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Evaluation of On-Board Photovoltaic Modules
Options for Electric Vehicles

Mahmoud Abdelhamid, Student Member, IEEE, Rajendra Singh, Fellow, IEEE, Ala Qattawi,
Mohammed Omar, and Imtiaz Haque

Abstract—This paper presents an overview of different commer-
cial photovoltaic (PV) module options to power on-board electric
vehicles (EVs). We propose the evaluation factors, constraints, and
the decision-making criteria necessary to assess the suitability of
this PV module for this application. The incorporation of quality
function deployment (QFD) and the analytical hierarchy process
(AHP) is the decision-making methodology used in this study. Our
approach is innovative and robust in that the evaluation depends
upon data collected from PV manufactures datasheets. Unlike tra-
ditional research, a hybrid AHP and QFD innovative decision-
making methodology has been created, and current commercial
PV market data for all pairwise comparisons are used to show that
methodology. Using both cooled and uncooled PV modules, best,
intermediate, and worst-case scenarios were used to estimate the
driving ranges of lightweight EVs powered exclusively by bulk sil-
icon PV modules. Results showed that the available daily driving
ranges were between 25 and 60 km and that the CO2 emissions were
reduced between 3 and 6.5 kg, compared with internal combustion
vehicles of a similar type. We found that mono-Si PV modules were
most suited to power low-speed, lightweight, and aerodynamically
efficient EVs.

Index Terms—Analytic hierarchy process (AHP), electric vehi-
cles (EVs), photovoltaic cells, quality function deployment (QFD),
ranges, solar energy.

I. INTRODUCTION

THE nonsustainable nature of fossil fuels and the increasing
awareness about environmental pollution has resulted in

the creation of vehicles that use alternative fuel sources such
as electric vehicles (EVs), hybrid electric vehicles (HEVs), and
plug-in hybrid electric vehicles (PHEVs). Photovoltaic (PV)
technologies, in which solar energy is captured and converted
to direct current electricity, have also been developed because
of the availability of resources to create such technologies and
because of the ubiquitous nature and zero cost of solar energy.
The PV module, which is a packaged assembly of individual PV
cells, can provide energy to the vehicle via either on-board or
off-board methods. In off-board applications, PV is the source
of energy for the charging station. In on-board applications, the
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PV modules are vehicle mounted or integrated either to assist in
propulsion or to run a specific vehicle application [1]–[4]. There
has been substantial interest in developing PV technologies for
transportation because of the rapid evolution of these technolo-
gies in terms of increased efficiency and reduction in cost. The
approaches vary in terms of the PV module type, specifications,
and configuration of the system.

However, thus far, no research has been undertaken to deter-
mine the efficiency of decision-making methodologies to eval-
uate and select the optimum commercial PV module option of
on-board EVs. In this study, we propose evaluation factors, con-
straints, and the decision-making criteria necessary to assess
PV module’s suitability for this application. We also present
an overview of different commercial PV modules options. The
proposed decision-making methodology is a combination of the
quality function deployment (QFD) [5] and the analytical hier-
archy process (AHP) [6]. This research reduces the subjectivity
of these methods used with the inclusion of commercial PV mar-
ket data for comparison and not from experts’ experiences, as
in traditional research. It is also innovative in that we add QFD
as an input stage to correlate EV customers’ needs with PV
module capabilities. The remainder of this paper is organized as
follows. In Section II, we provide a literature review, followed
by our proposed methodology in Section III. In Section IV, we
provide our range of results for an EV powered by PV modules
and provide our conclusions in Section V.

II. LITERATURE REVIEW

Based upon a combination of qualitative and quantitative ap-
proaches, the AHP is a multicriteria decision-making (MCDM)
method used to evaluate multiple and conflicting criteria. In
the qualitative sense, it decomposes an unstructured problem
into a systematic decision hierarchy. It then uses a quantitative
ranking using numerical ranks and weights in which a pair-
wise comparison is employed to determine the local and the
global priority weights and finally the overall ranking of the
proposed alternatives. The AHP approach has been recently
used to rank various renewable and nonrenewable electricity
production technologies [7], for determining the best possible
solar tracking mechanism [8], for selecting the most appropri-
ate package of solar home system for rural electrification [9],
for selecting the solar–thermal power plant investment projects
[10], for determining the best sequence of switching [11], and
for evaluating different power plants [12]. Recently, we used the
AHP for selecting the best microcrack inspection technique for
an automated PV production line [13].

2156-3381 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 1. Proposed methodology to select the optimum PV module option to
power on-board EVs.

The QFD is a systematic method that the designer may use to
develop a new product or service by learning about the needs of
the customer, also known as the voice of the customer (VOC).
The aim of QFD is to incorporate the VOC into the engineering
characteristics of a specific product or a service. The planners
can then prioritize each product or service attributes to set the
levels necessary for achieving these characteristics. The QFD is
used for various applications, and the combined AHP-QFD is
applied to various situations [14], [15]. We implemented a QFD
and AHP combination as a decision-making tool for material
selection of automobile bodies [16] and to develop a knowledge-
based system for designing an automotive production line [17].

There are many other MCDM models, all of which have their
strengths, weaknesses, and areas of application, and none of
which is truly superior [18]. The most common disadvantage
between the MCDM tools is the subjectivity where the decision
maker uses his/her experience to rank alternatives. Our proposed
methodology minimizes the subjectivity and provides robust re-
sults. We chose the AHP decision making for these reasons:
1) Selecting the optimum PV module option for on-board EV
is an MCDM problem with conflicting objectives; 2) the AHP
is based on pairwise comparison and provides a robust decision
tool if precise data are used; and 3) we must have the ability
to incorporate QFD as an input stage so that weights are as-
signed according to EV customer’s preference and reducing the
subjectivity found in the traditional AHP method.

III. METHODOLOGY

The methodology used in this study is shown in Fig. 1. The
objective is to select the optimum PV module options to power
on-board EVs. We divide this approach in three main stages, as
discussed in the following subsections.

A. Stage I: Quality Function Deployment

There are five key components in our QFD matrix (see Fig. 2).
First, the “How” window is used to specify the engineering
requirements. Here, we propose the decision-making criteria
necessary to assess a PV module’s suitability for commercial use
for EV, which are the six PV functional requirements as specific

Fig. 2. Proposed QFD.

weight, power density, efficiency, power temperature coefficient
(PTC), life cycle cost (LCC) of electricity, and material concern.

The specific weight is defined as the total power generated by
the PV module divided by the module weight and expressed in
watts per kilogram (W/kg). For use in EVs, the specific weight of
the PV module should be high, as the installation of PV modules
will increase the vehicle curb weight, which affects vehicle
performance. The power density is the total power generated
divided by the area of the module with units of watts per square
meter (W/m2). Higher density modules are preferred for EVs
with limited surface areas. The efficiency of the PV module is
defined as the total power generated per unit area (m2) divided
by 1000 W/m2 and multiplied by 100. The efficiency of the PV
module should also be high to provide maximum output power
for given weather conditions and given module area. PTC is
expressed as –%/°C. An increase in temperature in turn causes a
corresponding decrease in all types of PV module performance,
with a lower PTC indicating improved performance. Finally,
both cost and material criteria will be discussed later.

Second, the “What” window is used to determine VOC pref-
erence in an EV. Third, the “Importance” window is used to
weigh the VOC preferences as percentages. The higher percent-
age score represents the most important customer need. Fourth,
the “Hows” and “Whats” are combined using a relation matrix
that consists of three different scores (1, 3, and 9) to define the
relationship between the customer needs and the engineering
metrics. Score 1 indicates a low impact between the specific
column in the “How” window and a specific row in “What”
window; score 3 is the mean medium impact, and score 9 indi-
cates a strong effect. For instance, a score of “25 out of 100”
is assigned for “High performance” as a high-valued customer
need for those EVs. Any high-performance EV must have a PV
with strong power density, specific weight, and PV efficiency,
with the medium and weak impacts for the other factors. Cor-
respondingly, the rest of the relationship matrix is completed.
Although these values cause decision inconsistency, it can be
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reduced by establishing many customer-oriented questionnaires
and by incorporating a team of engineering, marketing, and
research professionals.

At the bottom, or fifth position of the OFD matrix is the
outcome, which is the relative weight. The returned relative
weights indicate the relative importance for all PV modules
requirements and are used as input to the AHP stage. The relative
weight is calculated using

Evaluation =
∑

ij

αi × βij (1)

where i = number of rows (from 1 to 5), j = num-
ber of columns (from 1 to 6), α is the importance, and
β is the score (the value from the relationship matrix for
the given “How”/“What” pair). That is to say, the evalu-
ation in the first column (power density) is calculated as
= 25 × 9 + 25 × 9 + 20 × 3 + 15 × 1 + 15 × 1 = 540.

The relative evaluation is calculated as the specific evaluation
divided by the sum of all evaluations that is equal to 540/2560 =
21.09%.

B. Stage II: Photovoltaic Search Domain

Here, we highlight the possible search space for the selection
process and provide an overview of the different commercial
PV technologies with main emphasis on the strengths and chal-
lenges of each type of PV module. Although many PV cell types
are available, cost, availability of raw materials, reliability, sta-
bility, and lifetime limitations limit their widespread availability
[19].

The current commercial PV modules are based on bulk sili-
con (wafer based), and thin films could be deposited on either
rigid or flexible substrates. Bulk silicon PV modules in the form
of either mono-or multicrystalline silicon (mono-Si or multi-
Si) are superior to other PV materials. They are composed of
silicon, the second most abundant element in the earth’s crust
and a well-researched and understood element in the periodic
table. Consequently, this element is the predominant material
of silicon-based solar cells that compose the $350 billion semi-
conductor industry, e.g., in 2013, the silicon bulk PV module
shipped was 89.58% of a 40 GW total, with thin films [cadmium
telluride (CdTe), copper indium gallium selenide (CIGS), and
amorphous silicon (a-Si)] solar cells comprising the remaining
10.42% [20]–[23]. Laboratory tests also show that bulk silicon-
based single junction cells can achieve an efficiency of 25%
[19]. The challenges for CdTe PV modules are that cadmium is
toxic, and there is a limited supply of Te [24]. Some companies
recycle the product to mitigate environmental toxicity of CdTe
modules, but the cost of reclamation is quite prohibitive. CIGS
have small amount of cadmium sulfide, making them relatively
safer than CdTe PV modules. Unfortunately, CIGS has limited
use in that it requires indium, an element that is both rare and ex-
pensive [24]. The advantages of a-Si PV module, in addition to
the abundance of silicon, is that both the manufacturing tools and
techniques used to deposit a-Si and related materials are similar
to that used in liquid-crystal display manufacturing. They are
also superior to bulk silicon PV modules in terms of PTC. The

Fig. 3. Power density and specific weight of different PV options from differ-
ent manufactures.

main disadvantage of a-Si PV module is low efficiency, which
can be increased, however, with the use of multiple junction a-Si
solar cells.

In this study, we analyzed six different PV module options:
mono-Si, multi-Si (poly-Si), a-Si single junction, double junc-
tions’ a-Si/micro-Si, CdTe, and CIGS. We did not analyze sin-
gle and multijunction gallium arsenide (GaAs) (with or without
concentration technology), organic photovoltaic (OPV), dye-
sensitized solar cell (DSSC), and quantum dot cells. Although
GaAs-based solar cells are the most efficient PV type, they are
the most expensive and are mainly used in space applications.
The relatively low efficiencies of OPVs, DSSCs, and quantum
dot cells make them particularly poor candidates for the large-
scale PV generation of electricity. Specifically, DSSCs do not
exceed 17 cm2, which makes it very difficult to build large-area
energy modules because of the large amount of energy that is
lost during their connection [25]. OPV is unreliable with a cell
lifetime of only 3 to 4 years [26] compared with other commer-
cial PV module options, which have a lifespan of 20–30 years.
Unless there is a fundamental breakthrough in the material syn-
thesis and performance of these types, it is not possible that the
PV modules based on these types of solar cells will be ever used
for bulk power generation [25].

In order to test the different types of PV module options, we
collected the performance specifications for each using man-
ufacturer datasheets and analyzed these data in terms of our
decision criteria (see Figs. 3 and 4). More than 20 top PV man-
ufacturers are included in this study, where the best PV module
option per manufacturer in terms of maximum power rating
is used for analysis that serve as basis for the evaluation. All
PV modules included here are rigid. The manufacturer’s PV
module power ratings are for standard test conditions (STC)
(1000-W/m2 solar irradiance) at 25 °C. Fig. 3 shows the spe-
cific weight and the power density of the various PV modules
from different manufacturers. Note that both the highest specific
weight and the highest power density for the case of mono-Si
are approximately 18.5 W/kg and 211.6 W/m2, respectively.
Fig. 4 shows the efficiency and PTC of various PV modules;
the efficiency varies from a low value of 5.9% for a-Si modules
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Fig. 4. Efficiency and PTC of different PV options from different manufac-
tures.

TABLE I
DECISION-MAKING PAIRWISE MATRIX

Alternative

Multi-Si Mono-Si a-Si CdTe CIGS a-Si/μ-Si

Criteria
Power Density 150.1 167.5 63.7 107.9 125.4 92.8
(W/m2)
Specific Weight 12.2 14.4 4.1 6.3 7.5 5.9
(W/kg)
Efficiency (%) 15.01 16.79 6.35 10.80 12.55 9.30
PTC (-%/°C) 0.437 0.411 0.226 0.250 0.355 0.263
Cost (¢/kWh) 1.871 1.853 1.660 1.652 1.769 1.650
Material “Excel “Excel “Excel “Leas “Mode “Excel

lent” lent” ent” t” rate” lent”

to a high value of 21.5% for mono-Si. The best PTC value is
−0.2%/°C for a-Si module, and the worst is −0.452%/°C for
a multi-Si module. In Table I, we provide all the values used
for the pairwise comparison in stage III. The first four criteria
values are the average values shown previously in Figs. 3 and 4.
For example, the average specific weight for mono-Si is equal to
14.4 W/kg where this value is the average for all specific weights
of mono-Si modules from different mono-Si manufacturers in
Fig. 3.

We used this average to 1) enhance the robust nature of our
pairwise comparison to reflect actual PV market data and 2)
reduce the subjectivity in the traditional AHP method by making
the pairwise comparison depend on manufacturer’s actual data
and not on the evaluations of the decision maker using the 1-to-9
scale [6].

For values of cost criterion in Table I, we used an LCC of
electricity indicator for comparison since the constraint here is
the installation surface area on the vehicle. The LCC is defined as
the total cost of PV system per total energy generated through
the PV system in the life cycle in unit ($/kWh). The LCC is
calculated using [27, eq. (2) and (3)]

LCC ($ /kWh) =
Cost

∑ [PV Module + installation+ land+
Energy storage+ maintenance]

Total energy generated

(2)

TABLE II
LCC OF ELECTRICITY OF DIFFERENT PV MODULE OPTIONS

Multi-Si Mono-Si a-Si CdTe CIGS a-Si/μ-Si

PV Module price 0.655 0.655 0.583 0.583 0.583 0.583
($/W) (Excluded
Tax) [28]
PV Module price 0.701 0.701 0.624 0.624 0.624 0.624
($/W) (with sales
tax = 7%)
Cost PV Module 105.198 117.392 39.737 67.309 78.226 57.890
($/m2)
PV Module Average 13.880 15.640 5.910 10.060 10.920 8.661
Lifetime efficiency (%)
Total energy 5621.400 6334.20 2393.55 4074.3 4422.60 3507.826
generated (KWh)
Cost PV per Total 1.871 1.853 1.660 1.652 1.769 1.650
Energy (¢/KWh)

Total energy generated = I × η × PR × LT × A (3)

where I is the irradiation (kWh/m2/yr) which the average energy
flux from the sun and depends on the installation location. η is
the lifetime average module efficiency (%), PR is the perfor-
mance ratio, LT is the system lifespan (year), and A is the total
module area (m2). We did not factor in a cost of land since the
PV module integrates into the vehicle body. We also assumed
that the installation, maintenance, and energy storage costs were
similar for all PV module types. The current prices of commer-
cial PV modules (excluding tax) in ($/W) for the bulk silicon
solar modules are 0.55, 0.655, and 0.92, while for thin-film so-
lar modules are slightly less as 0.49, 0.583, and 0.87 for low,
average, and high scenarios, respectively [28]. These prices are
set by the manufacturers, with Chinese made PV modules the
least expensive. The cost of PV module per energy generated is
calculated using average module prices, the details of which are
given in Table II. The cost of PV module per square meter is cal-
culated using an average module density value (see Table I). The
PV module lifetime efficiency is calculated based on degrade
over the system lifetime by 0.5% relative to the initial efficiency
shown in Table II per year [29]. The total energy generated
is calculated using assumed parameters I = 1800 kWh/m2/yr
based on US location, PR = 0.75, and n = 30 years [29].

The use of silicon, which unlike Cd-based CdTe PV modules
are neither hazardous to humans nor the environment, obviates
any difficulties in the supply chain. Indeed, the CdTe module
is not the preferred choice worldwide and may be banned in
several countries [30].

Based on material availability/concern, we rank PV module
using the traditional 1-to-9 AHP scale [6].

In order to adequately evaluate the PV options, the three
constraints (geographical location, mounting configuration, and
tracking/orientation option) should be identical in any compar-
ison, which is beyond the scope of this paper.

C. Stage III: Analytical Hierarchy Process

Unlike traditional AHP models, our system evaluates the al-
ternatives differently by first establishing a relationship between
the objective function with criterion created by giving related



1580 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 6, NOVEMBER 2014

Fig. 5. Pairwise comparison matrix related to specific weight.

weights to each, which we obtain from the QFD stage I output.
The relationship between each criterion and each alternative is
then established by a pairwise comparison between two ele-
ments simultaneously. Table I shows the alternatives, criteria,
and the values used in decision. The pairwise comparison matrix
A in traditional AHP is obtained based on the decision maker’s
judgments aij using the 1-to-9 scale criteria [6, eq. (4)]

A =

⎡

⎢⎢⎣

1 a12 ... a1n

a21 1 ... a2n

: : ... :
an1 . ... 1

⎤

⎥⎥⎦, where aij =1/aji ,i, j = 1,...,n.

(4)

In our proposed methodology, the decision matrix is based on
averaging values from actual manufactures datasheets [see Ta-
ble I]. For example, the pairwise comparison matrix for “specific
weight criterion” shown in Fig. 5 has a multi-Si and mono-Si
comparison equal to 1.18. This value is calculated by referring
to the average specific weights for mono-Si and poly-Si, which
are equal to 14.4 and 12.2 W/kg, respectively. By dividing these
two numbers, we get 1.18. All comparisons are performed in
this manner. Although time consuming, this process yields very
accurate results because no personal experiences and opinions
of the decision makers are used.

This innovative approach in turn yields a robust decision tool.
As the consistency index (CI) is zero, as shown in Fig 5, we
can then calculate the CI using the method as follows [6], [31,
eq. (5)]:

CI =
λmax − n

n − 1
(5)

where λmax is the maximum eigenvalue of the comparison ma-
trix, and n is the number of attributes in the square matrix. In
the typical AHP, the conclusion of CI can be drawn by using a
comparison to the consistency ratio (CR) to check the judgment
of inconsistencies [31, eq. (6)]

CR =
CI
RI

(6)

where RI (random index) is an experimental value, which de-
pends on n and represents an average CI for a huge number of

Fig. 6. Rank of different PV modules types for EV application.

Fig. 7. Performance sensitivity analysis.

randomly generated matrices of the same order. Therefore, CR
is the ratio between CI (the calculated value) and the RI (the
expected value). The bigger CR requires the decision maker to
revise judgments to reduce the inconsistencies. Typically, if the
value of CR is less than or equal 0.1, the decision is acceptable
[6], [31]. In our case (see Fig. 5), since n = 6, then RI = 1.25
(The full table of RI values can be found in [31]). Therefore, in
a typical AHP, if the CI is less than or equal to 0.125, the de-
cision maker accepts the results. In our proposed methodology,
the CI is zero, which, however, reflects the robust and accurate
decision-making results. In our final ranking of all the alterna-
tives for the ultimate goal, we found that the crystalline silicon
(mono and multi) modules yielded the best overall results, with
the CdTe and a-Si PV modules have the lowest results (see
Fig. 6).

The performance sensitivity analysis for our problem, shown
in Fig. 7, clearly indicates conflicting objectives. Although the
mono-Si PV module option yields the best power density, spe-
cific weight, and efficiency factors, it is the worst in terms of
the cost and the second worst in terms of PTC after multi-Si.
Any inclusion of a thin film on a flexible substrate will result in
these modules having a higher specific weight. We do not expect
these results to vary greatly, however. In addition, any inclusion
of semiflexible PV modules with mono- and multicrystalline
PV cells between polymer sheets will increase the superiority
of these modules as the specific weight of these modules will
increase further but with assumption, the cost is still competitive
with commercial bulk PV modules.



ABDELHAMID et al.: EVALUATION OF ON-BOARD PHOTOVOLTAIC MODULES OPTIONS FOR ELECTRIC VEHICLES 1581

TABLE III
ASSUMPTIONS FOR EV WITH PV

PV Module
SUNPOWER
Model: SPR-327
NE-WHT-D

Specifications at 25 °C, Specific
Weight = 17.58 W/kg, Density = 200 W/m2,
PTC = –0.38%/ºC
Efficiency = 20.1%.
Total weight of on-board PV with support
structure = 25.00 kg
Area of on-board PV = 2 m2 (the constraint is
the available installation area on the vehicle)
Area of off-board PV = 5 m2 (the constrain is
the required area to charge the battery fully in
best case scenario)

Assumptions for
scenarios

Best scenario: The temperature in both on-
board off-board PV modules at STC (25 °C)
Intermediate scenario: On-board PV module
at (45 °C) off-board PV modules at STC (25 °C)
Worst scenario: The temperature in both on-
board off-board PV modules at 45 °C

PV Module
Configuration

Horizontal

Operating Location Insolation = 5 kWh/m2/day (Average in US)
[29]

Typical Lead–acid
Battery [33]

Specific energy = 40 Wh/kg
Capacity = 7 kWh, Operating window of battery
state of charge (SOC) >20% < 80%
Batteries weight = 175 kg

Typical lightweight
Vehicle
Specifications [32]

Traction efficiency (η ) = 0.8
Drag coefficient (Cd ) X frontal area (Af ) = 0.5
Air density (ρ) = 1.225 kg/m3
Coefficient of rolling resistance (Cr ) = 0.008
Gravitational constant = 9.81 m/s2

Total weight (M) = curb weight + PV weight +
driver = 668 kg

IV. ELECTRIC VEHICLES POWERED

BY PHOTOVOLTAIC MODULES

Here, we estimate the potential driving ranges for EV pow-
ered only by PV modules based on mono-Si PV option, which
was ranked first in our study. We also categorized the three
scenarios as best, intermediate, and worst cases. The proposed
EV is lightweight with an efficient aerodynamic design. For all
scenarios, we also assumed that the EV owner has two sets of
PV modules and batteries. The first set is of the PV modules
are assumed to cover a total surface area of 2 m2 on the vehicle
roof to charge the on-board battery. The other set is assumed to
a cover an area of 5 m2, which will be used to charge batteries
at home. The assumptions of the vehicle, PV module, operating
location, and battery are given in Table III. For the given vehicle,
we calculate the power demands (PW ) at the wheel using the
Japan 10+15 driving cycle using [32, eq. (7)–(11)]

PW =
1
2
ρCdAf V 3 + CrMgV + Meff V

dV

dt
(7)

Meff = M + Mr ≈ 1.1M. (8)

Here, Meff is the effective mass, Mr is the rotational inertia,
and V is the vehicle speed, which depends on the driving cycle.
The energy to be provided at the wheel over the driving cycle is
calculated by

EW =
∫

Cycle
PW dt =

1
2
ρCdAf

∫

Cycle
V 3dt

+CrMg

∫

Cycle
V.dt + Meff

∫

Cycle
V

dV

dt
. (9)

Fig. 8. Driving cycle and power demand at wheel.

Fig. 8 shows the power demands at the wheel and the driving
cycle. The driving range (R) is calculated as

R =
EW /D

Ebatt
(10)

where D is the driving cycle distance, and Ebatt is the amount
of battery energy that reaches wheel, which is given by

Ebatt = η × ΔSOC × Eint . (11)

Here, η is the traction efficiency and is equal to the product of
that efficiency of each component: motor, batteries, etc. ΔSOC
is the operating window of the battery state of charge, and Eint
is the initial energy stored in the battery from the PV, which
differs in the three proposed scenarios.

A. Best-Case Scenario

The assumptions of the different scenarios are tabulated in
Table III. Here, it is assumed that either with or without efficient
cooling, the average temperature on both PV modules is kept at
an STC of 25 °C. The power generated by the PV modules at
home is equal to 1000 W. In the assumed location, the energy
generated by the PV is approximately equal to 5000 Wh per day.

Assuming an ideal case, on the first day, the fully charged EV
batteries will provide 5000 Wh of energy storage. On the second
day, the second set of PV modules, which is mounted on the car
roof, generates 400 W, and the total weight of the modules is
22.75 kg. While driving the EV, the batteries will discharge and
will recharge again using the on-board PV modules mounted
on the EV. During driving, the EV may not be exposed to sun
or the weather may be rainy or cloudy. For these reasons, the
amount of energy generated by PV modules mounted on the EV
will vary daily. We assume that the PV modules mounted on the
EV charge the batteries for 0, 1, 2, 3, 4, or 5 h daily. Adding
these additional charges to fully charged batteries provides the
EV with the total energy equal to 5000, 5400, 5800, 6200, 6600,
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Fig. 9. (a) Daily vehicle ranges of three scenarios. (b) CO2 reduction compare
to equivalent gasoline vehicle.

or 7000 Wh, respectively. To keep the cost of PV-powered EV
low, we used lead–acid batteries in this analysis based on [33].
For more sophisticated battery model approach, see [34]. The
expected daily vehicle ranges are shown in Fig. 9(a).

B. Intermediate Case Scenario

Here, the PV modules mounted on EV are not cooled. The
average temperature in this location is assumed to be approxi-
mately 45 °C. Consequently, the PV modules mounted on the
EV will provide less electrical power compare with on-board PV
module in the best-case scenario. The new efficiency of these
PV modules is equal to 12.5% with each generating around
250 W and the car batteries providing additional energy storage
of 0, 250, 500, 750, 1000, and 1250 Wh for 0, 1, 2, 3, 4, or
5 h per day, respectively. The expected daily vehicle ranges as
a function of vehicle speed are shown in Fig. 9(a).

C. Worst-Case Scenario

Here, the average temperature in both cases (home or if
mounted on an EV) is assumed equal to 45 °C. The batter-
ies charged at home provided less energy as compared with
the previous cases. The modules will generate 625 W, and the
full day charged batteries would store 3125 Wh. The additional
charge provided by the PV modules mounted to the battery is

identical to the intermediate case scenario. The expected daily
vehicle ranges as a function of vehicle speed are in Fig. 9(a).

D. CO2 Reduction

In Fig. 9(b), we estimate the amount of CO2 reductions per
day for this assumed vehicle compared with an equivalent gaso-
line vehicle. We estimated the equivalent mile per gallon (MPG)
for the assumed vehicle in the given driving cycle as 51 MPG.
The calculations are based on [32, eq. (12)]

MPG = ηT 2W × ρgasoline

ECycle
.ICycle × 2.352 (12)

where ηT 2W is tank to wheel efficiency (assumed 15%), ρgasoline
is volumetric energy density (assumed 30 MJ/L), Ecyle is the
energy need for given cycle in MJ, Icycle is the driving cycle
length in kilometers, and the 2.352 is the conversation factor.
Each gallon of gasoline emits approximately 8887 g of CO2 [35].
Based on that, our calculation shows that the CO2 emissions
were reduced between 3 and 6.5 kg, compared with internal
combustion vehicles of a similar type.

V. CONCLUSION

Sales of low-speed EVs are expected to increase in the next
few years to 695 000 units sold by 2017: a growth of 45% that
is not confined to any region of the world [36]. The increase
of consumers worldwide who can afford cars makes it most
urgent to develop green transportation alternatives. The contin-
ued reduction in the cost of PV modules coupled with increase
PV module efficiency are the primary impetus for developing
electricity-generated PV modules to meet 21st century trans-
portation needs. In this study, with the sole purpose of driving
EVs powered only on PV generated energy, we used a unique
QFD-AHP hybrid decision-making approach to select the best
commercially available PV modules. Unlike traditional method-
ologies, this unique approach evaluates and ranks the different
PV modules by reconciling the conflicting objectives and multi-
attribute restraints to solve the problem. The subjectivity inher-
ent in dealing with such tools was reduced with the incorporation
of QFD into the input stage to weigh the criteria based on cus-
tomer’s needs and through the use of commercial PV market data
for pairwise comparison between alternatives. The subjectivity
also can be further limited by establishing a customer-oriented
questionnaire and by incorporating a team with members from
the engineering, marketing, and R&D departments. The pro-
posed decision-making methodology is robust since we depend
on precise data. However, this approach is still useful even in the
absence of accurate data. The same methodology can still be ap-
plied by making the pairwise comparison between alternatives
based on decision maker’s experiences. Incorporating many de-
cision makers will reduce the decision subjectivity as well. We
found bulk silicon PV modules to be the most appropriate for
estimating the driving range for a given set of PV modules and
batteries. PV modules are an excellent option powering the next
generation of small, lightweight, and aerodynamically efficient
vehicles EVs. Future designs for EVs, PV modules, and en-
ergy storage units are expected to lead to the commercialization
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of low-cost EVs powered exclusively by PV for the entire EV
transport industry, making it fully sustainable.
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A. Pla-Rubio, “An AHP (analytic hierarchy process)/ANP (analytic
network process)-based multicriteria decision approach for the selec-
tion of solar-thermal power plant investment projects,” Energy, vol. 66,
pp. 222–238, 2014.

[11] D. P. Bernardon, A. P. C. Mello, L. L. Pfitscher, L. N. Canha, A. R. Abaide,
and A. A. B. Ferreira,” Real-time reconfiguration of distribution net-
work with distributed generation,” Electric Power Syst. Res., vol. 107,
pp. 59–67, 2014.

[12] D. Scannapieco, V. Naddeo, and V. Belgiorno, “Sustainable power plants:
A support tool for the analysis of alternatives,” Land Use Policy, vol. 36,
pp. 478–484, 2014.

[13] M. Abdelhamid, R. Singh, and M. Omar, “Review of microcrack detection
technique for silicon solar cells,” IEEE J. Photovoltaics, vol. 4, no. 1,
pp. 514–524, Jan. 2014.

[14] J. A. Carnevalli and P. C. Miguel, “Review, analysis and classification of
the literature on QFD—Types of research, difficulties and benefits,” Int.
J. Prod. Econ., vol. 114, no. 2, pp. 737–754, 2008.

[15] W. Ho, “Integrated analytic hierarchy process and its applications—A
literature review,” Eur. J. Oper. Res., vol. 186, no. 1, pp. 211–228, 2008.

[16] A. Mayyas, Q. Shen, A. Mayyas, M. Abdelhamid, D. Shan, A. Qattawi, and
M. Omar, “Using quality function deployment and analytical hierarchy
process for material selection of body-in-white,” Mater. Design, vol. 32,
pp. 2771–2782, 2011.

[17] A. Qattawi, A. Mayyas, M. Abdelhamid, and M. Omar, “Incorporat-
ing quality function deployment and analytical hierarchy process in a
knowledge-based system for automotive production line design,” Int. J.
Comput. Integr. Manuf., vol. 26, pp. 839–856 2013.

[18] D. Bouyssou, T. Marchant, M. Pirlot, P. Perny, A. Tsoukias, and P. Vincke,
Evaluation and Decision Models: A Critical Perspective. Dordrecht, The
Netherlands: Kluwer, 2000.

[19] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop,
“Solar cell efficiency tables (version 43),” Prog. Photovoltaics, Res. Appl.,
vol. 22, pp. 1–9, 2014.

[20] S. Mehta, (2014, Apr. 23). GTM Research Apr. 2014 PV Pulse. [Online].
Available: http://www.greentechmedia.com/articles/read/Global-2013-
PV-Module-Production-Hits-39.8-GW-Yingli-Leads-in-Production-a

[21] R. Singh and J. D. Leslie, “Economic requirements for new materials for
solar photovoltaic cells,” Sol. Energy, vol. 24, pp. 589–592, 1980.

[22] R. Singh, “Why silicon is and will remain the dominant photovoltaic
material,” J. Nanophoton., vol. 3, p. 032503, Jul. 16, 2009.

[23] R. Singh, G. F. Alapatt, and M. Abdelhamid, “Green energy conversion
& storage for solving India’s energy problem through innovation in ultra
large scale manufacturing and advanced research of solid state devices
and systems,” in Proc. Int. Conf. Emerg. Electron., Dec. 15–17, 2012,
pp. 1–8.

[24] R. Singh, N. Gupta, and K. F. Poole, “Global green energy conversion
revolution in 21st century through solid state devices,” in Proc. 26th Int.
Conf. Microelectron., Nis, Serbia, May 11–14, 2008, vol. 1, pp. 45–54.

[25] R. Singh, G. F. Alapatt, and A. Lakhtakia, “Making solar cells a reality in
every home: Opportunities and challenges for photovoltaic device design,”
IEEE J. Electron Devices Soc., , vol. 1, no. 6, pp. 129–144, Jun. 2013.

[26] C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupé M. Leclerc, and
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