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Abstract. Multithreaded architectures have the potential of tolerating large mem-
ory and functional unit latencies and increase resource utilization. The Blue
Gene/Cyclops architecture, being developed at the IBM T. J. Watson Research
Center, is one such systems that offers massive intra-chip parallelism. Although
the BG/C architecture was initially designed to execute specific applications, we
believe that it can be effectively used on a broad range of parallel numerical appli-
cations. Programming such applications for this unconventional design requires
a significant porting effort when using the basic built-in mechanisms for thread
management and synchronization. In this paper, we describe the implementa-
tion of an OpenMP environment for parallelizing applications, currently under
development at the CEPBA-IBM Research Institute, targeting BG/C. The envi-
ronment is evaluated with a set of simple numerical kernels and a subset of the
NAS OpenMP benchmarks. We identify issues that were not initially considered
in the design of the BG/C architecture to support a programming model such as
OpenMP. We also evaluate features currently offered by the BG/C architecture
that should be considered in the implementation of an efficient OpenMP layer for
massive intra-chip parallel architectures.

1 Introduction and motivation

Multithreaded architectures are a promising trend for the design of future high-
performance microprocessor cores. Their ability to tolerate large memory and
functional unit latencies and to increase resource utilization put them in the
right position to achieve a high number of instructions per cycle (IPC). Tera
MTA [28] and SMT [34] (an example of which is Intel Hyperthreading tech-
nology [6]) have followed this approach. Another trend is the integration of
several microprocessor cores in the same chip, such as in the IBM Power4 [31].
Each processor has its own resources and shares the access to higher levels in
the memory hierarchy such as off-chip main memory.

Multiprocessors systems-on-a-chip based on the replication of multithreaded
cores offer a complexity-conscious alternative to future chip designs. The Blue
Gene/Cyclops (BG/C) chip [9], which is the core of a new family of multi-
threaded architectures developed by IBM Research, consists of a large number

Almasi, G. [et al.]. Evaluation of OpenMP for the Cyclops multithreaded architecture. "Lecture notes in computer science", 
Juny 2003, vol. 2716, p. 69-83. The final authenticated version is available online at https://doi.org/10.1007/3-540-45009-2_6



of simple thread units simultaneously executing independent streams of in-
structions. Each thread behaves like a simple, single-issue, in order processor.
Groups of threads share floating-point units and caches. All threads share a
single address space implemented with an embedded DRAM memory in the
same chip, resulting in a flat memory hierarchy with high bandwidth and low
latency.

Making these new parallel architectures truly usable requires portable and
easy-to-understand programming models that allow the exploitation of par-
allelism to applications written in standard high–level languages. Pthreads-
like approaches are always possible but require a large programming effort.
The user has to face the complexity of managing the parallelism at applica-
tion level, manually handling thread creation, work distribution, allocation of
variables and synchronization. The built-in parallel programming model pro-
vided by BG/C falls in this category. OpenMP [20] has emerged as the standard
for shared-memory parallel programming. OpenMP applications are simple to
program, portable across a range of shared-memory parallel platforms, and
achieve near optimal parallel performance. The goal of this paper is to prove
that OpenMP is a valid programming model for a machine that supports fine–
grain multithreading, such as BG/C, and thus provide the user with a simple
programming model for a complex machine.

We have ported the NthLib user-level threads library [19] to Cyclops in
order to develop an experimental research platform, and used the Linux ver-
sion of the NanosCompiler[10] to generate code. The current version does not
consider some specific hardware features offered by the architecture. We will
discuss about this limitation in Section 6, where we propose changes that will
allow OpenMP to better exploit processor resources.

This paper is organized as follows: Section 2 describes the main characteris-
tics of the BG/C architecture family and in particular, the configuration used in
this paper. Section 3 describes the implementation of the OpenMP layer based
on the NanosCompiler and NthLib. Section 4 describes the set of microbench-
marks and a subset of the NAS BT benchmarks used to obtain the experimental
results presented in Section 5. The later section also shows the feasibility of
programming OpenMP applications for BG/C. Section 6 discusses the explicit
support for OpenMP that would be required in the architecture and the issues
that should be considered to tune the implementation of the OpenMP layer.
Finally, Section 7 outlines related work and Section 8 concludes the paper and
outlines major directions in our future work.

2 The Blue Gene/Cyclops architecture

The main characteristic of the BG/C design is the integration of embedded
DRAM, processing logic and communications hardware on the same piece of
silicon. The proximity of memory and processors results in a flat memory hier-
archy which overcomes the von Neumann bottleneck (processor performance
improves faster than the capacity of memory to serve it) observed in conven-



tional designs. Instead of hiding latencies through out-of-order or speculative
execution, BG/C nodes tolerate latencies through massive parallelism. The so-
lution adopted by BG/C is to use multiple threads in a single node so that, if
a thread stalls for a memory reference, other threads can make progress. As a
result each thread unit is simpler and expensive resources, such as FPUs and
caches, are shared between different threads.

The organization of the BG/C chip is shown in Figure 1. At the base of the
BG/C hierarchy are thread units. BG/C is a multithreaded design where thread
units are simple computing processors that issue and execute instructions in
program order. Each thread can issue an instruction at every cycle if resources
are available and there are no dependences with previous instructions. Each
thread unit consists of a register file (64 32-bit single precision registers, that
can be paired for double precision values), a program counter, a fixed-point
ALU, and an instruction sequencer.
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Fig. 1. Block diagram for a prototype of the BG/C architecture.

Groups of threads units share an FPU and a data cache. Threads can dis-
patch a floating point addition and a floating point multiplication at every cy-
cle. The base architecture in ���������
	 CMOS technology and 32 FPUs achieves a
peak performance of 1 GFlops per FPU at a clock cycle of 500 MHz, for a total
chip performance of 32 GFlops.

Each of the 32 16 KB data caches (one per thread group) has 64-byte lines
and is 8-way set associative. By default, all data caches behave as a global, co-
herent cache. The data caches are shared among all threads in the chip. Thus, a
thread can access data in the cache of another thread group with lower latency



than going to memory. Instruction caches are 32 KB, 8-way set-associative with
64-byte line size. In the base architecture, one instruction cache is shared by 2
thread groups. Unlike the data caches, the instruction caches are private to the
threads in the thread groups. In addition, to improve instruction fetching, each
thread unit contains a Prefetch Instruction Buffer (PIB) of 32 instructions.

The reference design considered in this paper has 16 banks of on-chip mem-
ory shared between thread units. Each bank is 512 KB for a total of 8 MB of em-
bedded memory. The banks provide a contiguous address space to the threads.
The latency to any bank is uniform. Addresses are interleaved to provide higher
memory bandwidth. The unit of access is a 32-byte block, and threads accessing
two consecutive blocks in the same bank will see a lower latency in burst trans-
fer mode. The peak bandwidth of the embedded memory system is 40 GB/s (64
bytes every 12 cycles in each of the 16 banks).

In addition to the default all-shared cache behaviour, the architecture sup-
ports an entire spectrum of access schemes through interest groups [5], from no
sharing at all to caches shared at different levels. Any memory location can
be placed in any cache under software control. The same physical address can
be mapped to different caches depending on the logical address. An important
use of this flexible cache organization is to exploit locality and shared read-only
data. For example, data frequently accessed by a thread, such as stack data or
constants, can be cached in the local cache by using the appropriate interest
group. The hardware does not implement any coherence mechanism to deal
with multiple copies of a memory line in different data caches.

Four global inter-thread hardware barriers are provided through a special
purpose register (SPR). These barriers are implemented as a wired OR for all or
a user defined subset of the threads on the chip.

The BG/C chip also provides six input and six output links. These links
allow a chip to be directly connected in a three dimensional topology (mesh
or torus). The links are 16-bit wide and operate at 500 MHz, giving a maximum
I/O bandwidth of 12 GB/s. In addition, a seventh link can be used to connect to
a host computer. These links can be used to build larger systems without addi-
tional hardware. Another port permits the access to external (off-chip) memory.
However, these latter characteristics are not the focus of this paper.

BG/C executables (kernel, libraries, applications) are currently being gener-
ated with a cross-compiler based on the GNU toolkit, re-targeted for the BG/C
instruction set architecture. This cross-compiler supports C, C++, and FOR-
TRAN 77.

The performance results shown in Section 5 are generated by an architec-
turally accurate simulator which executes instructions from the BG/C instruc-
tion set, modeling resource contention between instructions, and thus estimat-
ing the number of cycles executed per instruction. The configuration parame-
ters used for the simulations in this paper are listed in Table 1.

In addition, each chip runs a resident system kernel, which executes with
supervisor privileges. The kernel supports single user, single program, mul-
tithreaded applications within each chip. The kernel exposes a single-address



space shared by all threads. Due to the small address space and large num-
ber of hardware threads available, no resource virtualization is performed in
software: virtual addresses map directly to physical addresses (no paging) and
software threads map directly to hardware threads. The kernel does not sup-
port preemption (except in debugging mode), scheduling or thread priorities.
Every software thread is preallocated with a fixed size stack per thread (selected
at boot time), resulting in fast thread creation and reuse.

Table 1. Design parameters for the reference BG/C architecture. In (a) we show the
number of cycles for execution and latency of the main instruction types. Execution is
the number of cycles the functional unit is busy; latency is the additional delay until the
results of the operation are available.

(a) instructions
Instruction type Execution Latency

Branches 2 0
Integer multiplication 1 5
Integer divide 33 0
Floating point add, mult. and conv. 1 5
Floating point divide (double prec.) 30 0
Floating point square root (double prec.) 56 0
Floating point multiply-and-add 1 9
All other operations (except memory ops.) 1 0

(b) components
Component # of units Params/unit
Threads 1-256 single issue, in-order, 500 MHz
FPUs 32 1 add, 1 multiply
D-cache 32 16 KB, 8-way assoc., 64-byte lines
I-cache 16 32 KB, 8-way assoc., 64-byte lines
Memory 16 512 KB

3 Towards OpenMP for BG/C
OpenMP for BG/C is based on the NanosCompiler and the NthLib compo-
nents. The OpenMP NanosCompiler is a source-to-source translator for For-
tran77 based on Parafrase-2 [23]. NthLib is a runtime library designed to pro-
vide an efficient support to the OpenMP execution model on shared-memory
multiprocessors. Fine grain parallel tasks are implemented as efficiently as other
thread packages: the application creates work descriptors and supplies them to
the participating threads [18]. A mechanism to spawn coarse grained parallel
tasks, called nanothreads [19] is also available. This mechanism is more expen-
sive but allows the explotation of multiple levels of parallelism.

Figure 2 presents the software architecture used for supporting OpenMP.
Kernel-level threads are the processor abstraction in our environment. User-
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!$omp parallel do

         do i = 1...
          ....
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Fig. 2. Software architecture of OpenMP on BG/C.

level threads are supported on top of the kernel-level threads, and they rep-
resent the abstraction for work. Kernel-level threads are created when the ap-
plication starts and are kept alive during the entire execution of the applica-
tion. User-level threads are spawned as needed to create parallel regions – each
thread executing a share of the whole work. Assigning the task to a thread is
implemented by queueing the nanothread or work descriptor in one of the per-
processor queues or in the global queue. The per-processor queues allows us to
exploit locality; the global queue can be used for load balancing reasons, but it
is not used for the experiments presented in this paper.

The implementation of NthLib for BG/C currently uses few specific system
services and architectural features. Its only requirements are a processor alloca-
tion mechanism, control over stack placement and memory management, and a
set of atomic memory operations. The thread creation mechanism provided by
the BG/C system library is the bg_svc_thread_create_specific call. This primitive
creates a kernel–level thread to run on a specific hardware thread. This way, the
kernel–level threads may be mapped to specific processors. Other service calls
similar to pthreads are used for thread management, like bg_svc_thread_join.
Stack management was implemented giving fixed-size stacks to threads on cre-
ation, thanks to the ability of the thread creation service to use a designated
stack as the thread stack. The implementation assumes the default all-shared
cache organization inside the chip.

4 Benchmark description

In order to evaluate the performance of our OpenMP implementation for BG/C,
we have used a set of microbenchmarks and a subset of the NAS benchmarks,
version 2.3. The purpose of the microbenchmarks is to compare the perfor-
mance of the OpenMP parallelization and the performance of the hand-optimized
versions to execute on BG/C. The NAS benchmarks show that our OpenMP
implementation scales to handle large, realistic applications.



4.1 Micro-benchmarks

Throughout our evaluation we have used microbenchmarks to study specific
properties of the architecture. In this paper, we present results for two scientific
kernels: dense matrix multiplication and sparse matrix-vector product. Their
simplicity allows the validation of results by direct study of the assembly list-
ings, which increases our confidence in the correctness of the experiments.

Three versions for each kernel have been coded: Pthreads, OpenMP and
Pthreads without optimizations (wco). In the Pthreads versions the program
contains code to fork and join parallel threads. In addition, each thread executes
code to determine the portion of work that has to execute and synchronizes
with other threads by means of barriers. The OpenMP version simply contains
the parallel and work-sharing directives necessary to express the same paral-
lelization strategy (or the closest one, if not possible). The compiler takes care
of generating the code for distributing the work and synchronizing across the
threads.

MM The matrix multiplication kernel, MM, computes ������� with ���
	�� ,
�
��	�� and ���
	�� , where 	 � ����� , ��� ����� and ��� � � � using the simple three-
nested loops algorithm (high school matrix multiply). The data set results in
a storage requirement of about 0.59 MB. That size essentially fits in the global
D-cache.

The pthread-based implementation of MM distributes the matrix � evenly
among ����� �"! threads, resulting in each thread owning a rectangular section
of � . Each thread computes only the portion of � it owns. The OpenMP imple-
mentation of MM distributes the work evenly among the columns of � : one-
level STATIC block distribution of the iterations in the loop that traverse the
columns of the result matrix. MM requires no synchronization between threads.

SPARSE, the multiplication of a sparse matrix by a vector, is the main kernel
of many iterative linear solvers. Our implementation represents the sparse ma-
trix # using row-indexed sparse storage [27,24]. This scheme stores the diagonal
elements and the non-zero elements in a vector of values val. The columns of
the non-zero elements are stored in an integer vector idx.

The inner loop of the sparse-matrix vector product #%$&��'

for (k=idx[i]; d < idx[i+1]; k++)
y[i] += val[k] * x[idx[k]]

requires three memory loads for every non-zero element ( . The location of the
dependent loads for the indirect access to $ is particularly difficult to predict
and the latency is difficult to hide. For that reason most sparse-matrix vector
codes suffer from poor performance.

In both implementations (Pthreads and OpenMP), the rows of the matrix #
and the solution vector ' are partitioned between threads. This method does
not require thread synchronization. A fill parameter ) controls the sparsity of



the matrix: one of every ) elements in each row � is non zero, starting at column
� mod ) . Thus, the vector $ is traversed in sequential order.

Threads multiply one or two rows of the matrix at the same time, and in the
manual implementation the inner loop is unrolled 8 times. The test problem
#%$ � ' with matrix size � ����� � ������� and fill factor ) � � requires 3.03 MB of
main memory.

4.2 NAS benchmarks

We have also evaluated our BlueGene/Cyclops OpenMP implementation with
a subset of the NAS benchmarks which are a representative set of computing
intensive applications. We have used the OpenMP Fortran77 benchmarks in
NAS PBN [12], version 2.3.

We have simulated fully both CLASS S and CLASS W benchmarks, although
the sets are not the same because of memory capacity problems. The programs
simulated from CLASS S (the smallest class) are MG, FT, SP, CG, and LU. Al-
though they are small in data sizes and number of iterations, the complexity
of the application is the same, enabling a complete evaluation of the OpenMP
compilation environment in a reasonable amount of simulation time. The pro-
grams simulated in CLASS W are MG, BT, SP, CG, and LU. Their description
can be found in [3][7].

5 Experimental Results

In this section, we show the results of our simulations. All the examples are
naively implemented with no hand-coded manual optimizations for scalar per-
formance (loop unrolling, blocking, ...). We briefly make some comments about
how they impact performance and the reader is referred to [2]. That report eval-
uates specific features of the BG/C architecture using applications fine-tuned to
execute at maximal performance.

For the micro-benchmarks, we plot performance results in MFLOPs when
considering the parallelism fork and join overheads and when just considering
the useful work executed in parallel (plot labeled wco). For the NAS subset we
plot the speedup relative to the sequential version.

5.1 Micro-benchmarks

Figures 3 and 4 show that the performance obtained by the OpenMP version
of these benchmarks is similar to that of the hand-coded pthreads versions (in
some cases, even better). They tend to scale at least as well as the hand-coded
Pthreads versions.

There is an anomaly worth highlighting, though, in MM. The OpenMP plot
shows that the performance improvement stalls at 96 threads. This is due to
the different work distribution schemes used in the Pthreads and OpenMP ver-
sions. The Pthreads versions simultaneously distributes work from two of the



loops in the nest where the matrix multiply is done. The OpenMP version just
distributes work from one of the loops. Since the parallelized loop executes 192
iterations, using more that 96 threads results in a highly unbalanced assignment
of iterations to threads (two iterations are assigned to some of them and one to
the rest). Linearizing the loop or using two levels of parallelism would produce
a balanced distribution of work, thus achieving the same performance.

By contrast, overheads are the problem for the degradation of performance
in SPARSE – the code that distributes the work among threads is executed once
in the Pthreads version, but multiple times in the OpenMP version.
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5.2 NAS benchmarks

Figure 5 shows the scalability of a subset of the CLASS S NAS benchmarks in
BG/C. CLASS S has been selected to show how the architecture performs with
small data sets. Figure 6 shows the scalability of some CLASS W benchmarks.
The reason for missing some of the benchmarks is the incipient state of the
OpenMP environment, the limited hardware memory size, and limitations in



the simulator when running applications requiring a large memory size and a
large number of threads.

The performance of most of the CLASS S benchmarks improves up to 16
processors. In this case, the scalability shown for CLASS S is better than the
scalability obtained in other shared memory architectures, making us believe
that further work in this direction will yield the expected results.

The first experiments done with CLASS W reveal that scalability improves
as the data set grows. We believe that this is promising and shows that BG/C
should be able to support large OpenMP applications.

6 Improving OpenMP Support for BG/C

As mentioned in Section 3, the NthLib library has been ported to BG/C without
considering specific architectural features of the target machine. Some propos-
als to enhance the support to the OpenMP programming model in BG/C are
described in this section.

– Local versus global work descriptors. In the current implementation of
NthLib for BG/C, the master thread generates a work descriptor for each
thread participating in the parallel execution, and supplies it to its per-
thread local queue. This allows assignment of work in a very flexible way.
However, in OpenMP this flexibility is not necessary, so that a single global
work descriptor could be created and supplied to all per–thread local queues.
This would reduce creation overheads, especially when the number of threads
is large.

– Take advantage of interest groups in data caches. In the current implemen-
tation, all caches are shared. It would be possible to use other cache sharing
possibilities in order to privatize variables. For example, when multiple lev-
els of parallelism are exploited, groups of threads can be defined (OpenMP
extensions supported by the NanosCompiler). In this case, threads in the
same group share data that is privatized among groups.

– Using hardware barriers. BG/C offers an efficient implementation for bar-
riers. However, this support is not sufficient in NthLib because a thread
needs to look for work on the queues while waiting on a barrier to be open.
We plan to solve this problem using split barriers (offering for example bar-
rier_enter and barrier_leave primitives). In this way, a thread could execute
useful work while waiting on a barrier. In addition, we can devise a tree-
like scheme, in which different threads that map to the same physical thread
use different hardware barriers from the 4 available. This approach trades
the number of global barriers available for a larger number of threads being
able to synchronize.

– Fine grain synchronization. Locks could be implemented using hardware
locks. These locks could stop the thread (or make it spin on an specific
purpose register instead of in local cache) while waiting for the unlocking
thread. In [35], it has been proposed to introduce two new instructions (ac-
quire and release), as well as a locking hardware structure (lock_box). These



locks could have different implementations for the threads inside the same
Thread Group and for threads in different Thread Groups. This contrasts
with the current BG/C implementation, that is a via the test_and_set atomic
operation provided by the ISA. This could also help to reduce power con-
sumption because resources used by sleeping threads could be turned off.

– Eliminating the idle loop. When a thread is waiting in the idle loop, it
is wasting resources without a real need (for instance, cache bandwidth
or energy). In a normal multiprocessor system, the idle loop spins in the
local cache, thus wasting no resources at all; however, in BG/C the data
cache is shared among threads so the spinning consumes a portion of its
total bandwidth. A possibility would be to include hardware mechanisms
to efficiently implement the idle loop similar to the one mentioned above
to implement hardware locks. This would mean to stop the activity of a
thread while waiting in the idle loop. The activity would be resumed as
soon as work is queued in its per–thread local or global queues.

– Eliminating user-level threads. We can eliminate the user-level threads
which causes many overheads, and implement thread creation directly via
bg_svc_thread_create_specific calls. This would solve the barrier problem –
we can use hardware barriers. This would also eliminate the idle loop. Al-
though it has been proven that this is not viable in current multiprocessor
systems, it should be studied for multithreaded systems as the BG/C with
very low thread creation overhead. An hybrid implementation could allow
choosing among the flexibility of user-level threads or the better perfor-
mance of no scheduling levels. In this way, OpenMP applications that use
a small number of threads (less than or equal to the number of hardware
threads in a chip) could map the software threads to the physical threads,
thus avoiding the overhead of context switches.

7 Related Work

Architectures that integrate processors and memories on the same chip are
called Processor-In-Memory (PIM) or Intelligent Memory architectures. They
have been spurred by technological advances that enable the integration of
compute logic and memory on a single chip. These architectures deliver higher
performance by reducing the latency and increasing the bandwidth of processor-
memory communication. Examples of such architectures are EXECUBE [15],
IRAM [22], Shamrock [14], Imagine [25], FlexRAM [13,32], DIVA [11], Active
Pages [21], Gilgamesh [38] and MAJC [33]. The PIM chip is used either as a co-
processor (Imagine, FlexRAM), or as the main engine in the machine (IRAM,
MAJC, Shamrock), or as a cell in a larger system (MIT RAW [1,36], EXECUBE
and BG/C). Another classification could be based on the number and type of
the processors: FlexRAM and Imagine include many (more than 32) relatively
simple processors, while EXECUBE, IRAM, MAJC, Piranha [4] and Shamrock
include only a few (4-8). BG/C goes beyond what has been proposed, using
hundreds of processors.



Simultaneous multithreading exploits both instruction-level and thread-level
parallelism by issuing instructions from different threads in the same cycle. It
was shown to be a more effective approach to improve resource utilization than
superscalar execution. Results presented in [8,34] support our work by show-
ing that there is not enough instruction-level parallelism in a single thread of
execution, therefore it is more efficient to execute multiple threads concurrently.

The Tera MTA [28,29] is another example of a modern architecture that toler-
ates latencies through massive parallelism. In the case of Tera, 128 thread con-
texts share the execution hardware. This contrasts with BG/C, in which each
thread has its own execution hardware. Both architectures can tolerate long la-
tencies.

As far as we know, this is the first attempt to port an OpenMP runtime sys-
tem to a massive parallel multithreaded system on–chip. The porting is based
on the experience gained over the years on implementing such an environment
on top of other execution environments, including small SMPs and large cc-
NUMA. Vendors also provide fine-tuned implementations for their target ma-
chines, such as SGI IRIX MP[30] library or the IBM run-time library for AIX.
For example, the SGI MP library provides a complete execution environment
for each application, supporting thread creation, management, synchronization
and NUMA features, such as memory placement. The library is aware of the
machine load, trying to adjust the parallelism which is exploiting to the avail-
able resources. A number of projects also try to extend the use of OpenMP to
clusters with DSM (Distributed Shared Memory) support. The long latencies
experienced when accessing remote data and the memory granularity at the
page level impose new constraints in these implementations [17,26].

The Nanos execution environment, which is the source for the two compo-
nents used to implement OpenMP on top of BG/C, focus on adaptability at
different levels, the effective exploitation of nested parallelism and the speci-
fication of precedence relations among computations that form pipelines. All
these aspects form a set of extensions to OpenMP whose impact must be inves-
tigated in BG/C.

A number of studies have been recently published in which different com-
piler optimizations are evaluated for multithreaded architectures. For exam-
ple, [16] relaxes and modifies some of the requirements on code scheduling
and data access used by current compilers.

As stated before, the BG/C architecture is focused on the execution of a
single multithreaded application within each chip. Other architecture propos-
als such as � –Coral [37] provides for mostly hardware managed simultaneous
multiprogramming and multithreading environment. The Nanos environment
also offers workload management at the software level with the CPUmanager
component, specially designed for malleable OpenMP applications.



8 Conclusions

The Blue Gene/Cyclops architecture provides an excellent platform for study-
ing programming environments for multithreaded architectures. Writing and
porting applications for the BG/C architecture is not a simple process [2]. The
very large number of threads (one or two orders of magnitude larger than sim-
ilar architectures), the complexity of the cache organization, and the sharing of
caches and floating point units are not yet easily modeled statically by compil-
ers. The Pthreads execution model used until now for BG/C closely matches
the hardware but adds another level of complexity to the process of writing
software for BG/C.

In order to simplify this task, this paper introduces the implementation
of an OpenMP environment for on–chip massive parallel architectures. This
OpenMP environment together with the simulation environment for BG/C al-
lows the exploration of a large number of SMT configurations with low pro-
gramming effort. This permits us to better understand what are the trade-offs
between multithreading characteristics and which properties are worth inte-
grating in our implementation of the NthLib library.

This paper also shows that more tuning of our library is still required. With
simple hand-optimized kernels, BG/C has demonstrated that its architecture
is able to perform a very large percentage of the peak floating point perfor-
mance [2] offered by the architecture. The results shown in previous sections
showed that OpenMP applications can behave on par with Pthreads programs.
Most of the optimizations used in [2], such as loop unrolling and register tiling,
are orthogonal to the programming environment and will apply well to our
OpenMP benchmarks. Nevertheless, there is also room for improvement in the
case of large applications, such as the NAS benchmarks, as shown.
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