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Evaluation of Output Frequency Responses of
Nonlinear Systems Under Multiple Inputs

Zi-Qiang Lang and S. A. Billings

Abstract—in this paper, a new method for evaluating output performances especially for electronic circuits. Therefore,
frequency responses of nonlinear systems under multiple inputs, analysis of the responses is important for examining system
defined as a sum of sinusoids of different frequencies, is developed.behaviors_ Nonlinear effects which are likely to be expected in

The method circumvents difficulties associated with the existing . . . . .
“frequency-mix vector’ based approaches and can easily be practice can be determined at the system design and simulation

applied to investigate nonlinear behaviors of practical systems, Stages by evaluating and analyzing the system output frequency
including electronic circuits, at the system simulation and design responses.
stages. Application of the method to the analysis of nonlinear  The multiple inputs are defined as a sum of sinusoids with

interference and distortion effects in communication receivers ittarent frequencies which can be used at the design and sim-
:;rggtf,'iiég Tr? psrgﬁgggfg:?ﬁgd;ﬁﬁyg? proposed which can be ulation stag_e and/or Iat_Joratory testing period of syst_ems such
o _ ~as communication receivers [8] to excite the systems in order to
anlglggi); :g;ﬁ?ﬁ;?‘;?s?e“m”g}iﬂgﬂitsrece'Vers' frequency-domain - ayamine the system output behaviors in the frequency domain.
' ' Analysis of nonlinear systems with multiple inputs has been an
important topic in the frequency-domain analysis of nonlinear
I. INTRODUCTION systems using Volterra series theory since the 1950’s. Many the-
OST engineering systems including electronic circuit%rie.S and ”.‘etho_ds haye been developed to adtjres; problems as-
are intrinsically nonlinear. Although measures such %)matgd with th'§ topic [1}-{4], [8], [9]. anq applications of the
differential configurations, feedback, inverse function Cance”gssomated theories and methods to circuit analyses can be found

tion, etc., are often taken to reduce nonlinear effects when prg&lfﬂ’ [8]. [lO]t,I [11]'.| bl thods f vsis of i
tical design problems are addressed, nonlinear distortion cannoT € p_;ﬁsen It)'/ allva_l a teme OI S ortan"agmsc; noniinear syst-
usually be cancelled out completely, and it is therefore impo =MS With multiple Inputs are aimost all based on a concep

tant to evaluate system behaviors to estimate how the resid Iied Fhe frequenc_y—m|x vector. which reveals the.manne_r by
nonlinearity degrades system performances which intermodulation frequencies are generated in nonlinear
Systems such as transistor amplifiers and operatior%IStemS' Intermodulation is an important nonlinear phenom-

transconductance amplifier-capacitor (OTA-C) filters, whicf"on Which indicates that output frequency components of a

are designed to exhibit mainly linear characteristics but st Pn_lmear system could be much richer than the components in

possess unavoidable residual nonlinearities, can be reasoni e;gnput, while in the linear system case the possible output fre-.
regarded as weakly nonlinear systems [1] and can be inve§t ncy components are exactly the same as the components in

gated in the frequency domain using the Volterra series thed corres.ponding jnput. Although the analyses using the “fre-
of nonlinear systems [1]-[5], [8], [9], [12] gdency-mix vector” can clearly interpret how output frequen-
The frequency-domain m’eth(,)d o’f nonlinear systems bas igs of nonlinear systems are produced by particular frequency

on the \olterra series theory was initially established in tHEXES, the output frequency response component; at freq.uen-
1950's when the concept of generalized frequency respor%%s of interest are generally difficult to evaluate in practice

functions (GFRF’s) of nonlinear systems was introduced "9 associa}ted methods. This is_ because the output compo-
[7]. GFRF's were defined as the multidimensional Fourié?ent ofanonllnegr system atapartlclularfreqy(.ancy actually de-
transformations of \Volterra kernels in the \olterra serie%e_ndso_n manydlfferentfre_quencymlxesaljd |t|sg_enerallyh§1rd
expansion of nonlinear systems which extend the frequent identify all freque_ncy—m|x vectors associated with these dif-
response function of linear systems to the nonlinear caé fent frequency mixes. _ .

In the present study, the above problem which is associated

One of the important features of GFRF’s is associated with h th fical lUati f outout f f
the description of nonlinear system output responses in e € practical evaluation of oulput frequency responses o

frequency domain. The frequency-domain output responsesngplmear systems to multiple inputs is addressed. At first, an ex-

practical systems are often directly related to physical systé)rhess_'on fort_he system response is derived which can be reaqny
used in practice to evaluate the results. Then, output frequencies

of nonlinear systems under multiple inputs are analyzed and an
Manuscript received November 13, 1998; revised September 1999. Tﬁgecuve algonthm 1S developed to determine the frequenC|eS'
work was supported by the U.K. Engineering and Physical Sciences Reseaféte algorithm extends the concept regarding the relationship be-
Council. This paper was recommended by Associate Editor Y. Inoue. tween the system input and output frequencies to the nonlinear
The authors are with the Department of Automatic Control and Systems En- . . . .
gineering, University of Sheffield, Mappin Street, Sheffield S13JD, UK.  cas€ Where systems are under an arbitrary multiple input excita-

Publisher Item Identifier S 1057-7130(00)00587-5. tion. Based on the first and second results, a new method is then
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developed to evaluate output frequency responses of nonlinear R,

systems under multiple input excitations which provides an ef- —/VW
fective and practical means for evaluating frequency-domain ef- Fv, 0]
fects of practical nonlinear systems, including electronic circuits (

at the system design and simulation stages. Finally, the applica- i) v,(®) Vo (8) 4) RS C— |v®

tion of this method to the analysis of nonlinear interference and
distortion effects in communication receivers is studied and spe-
cific procedures are proposed which combine the method with
our previously developed nonlinear system modeling and anal-
ysis techniques and which can be directly used in practice #a§. 1. The nonlinear equivalent circuit of an OTA-C integrator.
this analysis.

I

II. ANALYSIS OF NONLINEAR SYSTEMS UNDER MULTIPLE v, (1) =v,(t) . "L v, ()

INPUTS G, + joC

Systems such as transistor amplifiers and OTA-C fiItegzsI )
which possess weak nonlinearities can be described by a ™

\olterra series representation [2]-[4]. The \olterra series

. . ,
representation of a nonlinear system can be generally writterf38 t‘it?l ]r\(?sponse is simply a summation of @l(?)’s from
n=1toN.

N Equation (4) indicates that when a sumidkinusoids is ap-
y(t) = Z Yn(t) (1) plied to a nonlinear system, additional output frequencies are
n=1 generated by theth-order portion of the system output con-
sisting of all possible combinations of the input frequencies
—WR, **, —W1, Wi, -+, wg takenn at a time.
o0 o0 n In order to illustrate this general expression, consider a prac-
yn(t) = / / I (71, o0y Th) H w(t—m;)dr; (2) tical example in [6] which is an OTA with capacitor load. Fig. 1
—oo —oo i=1 shows the nonlinear model of the OTA-C integrator with a non-
linear current source whe.) is the characteristic function of

u(t) and y(t) are system input and output, respectivelyys o which can be exactly determined from the circuit struc-
hn(T1, -+, ), 1 <n < N are the Volterra kernels, ald is .o 204 parameters [6]

the maximum order of system nonlinearities which is finite for It can be shown from Fig. 1 that the circuit equations in the
a wide class of nonlinear systems and input excitations [5]. frequency domain are given by
Under the excitation of a multiple input defined by

Block diagram of the OTA-C integrator.

where

A n {(V"'_VS)GS =0 ©)
o G JwCYVy — (E)] =0
w(t) =¥ |4l cos(wit + ZA4) = Y %ewﬂ @3) (Go+ 30OV = flealt)
i=1 i=—R,i#0 whereG; = (1/R;), Go = (1/Ro), andV;, V,, V, are the

Fourier transforms of;(¢), v, (t), andv,(t), respectively. Thus,

whereA_; = A7, A7 denotes the conjugate df;, andw_; =  q plock diagram description of the circuit can be shown as in
—w;, thenth-order output response of the system (1) and (2) c%_ 2

be described, by substituting (3) into (2), as Representingf[v,(t)] by the Taylor series expansion about

. R R the operation point,(t) = 0 yields
yn(t)zﬁ‘ Z Z Ag o Ay oo )
=—RED =R 50 flea®O] =D gai () )
Hp(jwi, s jwi, )& 4w )t (4) n=l
where g, = (1/a)(df[va(t)]/va(t))|v,y=0. Then

where the nth-order GFRF of the circuit can be obtained for

oo oo 71:1,2,3,"'3.5[6]
Hn(jwilv "'7jwin) = / / hn(Tlv ) Tn)

.6_j(w51 7‘1+"'+“"7'ﬂ7_”)d7'1 edry (5)

gn R,
j(wl+7 Ty +wn)RoO +1 )

Hn(jwla T, jwn) = (8)

Consider a case where the circuit is subject to a one-tone

is thenth-order GFRFH,,, (jwy, - - -, jwy,) Of the system evalu- . i
ated atfws, -, wn} = @i, -, w;. } input, i.e., & = 1, and examine the second-order output re-
bl bl n - 719 b) Ty J " . . . . . .pe . .
Equations (1) and (4) provide a general description for Outpﬂ?onseﬁ (t) of the circuit to this input. In this specific situation
responses of nonlinear systems under multiple inputs. Analysis R " 1 A
of this response can, in most cases, be sufficiently performed u(t) = E éeim = E éeﬂ'w 9)

based on (4) to investigate theh-order portion ofy(¢) and i=—R, i70 i=—1,i50
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and -H, <m—R{j9}—R}7 ) m—lb{jw—l}> Cjwmt (15)
(A7) ' mi{jwi}, -+, mr{jwr}
ya(t) = - Ho(—jwy, —jwy)e 2 . .
2 ) where the GFRFH,(.) is assumed to be symmetric
n | A4 Ha(—jor, jun)e 10t Hy(jwi, jwz) = H(jwa, jwi) in then = 2 case, for
222 example, andm;{jw;} denotesm; consecutive arguments
+ |A12| Ho(jwr, —jun )@t in Hn(.) having the same frequengyw;. Thus thenth-order
2 , portion of y(¢) can be written as
A o
+ ( 212) Hy(juwr, jwi)e® . (10)
Moreover, substituting (8) into (10) for = 2 yields m
| A2 g R, | A1) where the summation ove is defined to be
y2(t) = ——g2R,
2 2 (2W1ROC)2 + 1
-cos [2wit + LAT —tan™! (2w R,C)] (11) Z — Z . Z
m m_gr=0 mgr=0

Equation (11) indicates that the second-order response of the
circuit to the one-tone input is composed of two frequency com- (13)

ponentss = 0 andw = 2wy, which are the absolute values of . . -
the summations of the input frequencies; andw; taken two and (13) appended below the summation signs indicates that
at a time. that is only terms for which the indices sum toare included in the

2R-fold summation.
lwi —wi| =] — w1 +wi| =0, | —wy —wi| = 2wy, and The above analysis for theth-order nonlinear output re-
sponse to a multiple input clearly reflects how an output fre-
guency component is produced by a particular frequency mix
The specific case above is a very simple example wheRd how the'component can be evaluated using the associated
the output frequencies composed of all possible combinatidh@duency-mix vector. _
of the input frequencies can be easily identified. For generalConsider the above circuit example again but under a
cases where systems are subject to arbitrary multiple inp@#¢-tone input. The frequencies in the second-order output re-
where R could be any integer, the frequency-domain analysionse of the circuitare,, = (my —m_)wi +(mz —m_z)ws
of nonlinear systems under multiple inputs is more compif¥ith them;’s obeying the constraimb_o+m 1 +m;+my = 2
cated and is usually carried out based on a concept called ¢ Output component corresponding to a particular
“frequency-mix vector” [1]. m = [m_a, moi, my, ms] can be determlne_d u5|ng_(_15)
Because, under a multiple input, output frequencies generaéeere the GFRF is defined by (8) fer= 2. In this case, it is
by thenth-order system nonlinearity consist of all possible conftot difficult to show the associated frequency-mix vectors are
binations of the input frequenciesvg, - -+, —w1, w1, -+, Wgr
takenn at a time, letm; denote the number of times the fre<{1, 1, 0, 0},{0, 1, 1, 0},{0, 0, 1, 1},{1, 0, 0, 1},{1, 0, 1, 0}
quencyw; appears in a particular frequency mix, the frequenc{)()’ 1,0, 1}.{2, 0, 0, 0}.{0, 2, 0, 0}.,{0, 0, 2, 0}.{0, 0, 0, 2}
mix can then be represented by the vector

|w1 +w1| =2w1.

andy-(t) is, therefore, the result of the summatiorypft, m)

m = [, ey oy, e, ] (12) given by (15) over all these frequency-mix vectors.
where them;’s obey the constraint Output frequencies corresponding to these vec-
tors can be easily obtained asw; — w2, —wi +
m_g+---+m_1+mi+---+mpr=n. 13) w1 = Owp 4+ wo, —wo + wa = O0—wa + wy, —w1 +

w2, —2ws2, —2w1, 2wy, 2ws.Therefore, the practical output
Vectorm is referred to as theth-order frequency-mix vector frequencies, which are the nonnegative results of the above
and the corresponding output frequency is given by frequencies, are, + ws, ws — w1, 2wy, 2w, and O.
Although, as shown above, the frequency-mix vector is
very useful in nonlinear frequency-domain response analyses

Therefore, the output frequenciesgn(t) given by (4) can be _under m_ult_iple inputs, an important defect with this concept

interpreted as those frequencies that can be generated by all fp&at distinct frequency-mix vectors of the same order may

sible choices of then;'s such that (13) is satisfied. give rise to the same output frequency. For example, when
It has been shown that the output component in (4) whidh = 3 (w1, w2, wa} = {1,2,4} andn = 2, the fre-

corresponds to a particular frequency mixis given by [1] 22232’1:;2( vicg)rm ; g)’g Oilv;i}é (t)r;eo’f riz)qzi:rlw?:?/ ?nr:xo\yetggr
m — W3 T Wl — -

! A m = (0, 0,0, 1, 1, 0) also yieldsw,, = ws + w; = 3. So,
yn(t, m) = —n H d ' in general, (15) can not be used to represent the frequency
2 i=—R,iz0 response of the systemth-order nonlinear output. Based on

W = (ml — m_l)wl + e+ (mR - m—R)wR- (14)

R
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the concept of “frequency-mix vector,” this response can onlyhere

be represented as F 1
Unolt) = > wa(t:m) (A7) = +§+; | A Alwr,)
all possible m such that w,,=w - H (j]lw . .7 jl _jCU‘ ) w>0
Va(jw) = q 4 @i e Jwin), (22)
wherey,,.(t) denotes the totalth-order output response at fre- — Z Alws,) - Alw;)
quencyw. Wiy Fertws, =@
From (17), itis hard to evaluatg,..(¢) practically. This is be- L Ho(jwiys s jwi), w=0.

cause, given a frequency of interesit is generally a very diffi-

cultjob to identify all possiblen’s such thats,, = w. However, N (21) and (22)
determining these.’s is necessary i,..(t) is to be evaluated

from (17). In [9], a general algorithm was proposed to address Z
this problem which transformed the problem of identifying all
possiblemn’s to the problem of sorting out all possible integergienotes the summation of

Alwiy) - Alwi,, ) Hi (Jwiy, -+ Jwi,)

witeetws, =w

p's such thatpywi+, - -+, +prwr = w. Obviously, the diffi-
culties with the original method of identifying all possibtés Alwiy) - Alws, ) Hp(Jwiy s -+ Jwi,,)
can not be bypassed when using this algorithm.
Motivated by the attempt to completely resolve the problegver all the w;,, .-+, w; ~which satisfy the constraint
above with existing methods, a new method is proposed in See:+; -+, +wi, = w With
tion V to provide a practical and effective strategy to evaluate
the nonlinear frequency responses to multiple inputs and there¥ic < {=wr, ooy —wi, Wiy oy wRY, I=1-n

fore to investigate possible nonlinear behaviors of systems inthef (jw) defined by (22) is theth-order output frequency re-

frequency domain. The derivations and analyses in Sections IIIOnse of the system (1) and (2) to the input (3) in terms of

. . X - s
and IV establish the important and necessary basis for this nﬁ(é’nnegative frequencies, which represents the contribution of

method. thenth-order system nonlinearity to the output frequency com-
ponentw.

[ll. EXPRESSION FOR THEOUTPUT FREQUENCY RESPONSES Substituting (21) into (1) gives

When a nonlinear system described by (1) and (2) is excited _ _
by a multiple input (3), the systenth-order nonlinear outputis ~ ¥(t) = > Y (jw)| coswt + £Y (jw)]  (23)
generally given by (4), which can be rewritten as all possible w>0

1 R R where
W)= 35 D DL Alw)Adws,) B N
A=Ras0  in=-Rins0 Y(jw) =2 Valjw). (24)
Hy(jw; -+ jw; el @ntteindt (18) o

So, the output frequency response of a nonlinear system under a

whereA(.) s defined by multiple input is given, in terms of nonnegative frequencies, by

A(@:{A“ Tw € fwi, i =FL, oos R g N
0, otherwise. Y (jw) = Z Y, (jw), w>0
In order to obtain a more transparent frequency-domain to = 1
time-domain relationship, consider on—1 Z Alwi) - Alwi, )
wiy e twi, =w
A(=w1) - Al=wa) Ho(—juwr, -+, —jon) V()= 4 Halwis oy dwi,), w>0
= [A(w1) - Alwn)Hn (Jwr, -+, jws)|" (20) on S Adwi) - Alwi,)
Wiy e tw,, =w
where the * denotes conjugation, and write (18) as . H,(Jwiy, o, Jwi,), w=0
\wile{_wRa"'a_wlawla"'awR}a l:]-a"'an
=5 X > e
" 2n _ Notice that the relationship between the system output fre-
all possible w>0 w;; + - tw;, =w . 7/ - .
’ ) ot quency spectruny (jw) andY (jw) is
) Re[A(wll) T A(win)Hn(]wilv ) ]win)e‘]w ]
1 ‘ Y(jw)
Tan +§+: I Y(jw)y=9 5 » @70 (26)
caTeTE T Y(jw), w=0.
A(win,)Hn(jwi1 s T jwin)
= Z Y, (jw)| cos[wt + /Y, (jw)] (21) Because of (23) (jw) can be more easily related to the system

all possible w>0 time domain response.
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It can be observed from (25) that the possible output frequeamd

cies in thenth-order nonlinear output ate = w;, + -+ - + w;,, - 1 9 R
with YQ(‘7'3):F{0+0+0+0}],3R400H:0
wig € {~wr, -, —wp, Wy, L wrp, =1 and the corresponding output components are therefore
This clearly reflects how the output frequencies are composed 92| R
in this situation. In addition, from the definition of Ya(w=1)(t) = TROP T cos (t —tan™! R,C)

S Awi) - A(wi Y Hu(jwiy, -, jwi,)

Wiy o twi, =w

andyg(u}:g) (t) = 0.

Clearly, compared to the evaluation ofsatt-order output re-
the terms which compose thgth-order output frequency com-sponse at a particular frequency using (17), the computation of
ponentY’,,(jw) can be readily identified. Therefore, the evaluthis response based on (25) is much more straightforward and
ation ofY',, (jw) and, moreover, of the total frequency responsge difficulty with determining all possible frequency-mix vec-
Y (jw) can easily be achieved using (25). This is because tfwes for a specific frequency, which is necessary when (17) is
evaluation ofY ", (jw) can be simply implemented in the fol-used, is circumvented. Notice that the expressionYfe(;w)

lowing way given in (25) or (27) accommodates all possible terms which
R R could make contributions to frequeneyand, when given a spe-
— . 1 e ;
Y,(jw) = o Z . Z Aw, )+ cific value ofw, the terms which actually have no effect on the
= R0 = Rin_ 120 response at tr_le_ _specmc frequency automatically become zero
A, VAW —wi, — =i ) due to the definition ofA(w).

) ) ) The analyses and examples above indicate that based on (25)
CHn[jwiys e gwi o g(w —win = —wi )] the output frequency responses of nonlinear systems under mul-
(27) tiple inputs can easily be evaluated at any frequencies of in-
terest. However, it is obviously unnecessary to evaluate the re-
sponse components at frequencies which are beyond the range
of system output frequencies since these components are def-
w—wy — - —wi_ Fw, l€{=R, -, —1,1,--- R} ipitely zero. To addrgss this i§sue involves detgrmining pos-
sible output frequencies of nonlinear systems subject to multiple
are zeros according to the definitionaf.) given by (19), and, input excitations.
moreoverY (jw) can be obtained by just making a summation
of the results determined from (27) from= 1to N. IV. DETERMINATION OF THE OUTPUT FREQUENCIES
In order to illustrate how to evaluad(jw) using the above

idea, consider an example where the OTA-C circuit in SECti?PeF?J:rI,Z?:g sa)gteer?(:cg ISt\r/]veellsl;r;?(\a/vr;;h?;éhferéaous;rl]bclgsoui;pl:;e
Il is excited by a two-tone input(t) = cos 2t + cos 3t and q y q

the second-order output frequency response of the circuit at ffr?érrsssptce)rr:?:giézﬁﬁgalj%,vvﬁ;ﬁrétr?(lyiﬁggfgysi?ﬁ?szztbheoggtga
quenciess = 1 andw = 3 s to be examined. multiyle input, it has beén shown from the a)r/1al sesin rJevious
InthiscaseR=2, A=A, =1, w; =2, wy; =3 P put, y P

sections that output frequencies generated byttieorder

wheren; =0forw =0, ny =n—1, forw > 0, and the terms
in which

A =1, fwe{w,i==1, £2} system nonlinearity consist of all possible combinations of the
Alw) = ={-3, -2, 2,3} input frequencies-wg, ---, —w1, wy, ---, wg takenn at a
0, otherwise time. This result can be analytically described as a set given by
and the second-order GFRF { w=wi 4, Fwi,
. . QQRO wilE{_va"'7_wlvwlv"'va}l:]-v"'vn )
Hy(jwi, jwa2) = - : (29)
v R,C+1 _— .
Jer Fws) + The problem to be addressed initially here is to develop an
Therefore algorithm to determine the frequencies composed of the non-
1 2 negative part of the result given by (29).
YVo(jo)=5— D Alwi)A(w—w;) For the simplest case af = 1, it is obvious that these fre-
2 i1 =—2,i1 70 guencies arevy, - - -, wg, Which can be rewritten in a vector
: HQ[jwn?j(w - w“)] form as
_1 { Aéw+3)+é§w+2) } . g2 R, ' |Z Wi, )| w1
— _ |E Wl(R, )| WR
ThusY»(51) andY »(j3) can be immediately obtained as where

— . 1 gQRo gQRo
Y.(51) = 04+140+1 = W

T o92-1
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and>. Wi(l,:),1 < I < R denote the summation of the InthiscaseR =2, n=2, W) = [w, ---, wg]’ =[1, 3]¥
elements in théth-row of matrix W . I=[1,1,1,1",W=[-3-1,1,3", W, =W,
The output frequencies in the caserof= 2 can be deter- .
mined from W= 1 111 3 3 3 3
wi+wl, l=-R, -, -1,1 R -3 -1 1 3 -3 -1 1 3
: (32) W, = [2,0,2,4,0,2 4, 6], thereforeQ, = {{W,}} =
|UJR+0J1|, l=-R, ---,—-1,1,---, R. {0727476}'
_ From the above algorithn§},, can be determined for any.
Define two vectors Therefore, the frequencies in the system output represented by
=01, 1 (33) {2 can be obtained &3 = Uy, .. _
? ? However, there is actually no need to obtain @JI's and
of length 2R and then to determiné! as shown above. This is because, for any
n, there is a deterministic relationship between the frequen-
W =[-wgr- - —ww - wgr]" (34) ciesinthenth-order nonlinear output and the frequencies in the

(n + 2)th-order nonlinear output.

to express (32) in terms of a vector as It can be shown from (39) that

— — T _ _
W2 = HZ W2(17 :) y T Z W2(2R2, )H (35) Wn—|—2 = [IR(QR)”Wn—l—l WR(?R)”] (41)
where where
IwWi(1,:) W i T
Wo = : . (36) I o0 0
IW{(R,:) W 0 I 0
Ir@ry» = :
Forn = 3, it is easy to show that the vector representing the :
output frequencies produced by the third-order nonlinearity is o0 : I
| —
_ _ T L R(2R)" _
Ws = (|3 a0, |3 WareR? 0] (67) ;
an
where T
B IWy(1,:) W Wrery = |WT - w7T
Wi = : Sl (38) R(2R)"
T4 2 .
W21 5 W Similarly
Consequently the algorithm for computing the vector repre- o o
senting the (nonnegative) frequencies iniltle-order nonlinear Wit = [{rery—1Wn  Wearm-1]. (42)
output is given by i . .
o Substituting (42) into (41) yields
( |Z Wn(lv )| _
W, = : Wiz
b WL(R('2R)n—1’ )l = [IreryIrery» Wi Ir@rWrer)—1 WrER)M]-
Wo1(1, ) w (39) (43)
Wn = o : : In the matrix given by (43), the first matrix block takes the
IW, _((RRR)"2,)) W form
\ nZZWl:[Ule”'va]T' I
. Ir@ry Ir@2Ry" 1 W
Many of the elements ii¥/,, may be the same. Therefore, the _ T -
final result of this algorithm is a set composed of all different o o
elements of¥,, . Denote this set aQ, then Wn(l, N WL, )T
Q= {Wa}} 40 e
where{{X}} means a set composed of all the different ele- ' T
ments of vectorX.
n—1 \NT n—1 T
In orderto illustrate the application of this algorithm, consider YV"(R@R) )T WR(BERR) )
an example where; = 1, wy = 3 and the frequencies in the L (2R)?

second-order nonlinear output is to be determined. (44)
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the second matrix block takes the form

Irr)» Wr(2R)»—1

and the third takes the form

Wrer)»

[w_R7...7wR]7...7 [w_R7

-~

L 2R

[w_R7...7wR]7...7 [w_R7

) wR]

-
-~

L 2R

R(2R)" 1

TN

(45)

R(2R)" 1

(46)
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nonlinear ordetV = 2 and the first-order frequency-response
function H,(.) # 0. It is straightforward to show that in this
casep® = 1. Therefore, the output frequencies of the system
can be determined using (48) as

Q=Qy U Qn_2pr—1) = U 921
={0,2,4, 6} J{1,3} =1{0,1,2,3, 4, 6.

Equations (39), (40), and (48) compose an algorithm for de-
termining output frequencies of nonlinear systems under mul-
tiple inputs. This result actually extends the relationship be-
tween the input and output frequencies of linear systems to the
nonlinear case when the systems are subject to multiple inputs
and is therefore also of theoretical significance.

V. NEwW METHOD FOREVALUATING NONLINEAR OUTPUT
FREQUENCY RESPONSES TAMULTIPLE INPUTS

It has been shown in Section Il that, based on (25) output
components of nonlinear systems under multiple inputs at any
frequencies of interest can be readily evaluated. Equations (39),
(40), and (48) derived in Section IV provide an effective al-
gorithm for determining possible output frequencies of non-
linear systems in this situation. Based on these two results, a
new method is proposed below to evaluate nonlinear output fre-

It is not difficult to observe from (43)—(46) that the elements chuency responses to multiple input excitations.

vector

Wn+2

= |3 Woratt 9

include all elements of vector

wo = (|3 Wat 9

, oy,

y o,

This implies tha{{W,, }} € {{W,,+2}}, thatis

Q, € Qn+2

3 Wasa(rRy+, 5]

S Wa(RER)™, ;)HT.

(47)

The basic idea of this new method is to determine all possible
system output frequencies and the frequencies contributed by
each order of system nonlinearities using the algorithm derived
in Section IV. Thus, if the frequencies of interest are beyond the
range of possible output frequencies, it is known immediately
that the output responses at these frequencies are zero. If the
frequencies of interest are within the range of possible output
frequencies then the frequencies contributed by each order of
system nonlinearities provide important information concerning
which order of system nonlinearities could make a contribu-
tion to these frequencies of interest. Moreover, system output
responses at the frequencies of interest are evaluated using (25)

or all frequencies in theth-order nonlinear output are presenand the computation is implemented by first calculating the re-
in the (n + 2)th-order nonlinear output.

This conclusion was proved before [9] under the assumptig@rs which really make contributions to these frequency com-

thatws, - -

sponses at these frequencies contributed by the nonlinear or-

-, wr form a frequency base which means there dog®nents, and then simply making a summation of the results ob-

not exist a set of rational numbers - - -, 7 (notall zero) such tained for corresponding nonlinear orders.
thatriwi+, - -+, +rrwr = 0. Since no assumptions are made A summary of the new method, which requires the fre-

onws, -

been established for arbitrary input frequencies.
It is straightforward from (47) that the frequencies in thg priori, is given below.

system output

Q=Qp U Qn_2p—1)

where the value to be taken by could bel, 2, --- | [N/2]

where [.] denotes to take the integer part. The specific value of
p* depends on the system nonlinearities. If the system GFRF's

(48)

HN—(27‘,—1)(-) =0fori=1,---,¢-1, andHN—(Qq—l)(') #

0, thenp* = q.

Inthe example above, where a nonlinear system is subjectto a
two-tone input withv; = 1, ws = 3, assume that the maximum

-+, wr in the above derivation, the conclusion has noWuency-domain model of the considered nonlinear system, i.e.

the GFRF's H,, (jwy, - -, jws), n =1, ---, N, to be known

1) Calculate all possible output frequencies using (39), (40)
and (48) to yield the se®.

2) Forn = 1,2, .-, N, calculatef?,, to determine a set
Sq, which is composed of the numbers of the nonlinearity
orders which have contributions to the output frequency
wa € Qatwhich the output componentis to be evaluated.

3) ComputeY (jw.4) as below

Y(jwa) = Z Y, (jwa)

nCSq

(49)
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where
1 R
Valjws) =500 D
i1=—R, i150
R
Z A(wil) A(wzn—l)
ino1=—R,in_150
CAlwa —wi, = —wi, )
N Hn[jwila T jwinfla
j(wA T Wi Ty, _win—l)]
and

o= 1 if wa=0
171 n—-1, otherwise.

4) Evaluate the output response at frequengyas

Yo (1) = |V (jwa)| cos (wat + LY (jwa))-

Thus, in this case, the output response component of the cir-
cutatw,y = 5is

1.5|93|R0

W COSs (5t -/ tan_l (5ROC))
oR, +

Ywa=5 (t) =

The method developed and illustrated above provides an
effective means for evaluating the output frequency responses
of nonlinear systems under multiple inputs based on the system
frequency-domain descriptions. Exact evaluation of system
output frequency responses can only be achieved using both
system models and exact knowledge of the corresponding input
spectra. Multiple input signals can easily be generated with all
parameters of the signals under control. Methods are currently
available for estimating the GFRF’'s of nonlinear systems
[13]-[15] and for systems such as some electronic circuits the
GFRF's can even be derived directly from the system structure
and parameters. Therefore, this method can, hopefully, be
widely applied to analyze nonlinear behaviors of practical
systems including electronic circuits at the system/circuit

The example of the OTA-C circuit in Section | is consideregesign and simulation stages. The application to nonlinear
again toillustrate the application of this method in the followinganalysis of communication receivers will be discussed in the
Assume thatf[v,(t)] can be approximated sufficiently wellnext section to demonstrate how to use this method in practical

3

by a third-order polynomiaf{va(t)] = >_,,_; gnvg(t), Where system analysis.
gn 7 0, forn = 1, 2, 3, and the output response of the circuit

to the multiple inputs(t) = cos wit+cos wat = cos t+cos 3t

at the frequency of interesty = 5 is to be evaluated.

The GFRF's of the circuit system are given by (8). They are
all zero in this case for. > 3, but not zero fom = 1, 2, 3 be-

VI. ANALYSIS ON NONLINEAR INTERFERENCE AND
DISTORTION EFFECTS INCOMMUNICATION RECEIVERS

In communication systems, the modulated information signal

causef[v,(t)] can be approximated well by a third-order polyfrom a transmitter is transmitted to a receiver where the signal
nomial andg,, # 0, forn = 1, 2, 3. Obviously the maximum is amplified and the information extracted. A simplified block
order of system nonlinearities in this caseNs= 3. Because diagram of a superheterodyne receiver is illustrated in Fig. 3.
Hy(.) #0,p* = 1. Thus, using (39), (40) and (48) with = The block diagram of receivers in modern radio communication
2, Wi =[1,3",1=[1,1,1, 1] andW =[-3, -1, 1, 3]Y  systems are essentially the same as this [16].
yieldsQ = Q3 JQ2 = {0, 1, 2, 3, 4, 5, 6, 7, 9} indicating Ideally, when the receiver input consists of signals from many
thatw,4 = 5 belongs to the frequencies which possibly appegommunication channels, tuning the receiver to the carrier fre-
in the system output. guency of a channel by changing the frequency of the local oscil-
1, Q2, Q3, obtained using (39) and (40) in this case, arator could allow only the information from the selected channel
Q1 ={1,3}, 2 =1{0,1,2,4,6}, 23 ={1,3,5,7,9}. SO to be eventually recovered at the detector stage. However, this
Sq = {3} for the frequency of interest4 = 5. is correct only when the amplifier and intermediate frequency
Using (50) and considering that in this specific caBe= filter in the receiver are made up of ideal linear circuits, which

2,A1=A2=1,W1=1,CU2=3

Ai=1, fwe{w,i==x1, £2}
={-3,-1,1, 3}
otherwise

Alw) =
0

7

g3Ro
Jlwr + w2 +ws)R,C+1

H3(jwy, jwsz, jws) =

it follows that

Y(jwa)= Y Yuljwa) =Ya(j5)

{3A(3) + 24(1) + A(-1)}

is impossible in practice.

Fig. 4 illustrates the input and output frequency components
of an amplifier which possesses nonlinearities up to the third-
order [1]. If the amplifier and filter stages of a receiver have the
frequency-response characteristics as shown in Fig. 4, where
andw- represent the carrier frequencies of two different com-
munication channels, itis not difficult to observe from the figure
that owing to the intermodulation effects of the third-order non-
linearity, the signal from the second channel will definitely have
an effect on the receiver output when the receiver is tuned to
only select the signal from the first channel. This kind of inter-
ference between different communication channels and the re-
sulting distortion on the transmitted information are clearly im-
portant problems which must be addressed in the design stage
of communication receivers [16] and quantitative analysis of
these nonlinear effects on the performance of communication
receivers is necessary when dealing with these problems.
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Radio Frequency Mixer

Detected Output

Input
Amplifier and
Filter

Intermediate
Frequency Filter
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—

Local Oscillator

Fig. 3. A simplified block diagram of a superheterodyne receiver.
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Fig. 4. The inputand output frequency components of an amplifier possessing
nonlinearities up to the third-order (the numbers in the curved brackets indicate
the nonlinear orders which produce the corresponding frequency components).

Analysis of the effects of circuit nonlinearity on communi-
cation receivers was previously carried out based on theories of
nonlinear circuit analysis and using the “frequency-mix vector”
approach developed from the Volterra series theory of nonlinear
systems [1], [8]. The nonlinear circuit analysis was applied to
establish the nonlinear frequency-domain model of the receiver
circuits to be analyzed and the “frequency-mix vector” approach
was then used to evaluate and analyze the output frequency re-
sponses of the circuits to multiple inputs. There are two disad-
vantages to this approach. The first is that a complete and exact
theoretical modeling for nonlinear circuits is usually impossible
due to the fact that parameters of some devices may not be avail-

methodology includes effective nonlinear system mod-
eling techniques developed by Billings and coworkers
which involve methods for model structure selection,
parameter estimation, and model validation and can be
used to produce a nonlinear difference model referred
to as nonlinear autoregressive with exogenous input
(NARX) model without using any prior knowledge of
the identified system.

The polynomial NARX model of a nonlinear system
can be expressed as follows:

M
(k)= (k)

wherey,, (k) is a “nth-order output” given by

n K

n(k) = Z Z pg(lLs -+ lpta)
p=0 1,11 4=1
P p+q
JLuk-6) TI utk-1)
i=1 i=p+1
withp+q¢=mn,l;=1,---, K,e=1,---, p+qand

Yol = Yhey  2n, 2 K is the maximum
lag andy(.), u(.), and¢,,(.) are the output, input, and
model coefficients, respectively.

A specific NARX model such as, for example

able and the second is associated with the problems of the “frex(k) = 1.5593y(k — 1) — 0.4582y(k — 2)

guency-mix vector” approach which were discussed in Section
Il.

Based on the method in Section V and nonlinear system iden-
tification and frequency-domain analysis techniques developed
by the authors, a different approach is proposed in the following
to implement the analysis of frequency responses of nonlinear
circuits in communication receivers. This approach can be ap-

plied at the design and testing stages to examine the effect%

of nonlinear interference and distortion on the receiver perfor-
mance.

Application to Analysis of Nonlinear Effectsin Communication
Receivers

1) Establish a nonlinear difference model of the amplifier {1

and filter circuit of the receiver to be analyzed using the

— 0.15585y(k — 3) 4 1.2829u(k — 1)
— 1.195u(k — 3) + 4.8262u(k — 3)u(k — 3)u(k — 3)

may be obtained from the above general form with
601(1) = 12829, 601(3) = —1195, 610(1) = 15593,
c0(2) = —04582, co(3) = —0.15585,
co3(3, 3, 3) = 4.8262, elsecy,(.) = 0.

Map the identified NARX model of the circuit into the
frequency domain to yield the GFRF's of the circuit
systemH; (jwy), Ha(jw1, jws2), ---. The mapping from
the polynomial NARX model to the frequency domain
has been developed [14] and is given by

N
1 }
I1=1

— 3 crolly) expl—j(wit, -+, +wa)li]

Nonlinear AutoRegressive Moving Average model with CH,(jwy, -+ jwn)
exogenous inputs (NARMAX) methodology [18]-[19] K
and the input and output data from an experiment on — Z con(l1, -+, ) exp[—j(wili+, -, Fwnly)]

the circuit in a prototype of the receiver. NARMAX

I, l,=1
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nolnoe K nonlinearity orders that have contributions to the
+ Z Z Z Cpa(lLs -+, lpg) output freqyuencyuA with ws € {w1, -+, wr}.
=L p=1 by lpg=1 The specific value of., here depends on which
“exp [—J(Wn—gt1lpt1+, - FwWnlprqg)] communication channel is required to be analyzed
“Hy g p(Jwi, -+, Jwn—q) for nonlinear interference and distortion.
n K c) Evaluate
+Z Z CPO(llv "'7ZP)HnP(jw17 7an) — .
p=2l,l,=1 Z Y, (jwa)
negn
where
‘ ‘ rag ‘ ‘ whereY,, (jw.4) is evaluated using (50) to examine
Hyp(jwrs -5 jwn) = Z H(jwr, -+ jwi) the nonlinear interference effect on the commu-
=1 . . nication channel associated with the carrier fre-
“Hy i p 1(Jwitt, -, Jwn) guencyw 4. Notice that the complete output com-
cexp [—j(wit, -y Fwi)p). ponent at frequency.4 is given by

For the specific NARX model above, for example, the
mapping can be readily obtained from the general rela-
tionship as

Hi(jwr)

Y(jwa) =Yi(jwa) + Y Ya(jwa)
n€Sq

where the first term represents the linear output re-
sponse of the circuit to the multiple input at fre-
guencyw,s, Which, without nonlinear interference
and distortion reflected by the second term, should
be the output frequency response of the circuit to
the signal channel associated with the carrier fre-
quencywa.

These procedures can be readily coded and implemented such
that the new approach can be directly applied for the interference
and distortion analysis of communication receivers at the design
and testing stages.

In engineering, two-toneR = 2) tests are commonly used
to experimentally quantify the degree of nonlinearity of a non-

Notice that the above procedure shows how to obtain tflaear communication system or device. It is obvious that the
GERF's of the discrete time model of a nonlinear cif?€W approach can be readily applied to perform the same anal-
cuit. If the frequency-domain description of the contin¥SiS- In addition to this, the new approach also allows the anal-
uous time model of the circuit is required, the results a#iS t0 be easily implemented when the system is subject to
essentially the same as the results obtained for the discra@rPitraryz (&£ > 2) tone sinusoidal excitation so as to be
time model. able to accommodate complicated but more practical situations,
3) Determine the maximum ordé¥ of nonlinearities in the Which is impossible to be analyzed based on simple experi-
circuit using the method in [20] concerning truncation ofténtal studies.
the Volterra series expansion of nonlinear systems. But
for the above simple specific NARX model, it is clear that

N =3 The behavior of practical systems, including electronic cir-
4) Evaluate the output frequency response of the circuit taegits, usually exhibit nonlinear characteristics although mea-
multiple input using the method in Section V to examingures are often taken to try to compensate for undesirable non-
the nonlinear effects on the performance of the commyinear effects. Itis therefore important to evaluate system output
nication receiver. This involves the following steps.  responses so as to estimate how the nonlinearities affect the
a) Select the frequenciesy, ---, wg and corre- system performance. Multiple inputs are typical signals which
sponding magnitude and phase for the multiplare used to excite systems when the system performance in the
input to be applied. These frequencies could, fdrequency domain is to be investigated. The existing methods
example, be the carrier frequencies of the differefior this investigation are almost all based on a concept known
communication channels associated with the ras the “frequency-mix vector.” This concept is useful for ex-
ceiver which is to be analyzed. plaining how the output frequencies of nonlinear systems are
b) Forn = 2, ---, N, determine the frequency setgenerated but it is difficult to use to evaluate the output response
,,, which contains output frequencies contributedt frequencies of interest. In order to overcome this problem, a
by thenth-order circuit nonlinearity, using the al-new method is developed in the present study to evaluate the
gorithm given by (39) and (40), and then determinffrequency responses of nonlinear systems under multiple in-
a setSg, which is composed of the numbers of theuts. This method circumvents difficulties associated with the

B 1.2819 exp (—jw1) — 1.195 exp (—3jw:)
B { 1 —1.5593 exp (—jwi) + 0.4582 exp (—2jw:) }
+0.15585 exp (—3jw1)
Hy(jwr, jw2) =0
H3(jw17 jw27 jw?))
4.8262 exp [—j3(wy + wy + w3)]
1 —1.5593 exp [—j(w1 + wa + w3)]
+0.4582 exp [—52(wy + wa + w3)]
+0.15585 exp [—j3(w1 + wa + ws3)]
H,(jwi, -+, jwn) =0, n > 4.

VII. CONCLUSION



38

existing “frequency-mix vector” based approaches and providegs]
an effective means to investigate nonlinear behaviors of prac-

. . . o ight”!
tical systems including electronic circuits at the system desig
and simulation stages. The application of the method to non-
linear analysis of communication receivers has been studied artt?!
specific procedures are proposed which can be directly used in
practice for this application. [19]
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