcher, as

one needs to assume a distribution on the data. However

we expect that the probabilistic O2PLS model, just as

the ordinary linear model, will be robust against small

violations of the assumptions. The resulting likelihood

can be easily optimized, using a factorization of the prob-

ability density which allows for seperately optimizing the

likelihood.

A new derivation in multiplatform data analysis we

intend to do is the use of a likelihood information score,

which will rely on PO2PLS, indicating how much or little
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Fig. 10 O2PLS transcriptomic orthogonal loadings. Orthogonal part O2PLS loadings per gene expression. There were eight orthogonal components

identified. The ratio of the first part sum of squares and last part sum of squares is approximately eleven

two data sets are related. Combining the data integra-

tion approach with a probabilistic framework will aid

interpretability and inference in more general epidemio-

logical studies.
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